The nested structural organization of the worldwide trade multi-layer network View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Luiz G. A. Alves, Giuseppe Mangioni, Isabella Cingolani, Francisco Aparecido Rodrigues, Pietro Panzarasa, Yamir Moreno

ABSTRACT

Nestedness has traditionally been used to detect assembly patterns in meta-communities and networks of interacting species. Attempts have also been made to uncover nested structures in international trade, typically represented as bipartite networks in which connections can be established between countries (exporters or importers) and industries. A bipartite representation of trade, however, inevitably neglects transactions between industries. To fully capture the organization of the global value chain, we draw on the World Input-Output Database and construct a multi-layer network in which the nodes are the countries, the layers are the industries, and links can be established from sellers to buyers within and across industries. We define the buyers' and sellers' participation matrices in which the rows are the countries and the columns are all possible pairs of industries, and then compute nestedness based on buyers' and sellers' involvement in transactions between and within industries. Drawing on appropriate null models that preserve the countries' or layers' degree distributions in the original multi-layer network, we uncover variations of country- and transaction-based nestedness over time, and identify the countries and industries that most contributed to nestedness. We discuss the implications of our findings for the study of the international production network and other real-world systems. More... »

PAGES

2866

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-019-39340-w

DOI

http://dx.doi.org/10.1038/s41598-019-39340-w

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112390658

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30814565


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Sao Paulo", 
          "id": "https://www.grid.ac/institutes/grid.11899.38", 
          "name": [
            "Institute of Mathematics and Computer Science, University of S\u00e3o Paulo, 13566-590, S\u00e3o Carlos, SP, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Alves", 
        "givenName": "Luiz G. A.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Catania", 
          "id": "https://www.grid.ac/institutes/grid.8158.4", 
          "name": [
            "Dipartimento di Ingegneria Elettrica, Elettronica e Informatica, University of Catania, 95125, Catania, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mangioni", 
        "givenName": "Giuseppe", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Imperial College London", 
          "id": "https://www.grid.ac/institutes/grid.7445.2", 
          "name": [
            "Big Data and Analytical Unit, Department of Surgery and Cancer, Imperial College London, SW7 2AZ, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cingolani", 
        "givenName": "Isabella", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Warwick", 
          "id": "https://www.grid.ac/institutes/grid.7372.1", 
          "name": [
            "Institute of Mathematics and Computer Science, University of S\u00e3o Paulo, 13566-590, S\u00e3o Carlos, SP, Brazil", 
            "Mathematics Institute, University of Warwick, Gibbet Hill Road, CV4 7AL, Coventry, UK", 
            "Centre for Complexity Science, University of Warwick, CV4 7AL, Coventry, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rodrigues", 
        "givenName": "Francisco Aparecido", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Queen Mary University of London", 
          "id": "https://www.grid.ac/institutes/grid.4868.2", 
          "name": [
            "School of Business and Management, Queen Mary University of London, E1 4NS, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Panzarasa", 
        "givenName": "Pietro", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Scientific Interchange", 
          "id": "https://www.grid.ac/institutes/grid.418750.f", 
          "name": [
            "Department of Theoretical Physics, University of Zaragoza, 50009, Zaragoza, Spain", 
            "Institute for Biocomputation and Physics of Complex Systems, University of Zaragoza, 50009, Zaragoza, Spain", 
            "ISI Foundation, 10126, Torino, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Moreno", 
        "givenName": "Yamir", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1093/comnet/cnu016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000778894"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.0030-1299.2008.16644.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004252115"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep08182", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004381921", 
          "https://doi.org/10.1038/srep08182"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0097857", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006346468"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3982/te1348", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006843409"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/0033-295x.84.4.327", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010221410"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature07532", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010576141", 
          "https://doi.org/10.1038/nature07532"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1095-8312.1986.tb01749.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013200626"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1633576100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015871134"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0074025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019518726"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0070726", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020070791"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0049393", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021595450"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/roie.12178", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024262334"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.90.062804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024800570"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.90.062804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024800570"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep10595", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024982682", 
          "https://doi.org/10.1038/srep10595"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0113770", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027865267"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00317508", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029571553", 
          "https://doi.org/10.1007/bf00317508"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00317508", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029571553", 
          "https://doi.org/10.1007/bf00317508"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00317508", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029571553", 
          "https://doi.org/10.1007/bf00317508"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physleta.2012.10.056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031211068"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2656.2010.01688.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042433702"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2656.2010.01688.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042433702"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physrep.2014.07.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047991629"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature10433", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048798820", 
          "https://doi.org/10.1038/nature10433"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1144581", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049169684"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms2422", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051468093", 
          "https://doi.org/10.1038/ncomms2422"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature07950", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052237145", 
          "https://doi.org/10.1038/nature07950"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature07950", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052237145", 
          "https://doi.org/10.1038/nature07950"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/scientificamerican0465-25", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056526862", 
          "https://doi.org/10.1038/scientificamerican0465-25"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1188321", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062461671"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2174/1874213000902010007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069229510"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s41109-017-0041-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090600763", 
          "https://doi.org/10.1007/s41109-017-0041-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s41109-017-0041-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090600763", 
          "https://doi.org/10.1007/s41109-017-0041-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s41109-017-0041-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090600763", 
          "https://doi.org/10.1007/s41109-017-0041-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1109705929", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4899-4541-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109705929", 
          "https://doi.org/10.1007/978-1-4899-4541-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4899-4541-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109705929", 
          "https://doi.org/10.1007/978-1-4899-4541-9"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "Nestedness has traditionally been used to detect assembly patterns in meta-communities and networks of interacting species. Attempts have also been made to uncover nested structures in international trade, typically represented as bipartite networks in which connections can be established between countries (exporters or importers) and industries. A bipartite representation of trade, however, inevitably neglects transactions between industries. To fully capture the organization of the global value chain, we draw on the World Input-Output Database and construct a multi-layer network in which the nodes are the countries, the layers are the industries, and links can be established from sellers to buyers within and across industries. We define the buyers' and sellers' participation matrices in which the rows are the countries and the columns are all possible pairs of industries, and then compute nestedness based on buyers' and sellers' involvement in transactions between and within industries. Drawing on appropriate null models that preserve the countries' or layers' degree distributions in the original multi-layer network, we uncover variations of country- and transaction-based nestedness over time, and identify the countries and industries that most contributed to nestedness. We discuss the implications of our findings for the study of the international production network and other real-world systems.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-019-39340-w", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3938306", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.7054400", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.4479556", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.4491092", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "The nested structural organization of the worldwide trade multi-layer network", 
    "pagination": "2866", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "45e45d31b4d6485d1ac83f56f54cc0e4649c570125e5c14e4a450a538c227eac"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30814565"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-019-39340-w"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112390658"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-019-39340-w", 
      "https://app.dimensions.ai/details/publication/pub.1112390658"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:49", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000350_0000000350/records_77554_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-019-39340-w"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-39340-w'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-39340-w'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-39340-w'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-39340-w'


 

This table displays all metadata directly associated to this object as RDF triples.

223 TRIPLES      21 PREDICATES      59 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-019-39340-w schema:about anzsrc-for:08
2 anzsrc-for:0806
3 schema:author Nb15cd8ea54ac4f5088d53bd2568ce1f9
4 schema:citation sg:pub.10.1007/978-1-4899-4541-9
5 sg:pub.10.1007/bf00317508
6 sg:pub.10.1007/s41109-017-0041-4
7 sg:pub.10.1038/nature07532
8 sg:pub.10.1038/nature07950
9 sg:pub.10.1038/nature10433
10 sg:pub.10.1038/ncomms2422
11 sg:pub.10.1038/scientificamerican0465-25
12 sg:pub.10.1038/srep08182
13 sg:pub.10.1038/srep10595
14 https://app.dimensions.ai/details/publication/pub.1109705929
15 https://doi.org/10.1016/j.physleta.2012.10.056
16 https://doi.org/10.1016/j.physrep.2014.07.001
17 https://doi.org/10.1037/0033-295x.84.4.327
18 https://doi.org/10.1073/pnas.1633576100
19 https://doi.org/10.1093/comnet/cnu016
20 https://doi.org/10.1103/physreve.90.062804
21 https://doi.org/10.1111/j.0030-1299.2008.16644.x
22 https://doi.org/10.1111/j.1095-8312.1986.tb01749.x
23 https://doi.org/10.1111/j.1365-2656.2010.01688.x
24 https://doi.org/10.1111/roie.12178
25 https://doi.org/10.1126/science.1144581
26 https://doi.org/10.1126/science.1188321
27 https://doi.org/10.1371/journal.pone.0049393
28 https://doi.org/10.1371/journal.pone.0070726
29 https://doi.org/10.1371/journal.pone.0074025
30 https://doi.org/10.1371/journal.pone.0097857
31 https://doi.org/10.1371/journal.pone.0113770
32 https://doi.org/10.2174/1874213000902010007
33 https://doi.org/10.3982/te1348
34 schema:datePublished 2019-12
35 schema:datePublishedReg 2019-12-01
36 schema:description Nestedness has traditionally been used to detect assembly patterns in meta-communities and networks of interacting species. Attempts have also been made to uncover nested structures in international trade, typically represented as bipartite networks in which connections can be established between countries (exporters or importers) and industries. A bipartite representation of trade, however, inevitably neglects transactions between industries. To fully capture the organization of the global value chain, we draw on the World Input-Output Database and construct a multi-layer network in which the nodes are the countries, the layers are the industries, and links can be established from sellers to buyers within and across industries. We define the buyers' and sellers' participation matrices in which the rows are the countries and the columns are all possible pairs of industries, and then compute nestedness based on buyers' and sellers' involvement in transactions between and within industries. Drawing on appropriate null models that preserve the countries' or layers' degree distributions in the original multi-layer network, we uncover variations of country- and transaction-based nestedness over time, and identify the countries and industries that most contributed to nestedness. We discuss the implications of our findings for the study of the international production network and other real-world systems.
37 schema:genre research_article
38 schema:inLanguage en
39 schema:isAccessibleForFree true
40 schema:isPartOf N334f1344e10941b385739ff5f767b8f4
41 Nd7367785f653458bb737e27882d3d83c
42 sg:journal.1045337
43 schema:name The nested structural organization of the worldwide trade multi-layer network
44 schema:pagination 2866
45 schema:productId N501e7e943876459aabe0fa10216f8e83
46 N5f939b9e52664f49b1ada95dd167fef5
47 N775edf58c23940c6b66f70d84b782ba7
48 Nb7fcecc422724a7ca37c109928af7e28
49 Nbeec481190c640e18d24a7a1d964b8aa
50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112390658
51 https://doi.org/10.1038/s41598-019-39340-w
52 schema:sdDatePublished 2019-04-11T10:49
53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
54 schema:sdPublisher N93410b92d47240ebb70f16c65319369f
55 schema:url https://www.nature.com/articles/s41598-019-39340-w
56 sgo:license sg:explorer/license/
57 sgo:sdDataset articles
58 rdf:type schema:ScholarlyArticle
59 N0ec5f3d01e414d09801b5a598459ac1b rdf:first N5832470c17314a099ec28e48e9d960ac
60 rdf:rest Nfe91f0af31b64f6eb5e2a186f15354cd
61 N301a9f731e99464bbc1fca18b8b9452c rdf:first N669953dbd8e448709e81da5357d938ef
62 rdf:rest rdf:nil
63 N334f1344e10941b385739ff5f767b8f4 schema:issueNumber 1
64 rdf:type schema:PublicationIssue
65 N4e580630bb504761922168e9877a0cfa schema:affiliation https://www.grid.ac/institutes/grid.8158.4
66 schema:familyName Mangioni
67 schema:givenName Giuseppe
68 rdf:type schema:Person
69 N501e7e943876459aabe0fa10216f8e83 schema:name pubmed_id
70 schema:value 30814565
71 rdf:type schema:PropertyValue
72 N52d15425230b4c9b94b5053095e71902 schema:affiliation https://www.grid.ac/institutes/grid.4868.2
73 schema:familyName Panzarasa
74 schema:givenName Pietro
75 rdf:type schema:Person
76 N5832470c17314a099ec28e48e9d960ac schema:affiliation https://www.grid.ac/institutes/grid.7372.1
77 schema:familyName Rodrigues
78 schema:givenName Francisco Aparecido
79 rdf:type schema:Person
80 N58f033df71ea4f44be6102a654d0dbd5 rdf:first N4e580630bb504761922168e9877a0cfa
81 rdf:rest Nc99c9c50545e4eb9a22acaec0f38b83d
82 N5f939b9e52664f49b1ada95dd167fef5 schema:name readcube_id
83 schema:value 45e45d31b4d6485d1ac83f56f54cc0e4649c570125e5c14e4a450a538c227eac
84 rdf:type schema:PropertyValue
85 N669953dbd8e448709e81da5357d938ef schema:affiliation https://www.grid.ac/institutes/grid.418750.f
86 schema:familyName Moreno
87 schema:givenName Yamir
88 rdf:type schema:Person
89 N775edf58c23940c6b66f70d84b782ba7 schema:name doi
90 schema:value 10.1038/s41598-019-39340-w
91 rdf:type schema:PropertyValue
92 N93410b92d47240ebb70f16c65319369f schema:name Springer Nature - SN SciGraph project
93 rdf:type schema:Organization
94 Na35461870aae42d8a2977e178261a870 schema:affiliation https://www.grid.ac/institutes/grid.7445.2
95 schema:familyName Cingolani
96 schema:givenName Isabella
97 rdf:type schema:Person
98 Naac24a3611a84a83a11197d80ae63214 schema:affiliation https://www.grid.ac/institutes/grid.11899.38
99 schema:familyName Alves
100 schema:givenName Luiz G. A.
101 rdf:type schema:Person
102 Nb15cd8ea54ac4f5088d53bd2568ce1f9 rdf:first Naac24a3611a84a83a11197d80ae63214
103 rdf:rest N58f033df71ea4f44be6102a654d0dbd5
104 Nb7fcecc422724a7ca37c109928af7e28 schema:name nlm_unique_id
105 schema:value 101563288
106 rdf:type schema:PropertyValue
107 Nbeec481190c640e18d24a7a1d964b8aa schema:name dimensions_id
108 schema:value pub.1112390658
109 rdf:type schema:PropertyValue
110 Nc99c9c50545e4eb9a22acaec0f38b83d rdf:first Na35461870aae42d8a2977e178261a870
111 rdf:rest N0ec5f3d01e414d09801b5a598459ac1b
112 Nd7367785f653458bb737e27882d3d83c schema:volumeNumber 9
113 rdf:type schema:PublicationVolume
114 Nfe91f0af31b64f6eb5e2a186f15354cd rdf:first N52d15425230b4c9b94b5053095e71902
115 rdf:rest N301a9f731e99464bbc1fca18b8b9452c
116 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
117 schema:name Information and Computing Sciences
118 rdf:type schema:DefinedTerm
119 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
120 schema:name Information Systems
121 rdf:type schema:DefinedTerm
122 sg:grant.3938306 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-019-39340-w
123 rdf:type schema:MonetaryGrant
124 sg:grant.4479556 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-019-39340-w
125 rdf:type schema:MonetaryGrant
126 sg:grant.4491092 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-019-39340-w
127 rdf:type schema:MonetaryGrant
128 sg:grant.7054400 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-019-39340-w
129 rdf:type schema:MonetaryGrant
130 sg:journal.1045337 schema:issn 2045-2322
131 schema:name Scientific Reports
132 rdf:type schema:Periodical
133 sg:pub.10.1007/978-1-4899-4541-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109705929
134 https://doi.org/10.1007/978-1-4899-4541-9
135 rdf:type schema:CreativeWork
136 sg:pub.10.1007/bf00317508 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029571553
137 https://doi.org/10.1007/bf00317508
138 rdf:type schema:CreativeWork
139 sg:pub.10.1007/s41109-017-0041-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090600763
140 https://doi.org/10.1007/s41109-017-0041-4
141 rdf:type schema:CreativeWork
142 sg:pub.10.1038/nature07532 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010576141
143 https://doi.org/10.1038/nature07532
144 rdf:type schema:CreativeWork
145 sg:pub.10.1038/nature07950 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052237145
146 https://doi.org/10.1038/nature07950
147 rdf:type schema:CreativeWork
148 sg:pub.10.1038/nature10433 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048798820
149 https://doi.org/10.1038/nature10433
150 rdf:type schema:CreativeWork
151 sg:pub.10.1038/ncomms2422 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051468093
152 https://doi.org/10.1038/ncomms2422
153 rdf:type schema:CreativeWork
154 sg:pub.10.1038/scientificamerican0465-25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056526862
155 https://doi.org/10.1038/scientificamerican0465-25
156 rdf:type schema:CreativeWork
157 sg:pub.10.1038/srep08182 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004381921
158 https://doi.org/10.1038/srep08182
159 rdf:type schema:CreativeWork
160 sg:pub.10.1038/srep10595 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024982682
161 https://doi.org/10.1038/srep10595
162 rdf:type schema:CreativeWork
163 https://app.dimensions.ai/details/publication/pub.1109705929 schema:CreativeWork
164 https://doi.org/10.1016/j.physleta.2012.10.056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031211068
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1016/j.physrep.2014.07.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047991629
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1037/0033-295x.84.4.327 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010221410
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1073/pnas.1633576100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015871134
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1093/comnet/cnu016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000778894
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1103/physreve.90.062804 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024800570
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1111/j.0030-1299.2008.16644.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1004252115
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1111/j.1095-8312.1986.tb01749.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1013200626
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1111/j.1365-2656.2010.01688.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1042433702
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1111/roie.12178 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024262334
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1126/science.1144581 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049169684
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1126/science.1188321 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062461671
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1371/journal.pone.0049393 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021595450
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1371/journal.pone.0070726 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020070791
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1371/journal.pone.0074025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019518726
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1371/journal.pone.0097857 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006346468
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1371/journal.pone.0113770 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027865267
197 rdf:type schema:CreativeWork
198 https://doi.org/10.2174/1874213000902010007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069229510
199 rdf:type schema:CreativeWork
200 https://doi.org/10.3982/te1348 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006843409
201 rdf:type schema:CreativeWork
202 https://www.grid.ac/institutes/grid.11899.38 schema:alternateName University of Sao Paulo
203 schema:name Institute of Mathematics and Computer Science, University of São Paulo, 13566-590, São Carlos, SP, Brazil
204 rdf:type schema:Organization
205 https://www.grid.ac/institutes/grid.418750.f schema:alternateName Institute for Scientific Interchange
206 schema:name Department of Theoretical Physics, University of Zaragoza, 50009, Zaragoza, Spain
207 ISI Foundation, 10126, Torino, Italy
208 Institute for Biocomputation and Physics of Complex Systems, University of Zaragoza, 50009, Zaragoza, Spain
209 rdf:type schema:Organization
210 https://www.grid.ac/institutes/grid.4868.2 schema:alternateName Queen Mary University of London
211 schema:name School of Business and Management, Queen Mary University of London, E1 4NS, London, UK
212 rdf:type schema:Organization
213 https://www.grid.ac/institutes/grid.7372.1 schema:alternateName University of Warwick
214 schema:name Centre for Complexity Science, University of Warwick, CV4 7AL, Coventry, UK
215 Institute of Mathematics and Computer Science, University of São Paulo, 13566-590, São Carlos, SP, Brazil
216 Mathematics Institute, University of Warwick, Gibbet Hill Road, CV4 7AL, Coventry, UK
217 rdf:type schema:Organization
218 https://www.grid.ac/institutes/grid.7445.2 schema:alternateName Imperial College London
219 schema:name Big Data and Analytical Unit, Department of Surgery and Cancer, Imperial College London, SW7 2AZ, London, UK
220 rdf:type schema:Organization
221 https://www.grid.ac/institutes/grid.8158.4 schema:alternateName University of Catania
222 schema:name Dipartimento di Ingegneria Elettrica, Elettronica e Informatica, University of Catania, 95125, Catania, Italy
223 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...