Machine-learning guided discovery of a new thermoelectric material View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Yuma Iwasaki, Ichiro Takeuchi, Valentin Stanev, Aaron Gilad Kusne, Masahiko Ishida, Akihiro Kirihara, Kazuki Ihara, Ryohto Sawada, Koichi Terashima, Hiroko Someya, Ken-ichi Uchida, Eiji Saitoh, Shinichi Yorozu

ABSTRACT

Thermoelectric technologies are becoming indispensable in the quest for a sustainable future. Recently, an emerging phenomenon, the spin-driven thermoelectric effect (STE), has garnered much attention as a promising path towards low cost and versatile thermoelectric technology with easily scalable manufacturing. However, progress in development of STE devices is hindered by the lack of understanding of the fundamental physics and materials properties responsible for the effect. In such nascent scientific field, data-driven approaches relying on statistics and machine learning, instead of more traditional modeling methods, can exhibit their full potential. Here, we use machine learning modeling to establish the key physical parameters controlling STE. Guided by the models, we have carried out actual material synthesis which led to the identification of a novel STE material with a thermopower an order of magnitude larger than that of the current generation of STE devices. More... »

PAGES

2751

References to SciGraph publications

  • 2016-11. Autonomy in materials research: a case study in carbon nanotube growth in NPJ COMPUTATIONAL MATERIALS
  • 2018-07. Machine learning for molecular and materials science in NATURE
  • 2017-02-17. Learning from data to design functional materials without inversion symmetry in NATURE COMMUNICATIONS
  • 2010. Introduction to Thermoelectricity in NONE
  • 2016-11. A general-purpose machine learning framework for predicting properties of inorganic materials in NPJ COMPUTATIONAL MATERIALS
  • 2013-12. Spectral non-uniform temperature and non-local heat transfer in the spin Seebeck effect in NATURE COMMUNICATIONS
  • 2012-05. Spin caloritronics in NATURE MATERIALS
  • 2016-09. Flexible heat-flow sensing sheets based on the longitudinal spin Seebeck effect using one-dimensional spin-current conducting films in SCIENTIFIC REPORTS
  • 2018-12. Machine learning modeling of superconducting critical temperature in NPJ COMPUTATIONAL MATERIALS
  • 2017-12. Comparison of dissimilarity measures for cluster analysis of X-ray diffraction data from combinatorial libraries in NPJ COMPUTATIONAL MATERIALS
  • 2004-07. Combinatorial solid-state chemistry of inorganic materials in NATURE MATERIALS
  • 2010-11. Spin Seebeck insulator in NATURE MATERIALS
  • 2003-03. Identification of novel compositions of ferromagnetic shape-memory alloys using composition spreads in NATURE MATERIALS
  • 2008-10-09. Observation of the spin Seebeck effect in NATURE
  • 2017-11. Large anomalous Nernst effect at room temperature in a chiral antiferromagnet in NATURE PHYSICS
  • 2012-08. Spin-current-driven thermoelectric coating in NATURE MATERIALS
  • 2015-05. On-the-fly machine-learning for high-throughput experiments: search for rare-earth-free permanent magnets in SCIENTIFIC REPORTS
  • 2006-07. Direct electronic measurement of the spin Hall effect in NATURE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41598-019-39278-z

    DOI

    http://dx.doi.org/10.1038/s41598-019-39278-z

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1112398308

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30808974


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Japan Science and Technology Agency", 
              "id": "https://www.grid.ac/institutes/grid.419082.6", 
              "name": [
                "Central Research Laboratories, NEC Corporation, 305-8501, Tsukuba, Japan", 
                "PRESTO, JST, 322-0012, Saitama, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Iwasaki", 
            "givenName": "Yuma", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Maryland, College Park", 
              "id": "https://www.grid.ac/institutes/grid.164295.d", 
              "name": [
                "Department of Materials Science and Engineering, University of Maryland, 20742, College Park, MD, USA", 
                "Center for Nanophysics and Advanced Materials, University of Maryland, 20742, College Park, MD, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Takeuchi", 
            "givenName": "Ichiro", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Maryland, College Park", 
              "id": "https://www.grid.ac/institutes/grid.164295.d", 
              "name": [
                "Department of Materials Science and Engineering, University of Maryland, 20742, College Park, MD, USA", 
                "Center for Nanophysics and Advanced Materials, University of Maryland, 20742, College Park, MD, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Stanev", 
            "givenName": "Valentin", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Institute of Standards and Technology", 
              "id": "https://www.grid.ac/institutes/grid.94225.38", 
              "name": [
                "Department of Materials Science and Engineering, University of Maryland, 20742, College Park, MD, USA", 
                "National Institute of Standards and Technology, 20899, Gaithersburg, MD, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kusne", 
            "givenName": "Aaron Gilad", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "NEC Corporation (Japan)", 
              "id": "https://www.grid.ac/institutes/grid.420377.5", 
              "name": [
                "Central Research Laboratories, NEC Corporation, 305-8501, Tsukuba, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ishida", 
            "givenName": "Masahiko", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "NEC Corporation (Japan)", 
              "id": "https://www.grid.ac/institutes/grid.420377.5", 
              "name": [
                "Central Research Laboratories, NEC Corporation, 305-8501, Tsukuba, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kirihara", 
            "givenName": "Akihiro", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "NEC Corporation (Japan)", 
              "id": "https://www.grid.ac/institutes/grid.420377.5", 
              "name": [
                "Central Research Laboratories, NEC Corporation, 305-8501, Tsukuba, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ihara", 
            "givenName": "Kazuki", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "NEC Corporation (Japan)", 
              "id": "https://www.grid.ac/institutes/grid.420377.5", 
              "name": [
                "Central Research Laboratories, NEC Corporation, 305-8501, Tsukuba, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sawada", 
            "givenName": "Ryohto", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "NEC Corporation (Japan)", 
              "id": "https://www.grid.ac/institutes/grid.420377.5", 
              "name": [
                "Central Research Laboratories, NEC Corporation, 305-8501, Tsukuba, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Terashima", 
            "givenName": "Koichi", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "NEC Corporation (Japan)", 
              "id": "https://www.grid.ac/institutes/grid.420377.5", 
              "name": [
                "Central Research Laboratories, NEC Corporation, 305-8501, Tsukuba, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Someya", 
            "givenName": "Hiroko", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Tohoku University", 
              "id": "https://www.grid.ac/institutes/grid.69566.3a", 
              "name": [
                "PRESTO, JST, 322-0012, Saitama, Japan", 
                "Research Center for Magnetic and Spintronic Materials (CMSM), National Institute for Materials Science (NIMS), 305-0047, Tsukuba, Japan", 
                "Research and Services Division of Materials Data and Integrated System (MaDIS), National Institute for Materials Science (NIMS), 305-0047, Tsukuba, Japan", 
                "Institute for Materials Research, Tohoku University, 908-8577, Sendai, Japan", 
                "Center for Spintronics Research Network, Tohoku University, 980-8577, Sendai, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Uchida", 
            "givenName": "Ken-ichi", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Advanced Science Research Center", 
              "id": "https://www.grid.ac/institutes/grid.500402.3", 
              "name": [
                "Institute for Materials Research, Tohoku University, 908-8577, Sendai, Japan", 
                "Center for Spintronics Research Network, Tohoku University, 980-8577, Sendai, Japan", 
                "Advanced Institute for Materials Research, Tohoku University, 908-8577, Sendai, Japan", 
                "Advanced Science Research Center, Japan Atomic Energy Agency, 319-1195, Tokai, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Saitoh", 
            "givenName": "Eiji", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "NEC Corporation (Japan)", 
              "id": "https://www.grid.ac/institutes/grid.420377.5", 
              "name": [
                "Central Research Laboratories, NEC Corporation, 305-8501, Tsukuba, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yorozu", 
            "givenName": "Shinichi", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nmat2856", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008851460", 
              "https://doi.org/10.1038/nmat2856"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat2856", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008851460", 
              "https://doi.org/10.1038/nmat2856"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.89.054303", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013631162"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.89.054303", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013631162"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat3360", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014032826", 
              "https://doi.org/10.1038/nmat3360"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat3301", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018153553", 
              "https://doi.org/10.1038/nmat3301"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat1157", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023709529", 
              "https://doi.org/10.1038/nmat1157"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat1157", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023709529", 
              "https://doi.org/10.1038/nmat1157"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04937", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024306812", 
              "https://doi.org/10.1038/nature04937"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04937", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024306812", 
              "https://doi.org/10.1038/nature04937"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04937", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024306812", 
              "https://doi.org/10.1038/nature04937"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.97.216603", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031531745"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.97.216603", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031531745"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0953-8984/26/34/343202", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031812096"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1158899", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033286890"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-00716-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035576780", 
              "https://doi.org/10.1007/978-3-642-00716-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-00716-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035576780", 
              "https://doi.org/10.1007/978-3-642-00716-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat829", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036713270", 
              "https://doi.org/10.1038/nmat829"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat829", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036713270", 
              "https://doi.org/10.1038/nmat829"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/npjcompumats.2016.31", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039271783", 
              "https://doi.org/10.1038/npjcompumats.2016.31"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep23114", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040766120", 
              "https://doi.org/10.1038/srep23114"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/npjcompumats.2016.28", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045780115", 
              "https://doi.org/10.1038/npjcompumats.2016.28"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms2945", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046212573", 
              "https://doi.org/10.1038/ncomms2945"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature07321", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047234331", 
              "https://doi.org/10.1038/nature07321"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/9781119148739.ch4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047586328"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.3529944", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050074899"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep06367", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050357030", 
              "https://doi.org/10.1038/srep06367"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.scriptamat.2015.04.034", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053462280"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1623923", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057726992"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1827339", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057825099"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1855251", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057828438"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.2199473", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057845936"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.3533397", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057969464"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.107.216604", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060759059"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.107.216604", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060759059"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1557/mrs2006.228", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1067969102"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.7566/jpsj.85.074705", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1073830711"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41524-017-0006-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083426755", 
              "https://doi.org/10.1038/s41524-017-0006-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms14282", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083846223", 
              "https://doi.org/10.1038/ncomms14282"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys4181", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090882908", 
              "https://doi.org/10.1038/nphys4181"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys4181", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090882908", 
              "https://doi.org/10.1038/nphys4181"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41524-018-0085-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105071559", 
              "https://doi.org/10.1038/s41524-018-0085-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41586-018-0337-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105646334", 
              "https://doi.org/10.1038/s41586-018-0337-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1201/9781420038903", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1109387125"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-12", 
        "datePublishedReg": "2019-12-01", 
        "description": "Thermoelectric technologies are becoming indispensable in the quest for a sustainable future. Recently, an emerging phenomenon, the spin-driven thermoelectric effect (STE), has garnered much attention as a promising path towards low cost and versatile thermoelectric technology with easily scalable manufacturing. However, progress in development of STE devices is hindered by the lack of understanding of the fundamental physics and materials properties responsible for the effect. In such nascent scientific field, data-driven approaches relying on statistics and machine learning, instead of more traditional modeling methods, can exhibit their full potential. Here, we use machine learning modeling to establish the key physical parameters controlling STE. Guided by the models, we have carried out actual material synthesis which led to the identification of a novel STE material with a thermopower an order of magnitude larger than that of the current generation of STE devices.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/s41598-019-39278-z", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.5847368", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1045337", 
            "issn": [
              "2045-2322"
            ], 
            "name": "Scientific Reports", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "9"
          }
        ], 
        "name": "Machine-learning guided discovery of a new thermoelectric material", 
        "pagination": "2751", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "fba3d0ebc5a30e3da7db1e2d9c0957ffbec4bf8bc8649481e8bfd26ce9facf19"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30808974"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101563288"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41598-019-39278-z"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1112398308"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41598-019-39278-z", 
          "https://app.dimensions.ai/details/publication/pub.1112398308"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T10:51", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000350_0000000350/records_77586_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://www.nature.com/articles/s41598-019-39278-z"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-39278-z'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-39278-z'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-39278-z'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-39278-z'


     

    This table displays all metadata directly associated to this object as RDF triples.

    286 TRIPLES      21 PREDICATES      63 URIs      21 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41598-019-39278-z schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author N31cbfe03bd4140128ff8755453563655
    4 schema:citation sg:pub.10.1007/978-3-642-00716-3
    5 sg:pub.10.1038/nature04937
    6 sg:pub.10.1038/nature07321
    7 sg:pub.10.1038/ncomms14282
    8 sg:pub.10.1038/ncomms2945
    9 sg:pub.10.1038/nmat1157
    10 sg:pub.10.1038/nmat2856
    11 sg:pub.10.1038/nmat3301
    12 sg:pub.10.1038/nmat3360
    13 sg:pub.10.1038/nmat829
    14 sg:pub.10.1038/nphys4181
    15 sg:pub.10.1038/npjcompumats.2016.28
    16 sg:pub.10.1038/npjcompumats.2016.31
    17 sg:pub.10.1038/s41524-017-0006-2
    18 sg:pub.10.1038/s41524-018-0085-8
    19 sg:pub.10.1038/s41586-018-0337-2
    20 sg:pub.10.1038/srep06367
    21 sg:pub.10.1038/srep23114
    22 https://doi.org/10.1002/9781119148739.ch4
    23 https://doi.org/10.1016/j.scriptamat.2015.04.034
    24 https://doi.org/10.1063/1.1623923
    25 https://doi.org/10.1063/1.1827339
    26 https://doi.org/10.1063/1.1855251
    27 https://doi.org/10.1063/1.2199473
    28 https://doi.org/10.1063/1.3529944
    29 https://doi.org/10.1063/1.3533397
    30 https://doi.org/10.1088/0953-8984/26/34/343202
    31 https://doi.org/10.1103/physrevb.89.054303
    32 https://doi.org/10.1103/physrevlett.107.216604
    33 https://doi.org/10.1103/physrevlett.97.216603
    34 https://doi.org/10.1126/science.1158899
    35 https://doi.org/10.1201/9781420038903
    36 https://doi.org/10.1557/mrs2006.228
    37 https://doi.org/10.7566/jpsj.85.074705
    38 schema:datePublished 2019-12
    39 schema:datePublishedReg 2019-12-01
    40 schema:description Thermoelectric technologies are becoming indispensable in the quest for a sustainable future. Recently, an emerging phenomenon, the spin-driven thermoelectric effect (STE), has garnered much attention as a promising path towards low cost and versatile thermoelectric technology with easily scalable manufacturing. However, progress in development of STE devices is hindered by the lack of understanding of the fundamental physics and materials properties responsible for the effect. In such nascent scientific field, data-driven approaches relying on statistics and machine learning, instead of more traditional modeling methods, can exhibit their full potential. Here, we use machine learning modeling to establish the key physical parameters controlling STE. Guided by the models, we have carried out actual material synthesis which led to the identification of a novel STE material with a thermopower an order of magnitude larger than that of the current generation of STE devices.
    41 schema:genre research_article
    42 schema:inLanguage en
    43 schema:isAccessibleForFree true
    44 schema:isPartOf N5ae30c29088141ebae01b622acacffda
    45 N5eaed00c22fe4a3e99b4c30a6f69ab01
    46 sg:journal.1045337
    47 schema:name Machine-learning guided discovery of a new thermoelectric material
    48 schema:pagination 2751
    49 schema:productId N050bbf1b2ce34733a98d9835e8161484
    50 N0b17f64e915b4c5daf7a9b9960b1c6cf
    51 N10ab1ca6ef904a2c92a47c9b3c219442
    52 N5811ced7e02643cf9e200bcb5f54e765
    53 N7bbf7dd97ed248ceab35610d52b46f9f
    54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112398308
    55 https://doi.org/10.1038/s41598-019-39278-z
    56 schema:sdDatePublished 2019-04-11T10:51
    57 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    58 schema:sdPublisher N9c9d76c2f4604387be41fe66885ea69e
    59 schema:url https://www.nature.com/articles/s41598-019-39278-z
    60 sgo:license sg:explorer/license/
    61 sgo:sdDataset articles
    62 rdf:type schema:ScholarlyArticle
    63 N005b85c67ae14ab4b3ec8bff85c60211 rdf:first Nc0c82ddc8eea428bafaefb3efd0a56bf
    64 rdf:rest Nc8fe68c1404e4d3e85d206370963e6fa
    65 N050bbf1b2ce34733a98d9835e8161484 schema:name pubmed_id
    66 schema:value 30808974
    67 rdf:type schema:PropertyValue
    68 N077d4c3b925f463b873d81bad2d2d8b2 rdf:first N3ccf861b8d4140379219d0cd9883ebbb
    69 rdf:rest N9494166694a6422fb462b3be8b1d23c2
    70 N0b17f64e915b4c5daf7a9b9960b1c6cf schema:name nlm_unique_id
    71 schema:value 101563288
    72 rdf:type schema:PropertyValue
    73 N108aa2ab7eb34d58902236b0af960173 rdf:first N1fb7ad11b85d43d8b1b9aedb6e189ac5
    74 rdf:rest Ndeee4bf2e0624bfb8d1f3dfd490db0df
    75 N10ab1ca6ef904a2c92a47c9b3c219442 schema:name dimensions_id
    76 schema:value pub.1112398308
    77 rdf:type schema:PropertyValue
    78 N1fb7ad11b85d43d8b1b9aedb6e189ac5 schema:affiliation https://www.grid.ac/institutes/grid.164295.d
    79 schema:familyName Takeuchi
    80 schema:givenName Ichiro
    81 rdf:type schema:Person
    82 N28dc28134a0e4bb78ab140a0d619b865 schema:affiliation https://www.grid.ac/institutes/grid.500402.3
    83 schema:familyName Saitoh
    84 schema:givenName Eiji
    85 rdf:type schema:Person
    86 N31cbfe03bd4140128ff8755453563655 rdf:first N5c73c7c19e314e8fa578cf45e21ae19b
    87 rdf:rest N108aa2ab7eb34d58902236b0af960173
    88 N3ccf861b8d4140379219d0cd9883ebbb schema:affiliation https://www.grid.ac/institutes/grid.420377.5
    89 schema:familyName Terashima
    90 schema:givenName Koichi
    91 rdf:type schema:Person
    92 N3cfe39df497f4a96992d4319c89ac037 schema:affiliation https://www.grid.ac/institutes/grid.420377.5
    93 schema:familyName Sawada
    94 schema:givenName Ryohto
    95 rdf:type schema:Person
    96 N4a62f382da324434b0481d4a8f4c2562 schema:affiliation https://www.grid.ac/institutes/grid.420377.5
    97 schema:familyName Ishida
    98 schema:givenName Masahiko
    99 rdf:type schema:Person
    100 N5811ced7e02643cf9e200bcb5f54e765 schema:name doi
    101 schema:value 10.1038/s41598-019-39278-z
    102 rdf:type schema:PropertyValue
    103 N5ae30c29088141ebae01b622acacffda schema:volumeNumber 9
    104 rdf:type schema:PublicationVolume
    105 N5c73c7c19e314e8fa578cf45e21ae19b schema:affiliation https://www.grid.ac/institutes/grid.419082.6
    106 schema:familyName Iwasaki
    107 schema:givenName Yuma
    108 rdf:type schema:Person
    109 N5eaed00c22fe4a3e99b4c30a6f69ab01 schema:issueNumber 1
    110 rdf:type schema:PublicationIssue
    111 N65617240be0c4b94b2de2eaef4d54855 rdf:first N28dc28134a0e4bb78ab140a0d619b865
    112 rdf:rest Nad36ffee35e14a80a9eeaf254d8c1c02
    113 N65835324afcb42c289ee5126de612c3e schema:affiliation https://www.grid.ac/institutes/grid.420377.5
    114 schema:familyName Someya
    115 schema:givenName Hiroko
    116 rdf:type schema:Person
    117 N751373d286384d1a8b94c02c99f7be47 schema:affiliation https://www.grid.ac/institutes/grid.164295.d
    118 schema:familyName Stanev
    119 schema:givenName Valentin
    120 rdf:type schema:Person
    121 N799c2c04cab144409b59a85866059297 schema:affiliation https://www.grid.ac/institutes/grid.420377.5
    122 schema:familyName Ihara
    123 schema:givenName Kazuki
    124 rdf:type schema:Person
    125 N7bbf7dd97ed248ceab35610d52b46f9f schema:name readcube_id
    126 schema:value fba3d0ebc5a30e3da7db1e2d9c0957ffbec4bf8bc8649481e8bfd26ce9facf19
    127 rdf:type schema:PropertyValue
    128 N7ea13b1d54d2416893a2f4c1ce7b63f6 schema:affiliation https://www.grid.ac/institutes/grid.420377.5
    129 schema:familyName Yorozu
    130 schema:givenName Shinichi
    131 rdf:type schema:Person
    132 N80ae8cf03b674e6b8129c0d15a560561 rdf:first N799c2c04cab144409b59a85866059297
    133 rdf:rest Nc436af3a58614affbf91b0382ad6aa84
    134 N878a2df65b7b4e7c90ec8489ebdf5bc4 rdf:first Nfa49e24e7fe04b49836bc005c9cd5e51
    135 rdf:rest N80ae8cf03b674e6b8129c0d15a560561
    136 N90295790d90c40e1b0c63c898fa96692 schema:affiliation https://www.grid.ac/institutes/grid.69566.3a
    137 schema:familyName Uchida
    138 schema:givenName Ken-ichi
    139 rdf:type schema:Person
    140 N9494166694a6422fb462b3be8b1d23c2 rdf:first N65835324afcb42c289ee5126de612c3e
    141 rdf:rest Ne39ae3800a13411fae475b06dec5d837
    142 N9c9d76c2f4604387be41fe66885ea69e schema:name Springer Nature - SN SciGraph project
    143 rdf:type schema:Organization
    144 Nad36ffee35e14a80a9eeaf254d8c1c02 rdf:first N7ea13b1d54d2416893a2f4c1ce7b63f6
    145 rdf:rest rdf:nil
    146 Nc0c82ddc8eea428bafaefb3efd0a56bf schema:affiliation https://www.grid.ac/institutes/grid.94225.38
    147 schema:familyName Kusne
    148 schema:givenName Aaron Gilad
    149 rdf:type schema:Person
    150 Nc436af3a58614affbf91b0382ad6aa84 rdf:first N3cfe39df497f4a96992d4319c89ac037
    151 rdf:rest N077d4c3b925f463b873d81bad2d2d8b2
    152 Nc8fe68c1404e4d3e85d206370963e6fa rdf:first N4a62f382da324434b0481d4a8f4c2562
    153 rdf:rest N878a2df65b7b4e7c90ec8489ebdf5bc4
    154 Ndeee4bf2e0624bfb8d1f3dfd490db0df rdf:first N751373d286384d1a8b94c02c99f7be47
    155 rdf:rest N005b85c67ae14ab4b3ec8bff85c60211
    156 Ne39ae3800a13411fae475b06dec5d837 rdf:first N90295790d90c40e1b0c63c898fa96692
    157 rdf:rest N65617240be0c4b94b2de2eaef4d54855
    158 Nfa49e24e7fe04b49836bc005c9cd5e51 schema:affiliation https://www.grid.ac/institutes/grid.420377.5
    159 schema:familyName Kirihara
    160 schema:givenName Akihiro
    161 rdf:type schema:Person
    162 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    163 schema:name Engineering
    164 rdf:type schema:DefinedTerm
    165 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    166 schema:name Materials Engineering
    167 rdf:type schema:DefinedTerm
    168 sg:grant.5847368 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-019-39278-z
    169 rdf:type schema:MonetaryGrant
    170 sg:journal.1045337 schema:issn 2045-2322
    171 schema:name Scientific Reports
    172 rdf:type schema:Periodical
    173 sg:pub.10.1007/978-3-642-00716-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035576780
    174 https://doi.org/10.1007/978-3-642-00716-3
    175 rdf:type schema:CreativeWork
    176 sg:pub.10.1038/nature04937 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024306812
    177 https://doi.org/10.1038/nature04937
    178 rdf:type schema:CreativeWork
    179 sg:pub.10.1038/nature07321 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047234331
    180 https://doi.org/10.1038/nature07321
    181 rdf:type schema:CreativeWork
    182 sg:pub.10.1038/ncomms14282 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083846223
    183 https://doi.org/10.1038/ncomms14282
    184 rdf:type schema:CreativeWork
    185 sg:pub.10.1038/ncomms2945 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046212573
    186 https://doi.org/10.1038/ncomms2945
    187 rdf:type schema:CreativeWork
    188 sg:pub.10.1038/nmat1157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023709529
    189 https://doi.org/10.1038/nmat1157
    190 rdf:type schema:CreativeWork
    191 sg:pub.10.1038/nmat2856 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008851460
    192 https://doi.org/10.1038/nmat2856
    193 rdf:type schema:CreativeWork
    194 sg:pub.10.1038/nmat3301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018153553
    195 https://doi.org/10.1038/nmat3301
    196 rdf:type schema:CreativeWork
    197 sg:pub.10.1038/nmat3360 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014032826
    198 https://doi.org/10.1038/nmat3360
    199 rdf:type schema:CreativeWork
    200 sg:pub.10.1038/nmat829 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036713270
    201 https://doi.org/10.1038/nmat829
    202 rdf:type schema:CreativeWork
    203 sg:pub.10.1038/nphys4181 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090882908
    204 https://doi.org/10.1038/nphys4181
    205 rdf:type schema:CreativeWork
    206 sg:pub.10.1038/npjcompumats.2016.28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045780115
    207 https://doi.org/10.1038/npjcompumats.2016.28
    208 rdf:type schema:CreativeWork
    209 sg:pub.10.1038/npjcompumats.2016.31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039271783
    210 https://doi.org/10.1038/npjcompumats.2016.31
    211 rdf:type schema:CreativeWork
    212 sg:pub.10.1038/s41524-017-0006-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083426755
    213 https://doi.org/10.1038/s41524-017-0006-2
    214 rdf:type schema:CreativeWork
    215 sg:pub.10.1038/s41524-018-0085-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105071559
    216 https://doi.org/10.1038/s41524-018-0085-8
    217 rdf:type schema:CreativeWork
    218 sg:pub.10.1038/s41586-018-0337-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105646334
    219 https://doi.org/10.1038/s41586-018-0337-2
    220 rdf:type schema:CreativeWork
    221 sg:pub.10.1038/srep06367 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050357030
    222 https://doi.org/10.1038/srep06367
    223 rdf:type schema:CreativeWork
    224 sg:pub.10.1038/srep23114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040766120
    225 https://doi.org/10.1038/srep23114
    226 rdf:type schema:CreativeWork
    227 https://doi.org/10.1002/9781119148739.ch4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047586328
    228 rdf:type schema:CreativeWork
    229 https://doi.org/10.1016/j.scriptamat.2015.04.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053462280
    230 rdf:type schema:CreativeWork
    231 https://doi.org/10.1063/1.1623923 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057726992
    232 rdf:type schema:CreativeWork
    233 https://doi.org/10.1063/1.1827339 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057825099
    234 rdf:type schema:CreativeWork
    235 https://doi.org/10.1063/1.1855251 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057828438
    236 rdf:type schema:CreativeWork
    237 https://doi.org/10.1063/1.2199473 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057845936
    238 rdf:type schema:CreativeWork
    239 https://doi.org/10.1063/1.3529944 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050074899
    240 rdf:type schema:CreativeWork
    241 https://doi.org/10.1063/1.3533397 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057969464
    242 rdf:type schema:CreativeWork
    243 https://doi.org/10.1088/0953-8984/26/34/343202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031812096
    244 rdf:type schema:CreativeWork
    245 https://doi.org/10.1103/physrevb.89.054303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013631162
    246 rdf:type schema:CreativeWork
    247 https://doi.org/10.1103/physrevlett.107.216604 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060759059
    248 rdf:type schema:CreativeWork
    249 https://doi.org/10.1103/physrevlett.97.216603 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031531745
    250 rdf:type schema:CreativeWork
    251 https://doi.org/10.1126/science.1158899 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033286890
    252 rdf:type schema:CreativeWork
    253 https://doi.org/10.1201/9781420038903 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109387125
    254 rdf:type schema:CreativeWork
    255 https://doi.org/10.1557/mrs2006.228 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067969102
    256 rdf:type schema:CreativeWork
    257 https://doi.org/10.7566/jpsj.85.074705 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073830711
    258 rdf:type schema:CreativeWork
    259 https://www.grid.ac/institutes/grid.164295.d schema:alternateName University of Maryland, College Park
    260 schema:name Center for Nanophysics and Advanced Materials, University of Maryland, 20742, College Park, MD, USA
    261 Department of Materials Science and Engineering, University of Maryland, 20742, College Park, MD, USA
    262 rdf:type schema:Organization
    263 https://www.grid.ac/institutes/grid.419082.6 schema:alternateName Japan Science and Technology Agency
    264 schema:name Central Research Laboratories, NEC Corporation, 305-8501, Tsukuba, Japan
    265 PRESTO, JST, 322-0012, Saitama, Japan
    266 rdf:type schema:Organization
    267 https://www.grid.ac/institutes/grid.420377.5 schema:alternateName NEC Corporation (Japan)
    268 schema:name Central Research Laboratories, NEC Corporation, 305-8501, Tsukuba, Japan
    269 rdf:type schema:Organization
    270 https://www.grid.ac/institutes/grid.500402.3 schema:alternateName Advanced Science Research Center
    271 schema:name Advanced Institute for Materials Research, Tohoku University, 908-8577, Sendai, Japan
    272 Advanced Science Research Center, Japan Atomic Energy Agency, 319-1195, Tokai, Japan
    273 Center for Spintronics Research Network, Tohoku University, 980-8577, Sendai, Japan
    274 Institute for Materials Research, Tohoku University, 908-8577, Sendai, Japan
    275 rdf:type schema:Organization
    276 https://www.grid.ac/institutes/grid.69566.3a schema:alternateName Tohoku University
    277 schema:name Center for Spintronics Research Network, Tohoku University, 980-8577, Sendai, Japan
    278 Institute for Materials Research, Tohoku University, 908-8577, Sendai, Japan
    279 PRESTO, JST, 322-0012, Saitama, Japan
    280 Research Center for Magnetic and Spintronic Materials (CMSM), National Institute for Materials Science (NIMS), 305-0047, Tsukuba, Japan
    281 Research and Services Division of Materials Data and Integrated System (MaDIS), National Institute for Materials Science (NIMS), 305-0047, Tsukuba, Japan
    282 rdf:type schema:Organization
    283 https://www.grid.ac/institutes/grid.94225.38 schema:alternateName National Institute of Standards and Technology
    284 schema:name Department of Materials Science and Engineering, University of Maryland, 20742, College Park, MD, USA
    285 National Institute of Standards and Technology, 20899, Gaithersburg, MD, USA
    286 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...