Continuous shear stress alters metabolism, mass-transport, and growth in electroactive biofilms independent of surface substrate transport View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

A-Andrew D. Jones, Cullen R. Buie

ABSTRACT

Electroactive bacteria such as Geobacter sulfurreducens and Shewanella onedensis produce electrical current during their respiration; this has been exploited in bioelectrochemical systems. These bacteria form thicker biofilms and stay more active than soluble-respiring bacteria biofilms because their electron acceptor is always accessible. In bioelectrochemical systems such as microbial fuel cells, corrosion-resistant metals uptake current from the bacteria, producing power. While beneficial for engineering applications, collecting current using corrosion resistant metals induces pH stress in the biofilm, unlike the naturally occurring process where a reduced metal combines with protons released during respiration. To reduce pH stress, some bioelectrochemical systems use forced convection to enhance mass transport of both nutrients and byproducts; however, biofilms' small pore size limits convective transport, thus, reducing pH stress in these systems remains a challenge. Understanding how convection is necessary but not sufficient for maintaining biofilm health requires decoupling mass transport from momentum transport (i.e. fluidic shear stress). In this study we use a rotating disc electrode to emulate a practical bioelectrochemical system, while decoupling mass transport from shear stress. This is the first study to isolate the metabolic and structural changes in electroactive biofilms due to shear stress. We find that increased shear stress reduces biofilm development time while increasing its metabolic rate. Furthermore, we find biofilm health is negatively affected by higher metabolic rates over long-term growth due to the biofilm's memory of the fluid flow conditions during the initial biofilm development phases. These results not only provide guidelines for improving performance of bioelectrochemical systems, but also reveal features of biofilm behavior. Results of this study suggest that optimized reactors may initiate operation at high shear to decrease development time before decreasing shear for steady-state operation. Furthermore, this biofilm memory discovered will help explain the presence of channels within biofilms observed in other studies. More... »

PAGES

2602

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-019-39267-2

DOI

http://dx.doi.org/10.1038/s41598-019-39267-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112308379

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30796283


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0605", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Microbiology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Northeastern University", 
          "id": "https://www.grid.ac/institutes/grid.261112.7", 
          "name": [
            "Department of Mechanical Engineering, Massachusetts Institute of Technology, 02139, Cambridge, MA, USA", 
            "Department of Chemical Engineering and Department of Mechanical & Industrial Engineering, Northeastern University, 02115, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jones", 
        "givenName": "A-Andrew D.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Massachusetts Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.116068.8", 
          "name": [
            "Department of Mechanical Engineering, Massachusetts Institute of Technology, 02139, Cambridge, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Buie", 
        "givenName": "Cullen R.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/(sici)1097-0290(20000220)67:4<476::aid-bit11>3.0.co;2-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001472940"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-0290(20000220)67:4<476::aid-bit11>3.0.co;2-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001472940"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bios.2009.05.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001716574"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1751-7915.2008.00049.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003479783"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aem.01444-06", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003741781"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c2ee23394k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004831430"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aem.00177-08", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010600676"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b816647a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012165447"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bit.24390", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013665690"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00449-016-1638-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020148484", 
          "https://doi.org/10.1007/s00449-016-1638-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00449-016-1638-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020148484", 
          "https://doi.org/10.1007/s00449-016-1638-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biortech.2014.06.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022310891"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0010-938x(99)00068-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022605706"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.pnsc.2008.04.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024230789"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1149/1.2095539", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025320544"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0043-1354(82)90139-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026527410"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0043-1354(82)90139-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026527410"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jpowsour.2009.08.092", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026710925"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1216376110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026950334"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.elecom.2013.04.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027937973"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/wr026i009p02161", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028152885"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/elan.200800007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028168724"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biortech.2013.02.069", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031881803"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bit.21838", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032497293"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aem.67.7.3180-3187.2001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032801639"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c1ee01753e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034846640"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cssc.201100748", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037563898"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/celc.201402127", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039295468"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biortech.2016.04.136", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041574861"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biortech.2016.04.136", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041574861"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0043-1354(01)00379-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043533448"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/celc.201600079", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044521947"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1462-2920.2005.00731.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045341777"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/es903043p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047011712"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/es903043p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047011712"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.watres.2016.09.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048955268"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cssc.201200671", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050631060"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bit.25105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051414738"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5006/1.3293529", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051734220"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c4cp01023j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052533518"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/es0502876", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055498001"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/es0502876", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055498001"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/es204622m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055504201"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.240.4857.1319", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062536232"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077157346", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077159434", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jpowsour.2017.02.032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084091827"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0175197", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084803438"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.est.8b01468", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105450319"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/391029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106135614"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/391029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106135614"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/391029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106135614"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/sciadv.aat5664", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1111364772"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/sciadv.aat5664", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1111364772"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "Electroactive bacteria such as Geobacter sulfurreducens and Shewanella onedensis produce electrical current during their respiration; this has been exploited in bioelectrochemical systems. These bacteria form thicker biofilms and stay more active than soluble-respiring bacteria biofilms because their electron acceptor is always accessible. In bioelectrochemical systems such as microbial fuel cells, corrosion-resistant metals uptake current from the bacteria, producing power. While beneficial for engineering applications, collecting current using corrosion resistant metals induces pH stress in the biofilm, unlike the naturally occurring process where a reduced metal combines with protons released during respiration. To reduce pH stress, some bioelectrochemical systems use forced convection to enhance mass transport of both nutrients and byproducts; however, biofilms' small pore size limits convective transport, thus, reducing pH stress in these systems remains a challenge. Understanding how convection is necessary but not sufficient for maintaining biofilm health requires decoupling mass transport from momentum transport (i.e. fluidic shear stress). In this study we use a rotating disc electrode to emulate a practical bioelectrochemical system, while decoupling mass transport from shear stress. This is the first study to isolate the metabolic and structural changes in electroactive biofilms due to shear stress. We find that increased shear stress reduces biofilm development time while increasing its metabolic rate. Furthermore, we find biofilm health is negatively affected by higher metabolic rates over long-term growth due to the biofilm's memory of the fluid flow conditions during the initial biofilm development phases. These results not only provide guidelines for improving performance of bioelectrochemical systems, but also reveal features of biofilm behavior. Results of this study suggest that optimized reactors may initiate operation at high shear to decrease development time before decreasing shear for steady-state operation. Furthermore, this biofilm memory discovered will help explain the presence of channels within biofilms observed in other studies.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-019-39267-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "Continuous shear stress alters metabolism, mass-transport, and growth in electroactive biofilms independent of surface substrate transport", 
    "pagination": "2602", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "9b092be67f1204f0a252d40c50bad93096f0b37153101fdcec323fb828305a3c"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30796283"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-019-39267-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112308379"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-019-39267-2", 
      "https://app.dimensions.ai/details/publication/pub.1112308379"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:31", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000349_0000000349/records_113650_00000005.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-019-39267-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-39267-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-39267-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-39267-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-39267-2'


 

This table displays all metadata directly associated to this object as RDF triples.

211 TRIPLES      21 PREDICATES      74 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-019-39267-2 schema:about anzsrc-for:06
2 anzsrc-for:0605
3 schema:author Naf0d56aeec974abebca7bf43851e47fa
4 schema:citation sg:pub.10.1007/s00449-016-1638-1
5 https://app.dimensions.ai/details/publication/pub.1077157346
6 https://app.dimensions.ai/details/publication/pub.1077159434
7 https://doi.org/10.1002/(sici)1097-0290(20000220)67:4<476::aid-bit11>3.0.co;2-2
8 https://doi.org/10.1002/bit.21838
9 https://doi.org/10.1002/bit.24390
10 https://doi.org/10.1002/bit.25105
11 https://doi.org/10.1002/celc.201402127
12 https://doi.org/10.1002/celc.201600079
13 https://doi.org/10.1002/cssc.201100748
14 https://doi.org/10.1002/cssc.201200671
15 https://doi.org/10.1002/elan.200800007
16 https://doi.org/10.1016/0043-1354(82)90139-7
17 https://doi.org/10.1016/j.biortech.2013.02.069
18 https://doi.org/10.1016/j.biortech.2014.06.034
19 https://doi.org/10.1016/j.biortech.2016.04.136
20 https://doi.org/10.1016/j.bios.2009.05.004
21 https://doi.org/10.1016/j.elecom.2013.04.013
22 https://doi.org/10.1016/j.jpowsour.2009.08.092
23 https://doi.org/10.1016/j.jpowsour.2017.02.032
24 https://doi.org/10.1016/j.pnsc.2008.04.001
25 https://doi.org/10.1016/j.watres.2016.09.008
26 https://doi.org/10.1016/s0010-938x(99)00068-2
27 https://doi.org/10.1016/s0043-1354(01)00379-7
28 https://doi.org/10.1021/acs.est.8b01468
29 https://doi.org/10.1021/es0502876
30 https://doi.org/10.1021/es204622m
31 https://doi.org/10.1021/es903043p
32 https://doi.org/10.1029/wr026i009p02161
33 https://doi.org/10.1039/b816647a
34 https://doi.org/10.1039/c1ee01753e
35 https://doi.org/10.1039/c2ee23394k
36 https://doi.org/10.1039/c4cp01023j
37 https://doi.org/10.1073/pnas.1216376110
38 https://doi.org/10.1101/391029
39 https://doi.org/10.1111/j.1462-2920.2005.00731.x
40 https://doi.org/10.1111/j.1751-7915.2008.00049.x
41 https://doi.org/10.1126/sciadv.aat5664
42 https://doi.org/10.1126/science.240.4857.1319
43 https://doi.org/10.1128/aem.00177-08
44 https://doi.org/10.1128/aem.01444-06
45 https://doi.org/10.1128/aem.67.7.3180-3187.2001
46 https://doi.org/10.1149/1.2095539
47 https://doi.org/10.1371/journal.pone.0175197
48 https://doi.org/10.5006/1.3293529
49 schema:datePublished 2019-12
50 schema:datePublishedReg 2019-12-01
51 schema:description Electroactive bacteria such as Geobacter sulfurreducens and Shewanella onedensis produce electrical current during their respiration; this has been exploited in bioelectrochemical systems. These bacteria form thicker biofilms and stay more active than soluble-respiring bacteria biofilms because their electron acceptor is always accessible. In bioelectrochemical systems such as microbial fuel cells, corrosion-resistant metals uptake current from the bacteria, producing power. While beneficial for engineering applications, collecting current using corrosion resistant metals induces pH stress in the biofilm, unlike the naturally occurring process where a reduced metal combines with protons released during respiration. To reduce pH stress, some bioelectrochemical systems use forced convection to enhance mass transport of both nutrients and byproducts; however, biofilms' small pore size limits convective transport, thus, reducing pH stress in these systems remains a challenge. Understanding how convection is necessary but not sufficient for maintaining biofilm health requires decoupling mass transport from momentum transport (i.e. fluidic shear stress). In this study we use a rotating disc electrode to emulate a practical bioelectrochemical system, while decoupling mass transport from shear stress. This is the first study to isolate the metabolic and structural changes in electroactive biofilms due to shear stress. We find that increased shear stress reduces biofilm development time while increasing its metabolic rate. Furthermore, we find biofilm health is negatively affected by higher metabolic rates over long-term growth due to the biofilm's memory of the fluid flow conditions during the initial biofilm development phases. These results not only provide guidelines for improving performance of bioelectrochemical systems, but also reveal features of biofilm behavior. Results of this study suggest that optimized reactors may initiate operation at high shear to decrease development time before decreasing shear for steady-state operation. Furthermore, this biofilm memory discovered will help explain the presence of channels within biofilms observed in other studies.
52 schema:genre research_article
53 schema:inLanguage en
54 schema:isAccessibleForFree true
55 schema:isPartOf N4d079dbc57364b35a0c7900940b4c869
56 Nabeebc25b0a4483e91f18d2a0861d5de
57 sg:journal.1045337
58 schema:name Continuous shear stress alters metabolism, mass-transport, and growth in electroactive biofilms independent of surface substrate transport
59 schema:pagination 2602
60 schema:productId N4e33c48f18cc4b4da4e448c7a83d25ee
61 N63af6f48279042b3ae6a32118e6c388a
62 N9743af54838d4800929287c40c57de8f
63 N9c0101ebc7114f279558f470c922c733
64 Nf43ccdc08ca343088ec458bd17a64321
65 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112308379
66 https://doi.org/10.1038/s41598-019-39267-2
67 schema:sdDatePublished 2019-04-11T10:31
68 schema:sdLicense https://scigraph.springernature.com/explorer/license/
69 schema:sdPublisher Ne03bce2a83b84980b9ae60c64b76fb20
70 schema:url https://www.nature.com/articles/s41598-019-39267-2
71 sgo:license sg:explorer/license/
72 sgo:sdDataset articles
73 rdf:type schema:ScholarlyArticle
74 N4d079dbc57364b35a0c7900940b4c869 schema:volumeNumber 9
75 rdf:type schema:PublicationVolume
76 N4e33c48f18cc4b4da4e448c7a83d25ee schema:name readcube_id
77 schema:value 9b092be67f1204f0a252d40c50bad93096f0b37153101fdcec323fb828305a3c
78 rdf:type schema:PropertyValue
79 N526bb02abf7d4da5be26af1ff0c8949a schema:affiliation https://www.grid.ac/institutes/grid.261112.7
80 schema:familyName Jones
81 schema:givenName A-Andrew D.
82 rdf:type schema:Person
83 N63af6f48279042b3ae6a32118e6c388a schema:name pubmed_id
84 schema:value 30796283
85 rdf:type schema:PropertyValue
86 N9743af54838d4800929287c40c57de8f schema:name nlm_unique_id
87 schema:value 101563288
88 rdf:type schema:PropertyValue
89 N9c0101ebc7114f279558f470c922c733 schema:name doi
90 schema:value 10.1038/s41598-019-39267-2
91 rdf:type schema:PropertyValue
92 Nabeebc25b0a4483e91f18d2a0861d5de schema:issueNumber 1
93 rdf:type schema:PublicationIssue
94 Naf0d56aeec974abebca7bf43851e47fa rdf:first N526bb02abf7d4da5be26af1ff0c8949a
95 rdf:rest Nf5a3cd827781404e9418b789736d0316
96 Nc9983e354bed458aa02957e97fe8b261 schema:affiliation https://www.grid.ac/institutes/grid.116068.8
97 schema:familyName Buie
98 schema:givenName Cullen R.
99 rdf:type schema:Person
100 Ne03bce2a83b84980b9ae60c64b76fb20 schema:name Springer Nature - SN SciGraph project
101 rdf:type schema:Organization
102 Nf43ccdc08ca343088ec458bd17a64321 schema:name dimensions_id
103 schema:value pub.1112308379
104 rdf:type schema:PropertyValue
105 Nf5a3cd827781404e9418b789736d0316 rdf:first Nc9983e354bed458aa02957e97fe8b261
106 rdf:rest rdf:nil
107 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
108 schema:name Biological Sciences
109 rdf:type schema:DefinedTerm
110 anzsrc-for:0605 schema:inDefinedTermSet anzsrc-for:
111 schema:name Microbiology
112 rdf:type schema:DefinedTerm
113 sg:journal.1045337 schema:issn 2045-2322
114 schema:name Scientific Reports
115 rdf:type schema:Periodical
116 sg:pub.10.1007/s00449-016-1638-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020148484
117 https://doi.org/10.1007/s00449-016-1638-1
118 rdf:type schema:CreativeWork
119 https://app.dimensions.ai/details/publication/pub.1077157346 schema:CreativeWork
120 https://app.dimensions.ai/details/publication/pub.1077159434 schema:CreativeWork
121 https://doi.org/10.1002/(sici)1097-0290(20000220)67:4<476::aid-bit11>3.0.co;2-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001472940
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1002/bit.21838 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032497293
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1002/bit.24390 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013665690
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1002/bit.25105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051414738
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1002/celc.201402127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039295468
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1002/celc.201600079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044521947
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1002/cssc.201100748 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037563898
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1002/cssc.201200671 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050631060
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1002/elan.200800007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028168724
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/0043-1354(82)90139-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026527410
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.biortech.2013.02.069 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031881803
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.biortech.2014.06.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022310891
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.biortech.2016.04.136 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041574861
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.bios.2009.05.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001716574
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/j.elecom.2013.04.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027937973
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.jpowsour.2009.08.092 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026710925
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/j.jpowsour.2017.02.032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084091827
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/j.pnsc.2008.04.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024230789
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/j.watres.2016.09.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048955268
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/s0010-938x(99)00068-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022605706
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/s0043-1354(01)00379-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043533448
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1021/acs.est.8b01468 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105450319
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1021/es0502876 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055498001
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1021/es204622m schema:sameAs https://app.dimensions.ai/details/publication/pub.1055504201
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1021/es903043p schema:sameAs https://app.dimensions.ai/details/publication/pub.1047011712
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1029/wr026i009p02161 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028152885
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1039/b816647a schema:sameAs https://app.dimensions.ai/details/publication/pub.1012165447
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1039/c1ee01753e schema:sameAs https://app.dimensions.ai/details/publication/pub.1034846640
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1039/c2ee23394k schema:sameAs https://app.dimensions.ai/details/publication/pub.1004831430
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1039/c4cp01023j schema:sameAs https://app.dimensions.ai/details/publication/pub.1052533518
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1073/pnas.1216376110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026950334
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1101/391029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106135614
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1111/j.1462-2920.2005.00731.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1045341777
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1111/j.1751-7915.2008.00049.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1003479783
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1126/sciadv.aat5664 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111364772
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1126/science.240.4857.1319 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062536232
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1128/aem.00177-08 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010600676
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1128/aem.01444-06 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003741781
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1128/aem.67.7.3180-3187.2001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032801639
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1149/1.2095539 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025320544
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1371/journal.pone.0175197 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084803438
202 rdf:type schema:CreativeWork
203 https://doi.org/10.5006/1.3293529 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051734220
204 rdf:type schema:CreativeWork
205 https://www.grid.ac/institutes/grid.116068.8 schema:alternateName Massachusetts Institute of Technology
206 schema:name Department of Mechanical Engineering, Massachusetts Institute of Technology, 02139, Cambridge, MA, USA
207 rdf:type schema:Organization
208 https://www.grid.ac/institutes/grid.261112.7 schema:alternateName Northeastern University
209 schema:name Department of Chemical Engineering and Department of Mechanical & Industrial Engineering, Northeastern University, 02115, Boston, MA, USA
210 Department of Mechanical Engineering, Massachusetts Institute of Technology, 02139, Cambridge, MA, USA
211 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...