Growth of vanadium dioxide thin films on hexagonal boron nitride flakes as transferrable substrates View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Shingo Genchi, Mahito Yamamoto, Koji Shigematsu, Shodai Aritomi, Ryo Nouchi, Teruo Kanki, Kenji Watanabe, Takashi Taniguchi, Yasukazu Murakami, Hidekazu Tanaka

ABSTRACT

Vanadium dioxide (VO2) is an archetypal metal-insulator transition (MIT) material, which has been known for decades to show an orders-of-magnitude change in resistivity across the critical temperature of approximately 340 K. In recent years, VO2 has attracted increasing interest for electronic and photonic applications, along with advancement in thin film growth techniques. Previously, thin films of VO2 were commonly grown on rigid substrates such as crystalline oxides and bulk semiconductors, but the use of transferrable materials as the growth substrates can provide versatility in applications, including transparent and flexible devices. Here, we employ single-crystalline hexagonal boron nitride (hBN), which is an insulating layered material, as a substrate for VO2 thin film growth. VO2 thin films in the polycrystalline form are grown onto hBN thin flakes exfoliated onto silicon (Si) with a thermal oxide, with grains reaching up-to a micrometer in size. The VO2 grains on hBN are orientated preferentially with the (110) surface of the rutile structure, which is the most energetically favorable. The VO2 film on hBN shows a MIT at approximately 340 K, across which the resistivity changes by nearly three orders of magnitude, comparable to VO2 films grown on common substrates such as sapphire and titanium dioxide. The VO2/hBN stack can be picked up from the supporting Si and transferred onto arbitrary substrates, onto which VO2 thin films cannot be grown directly. Our results pave the way for new possibilities for practical and versatile applications of VO2 thin films in electronics and photonics. More... »

PAGES

2857

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-019-39091-8

DOI

http://dx.doi.org/10.1038/s41598-019-39091-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112393619

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30814545


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Osaka University", 
          "id": "https://www.grid.ac/institutes/grid.136593.b", 
          "name": [
            "Institute of Scientific and Industrial Research, Osaka University, 567-0047, Ibaraki, Osaka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Genchi", 
        "givenName": "Shingo", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Osaka University", 
          "id": "https://www.grid.ac/institutes/grid.136593.b", 
          "name": [
            "Institute of Scientific and Industrial Research, Osaka University, 567-0047, Ibaraki, Osaka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yamamoto", 
        "givenName": "Mahito", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kyushu University", 
          "id": "https://www.grid.ac/institutes/grid.177174.3", 
          "name": [
            "The Ultramicroscopy Research Center, Kyushu University, 819-0395, Fukuoka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shigematsu", 
        "givenName": "Koji", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kyushu University", 
          "id": "https://www.grid.ac/institutes/grid.177174.3", 
          "name": [
            "Department of Applied Quantum Physics and Nuclear Engineering, Faculty of Engineering, Kyushu University, 819-0395, Fukuoka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Aritomi", 
        "givenName": "Shodai", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Japan Science and Technology Agency", 
          "id": "https://www.grid.ac/institutes/grid.419082.6", 
          "name": [
            "Graduate School of Engineering, Osaka Prefecture University, 599-8570, Sakai, Osaka, Japan", 
            "JST PRESTO, 332-0012, Kawaguchi, Saitama, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nouchi", 
        "givenName": "Ryo", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Osaka University", 
          "id": "https://www.grid.ac/institutes/grid.136593.b", 
          "name": [
            "Institute of Scientific and Industrial Research, Osaka University, 567-0047, Ibaraki, Osaka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kanki", 
        "givenName": "Teruo", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute for Materials Science", 
          "id": "https://www.grid.ac/institutes/grid.21941.3f", 
          "name": [
            "National Institute for Materials Science, 305-0044, Tsukuba, Ibaraki, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Watanabe", 
        "givenName": "Kenji", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute for Materials Science", 
          "id": "https://www.grid.ac/institutes/grid.21941.3f", 
          "name": [
            "National Institute for Materials Science, 305-0044, Tsukuba, Ibaraki, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Taniguchi", 
        "givenName": "Takashi", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kyushu University", 
          "id": "https://www.grid.ac/institutes/grid.177174.3", 
          "name": [
            "The Ultramicroscopy Research Center, Kyushu University, 819-0395, Fukuoka, Japan", 
            "Department of Applied Quantum Physics and Nuclear Engineering, Faculty of Engineering, Kyushu University, 819-0395, Fukuoka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Murakami", 
        "givenName": "Yasukazu", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Osaka University", 
          "id": "https://www.grid.ac/institutes/grid.136593.b", 
          "name": [
            "Institute of Scientific and Industrial Research, Osaka University, 567-0047, Ibaraki, Osaka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tanaka", 
        "givenName": "Hidekazu", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1111/j.1151-2916.1969.tb11975.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001278636"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl3002205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002874697"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.101.026404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006434043"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.101.026404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006434043"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4758319", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007468154"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/2053-1583/1/1/011002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010336747"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcrysgro.2004.05.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014734020"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nn500059s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018113336"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2010.172", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018587379", 
          "https://doi.org/10.1038/nnano.2010.172"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2010.172", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018587379", 
          "https://doi.org/10.1038/nnano.2010.172"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev-matsci-062910-100347", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021025515"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1134", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025956058", 
          "https://doi.org/10.1038/nmat1134"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1134", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025956058", 
          "https://doi.org/10.1038/nmat1134"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2014.02.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028136218"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl3011726", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028670762"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2015.277", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028684577", 
          "https://doi.org/10.1038/nphoton.2015.277"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.surfrep.2016.03.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030652617"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcrysgro.2006.12.061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032042574"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apsusc.2004.09.157", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033110606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/20/26/264016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038197455"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms9475", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040684217", 
          "https://doi.org/10.1038/ncomms9475"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c3nr34054f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043571691"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4870868", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045515915"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pssa.200779402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047153612"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nn400358x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048365318"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1182383", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050910744"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1182383", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050910744"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.chemmater.6b01180", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053800835"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl303065h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056219655"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.112476", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057660029"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1446215", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057706989"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1496506", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057712752"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3492716", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057961765"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3499349", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057963034"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3662043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057994326"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3700210", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058003984"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4709429", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058049455"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4758185", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058061298"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.146.543", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060433006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.146.543", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060433006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.155.712", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060434984"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.155.712", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060434984"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.5.2541", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060571918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.5.2541", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060571918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.84.113109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060636800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.84.113109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060636800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.85.020101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060637921"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.85.020101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060637921"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/jjap.44.l1150", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063075713"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ao.30.002782", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065106046"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms15815", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086116733", 
          "https://doi.org/10.1038/ncomms15815"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.5000704", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092153407"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.nanolett.7b03449", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092355707"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.materresbull.2018.02.030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101082488"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mattod.2018.03.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103269335"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41467-018-06858-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107670544", 
          "https://doi.org/10.1038/s41467-018-06858-y"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "Vanadium dioxide (VO2) is an archetypal metal-insulator transition (MIT) material, which has been known for decades to show an orders-of-magnitude change in resistivity across the critical temperature of approximately 340\u2009K. In recent years, VO2 has attracted increasing interest for electronic and photonic applications, along with advancement in thin film growth techniques. Previously, thin films of VO2 were commonly grown on rigid substrates such as crystalline oxides and bulk semiconductors, but the use of transferrable materials as the growth substrates can provide versatility in applications, including transparent and flexible devices. Here, we employ single-crystalline hexagonal boron nitride (hBN), which is an insulating layered material, as a substrate for VO2 thin film growth. VO2 thin films in the polycrystalline form are grown onto hBN thin flakes exfoliated onto silicon (Si) with a thermal oxide, with grains reaching up-to a micrometer in size. The VO2 grains on hBN are orientated preferentially with the (110) surface of the rutile structure, which is the most energetically favorable. The VO2 film on hBN shows a MIT at approximately 340\u2009K, across which the resistivity changes by nearly three orders of magnitude, comparable to VO2 films grown on common substrates such as sapphire and titanium dioxide. The VO2/hBN stack can be picked up from the supporting Si and transferred onto arbitrary substrates, onto which VO2 thin films cannot be grown directly. Our results pave the way for new possibilities for practical and versatile applications of VO2 thin films in electronics and photonics.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-019-39091-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6819441", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.6840080", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.5897058", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.6128890", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "Growth of vanadium dioxide thin films on hexagonal boron nitride flakes as transferrable substrates", 
    "pagination": "2857", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "8bcdfeac100a8d866df409d91fa5aab4636a254821786fd18702dae7cdb14307"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30814545"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-019-39091-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112393619"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-019-39091-8", 
      "https://app.dimensions.ai/details/publication/pub.1112393619"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:49", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000350_0000000350/records_77554_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-019-39091-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-39091-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-39091-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-39091-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-39091-8'


 

This table displays all metadata directly associated to this object as RDF triples.

287 TRIPLES      21 PREDICATES      76 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-019-39091-8 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Nf2e56fea2b3449e9b30db9fb944ab08c
4 schema:citation sg:pub.10.1038/ncomms15815
5 sg:pub.10.1038/ncomms9475
6 sg:pub.10.1038/nmat1134
7 sg:pub.10.1038/nnano.2010.172
8 sg:pub.10.1038/nphoton.2015.277
9 sg:pub.10.1038/s41467-018-06858-y
10 https://doi.org/10.1002/pssa.200779402
11 https://doi.org/10.1016/j.actamat.2014.02.008
12 https://doi.org/10.1016/j.apsusc.2004.09.157
13 https://doi.org/10.1016/j.jcrysgro.2004.05.005
14 https://doi.org/10.1016/j.jcrysgro.2006.12.061
15 https://doi.org/10.1016/j.materresbull.2018.02.030
16 https://doi.org/10.1016/j.mattod.2018.03.029
17 https://doi.org/10.1016/j.surfrep.2016.03.001
18 https://doi.org/10.1021/acs.chemmater.6b01180
19 https://doi.org/10.1021/acs.nanolett.7b03449
20 https://doi.org/10.1021/nl3002205
21 https://doi.org/10.1021/nl3011726
22 https://doi.org/10.1021/nl303065h
23 https://doi.org/10.1021/nn400358x
24 https://doi.org/10.1021/nn500059s
25 https://doi.org/10.1039/c3nr34054f
26 https://doi.org/10.1063/1.112476
27 https://doi.org/10.1063/1.1446215
28 https://doi.org/10.1063/1.1496506
29 https://doi.org/10.1063/1.3492716
30 https://doi.org/10.1063/1.3499349
31 https://doi.org/10.1063/1.3662043
32 https://doi.org/10.1063/1.3700210
33 https://doi.org/10.1063/1.4709429
34 https://doi.org/10.1063/1.4758185
35 https://doi.org/10.1063/1.4758319
36 https://doi.org/10.1063/1.4870868
37 https://doi.org/10.1063/1.5000704
38 https://doi.org/10.1088/0953-8984/20/26/264016
39 https://doi.org/10.1088/2053-1583/1/1/011002
40 https://doi.org/10.1103/physrev.146.543
41 https://doi.org/10.1103/physrev.155.712
42 https://doi.org/10.1103/physrevb.5.2541
43 https://doi.org/10.1103/physrevb.84.113109
44 https://doi.org/10.1103/physrevb.85.020101
45 https://doi.org/10.1103/physrevlett.101.026404
46 https://doi.org/10.1111/j.1151-2916.1969.tb11975.x
47 https://doi.org/10.1126/science.1182383
48 https://doi.org/10.1143/jjap.44.l1150
49 https://doi.org/10.1146/annurev-matsci-062910-100347
50 https://doi.org/10.1364/ao.30.002782
51 schema:datePublished 2019-12
52 schema:datePublishedReg 2019-12-01
53 schema:description Vanadium dioxide (VO<sub>2</sub>) is an archetypal metal-insulator transition (MIT) material, which has been known for decades to show an orders-of-magnitude change in resistivity across the critical temperature of approximately 340 K. In recent years, VO<sub>2</sub> has attracted increasing interest for electronic and photonic applications, along with advancement in thin film growth techniques. Previously, thin films of VO<sub>2</sub> were commonly grown on rigid substrates such as crystalline oxides and bulk semiconductors, but the use of transferrable materials as the growth substrates can provide versatility in applications, including transparent and flexible devices. Here, we employ single-crystalline hexagonal boron nitride (hBN), which is an insulating layered material, as a substrate for VO<sub>2</sub> thin film growth. VO<sub>2</sub> thin films in the polycrystalline form are grown onto hBN thin flakes exfoliated onto silicon (Si) with a thermal oxide, with grains reaching up-to a micrometer in size. The VO<sub>2</sub> grains on hBN are orientated preferentially with the (110) surface of the rutile structure, which is the most energetically favorable. The VO<sub>2</sub> film on hBN shows a MIT at approximately 340 K, across which the resistivity changes by nearly three orders of magnitude, comparable to VO<sub>2</sub> films grown on common substrates such as sapphire and titanium dioxide. The VO<sub>2</sub>/hBN stack can be picked up from the supporting Si and transferred onto arbitrary substrates, onto which VO<sub>2</sub> thin films cannot be grown directly. Our results pave the way for new possibilities for practical and versatile applications of VO<sub>2</sub> thin films in electronics and photonics.
54 schema:genre research_article
55 schema:inLanguage en
56 schema:isAccessibleForFree true
57 schema:isPartOf N239b48209a15451ba79403b6e7494213
58 Nb7c496ac93d64946914218baa5c03d9d
59 sg:journal.1045337
60 schema:name Growth of vanadium dioxide thin films on hexagonal boron nitride flakes as transferrable substrates
61 schema:pagination 2857
62 schema:productId N0beb22c4aff347539ae66669c938b795
63 N16501a42d3034719bc928ee016672f9d
64 Nd1eabbc406544bd8ac3e95614c269c71
65 Ndfb6124ca6db4cf699c0f77cb48b4227
66 Nf9a4c25494a64a68b108e883bb496a86
67 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112393619
68 https://doi.org/10.1038/s41598-019-39091-8
69 schema:sdDatePublished 2019-04-11T10:49
70 schema:sdLicense https://scigraph.springernature.com/explorer/license/
71 schema:sdPublisher N618267e527af44e3889be6d93c19086f
72 schema:url https://www.nature.com/articles/s41598-019-39091-8
73 sgo:license sg:explorer/license/
74 sgo:sdDataset articles
75 rdf:type schema:ScholarlyArticle
76 N0957231280b74fd19b2693b85e6d8bef schema:affiliation https://www.grid.ac/institutes/grid.177174.3
77 schema:familyName Aritomi
78 schema:givenName Shodai
79 rdf:type schema:Person
80 N0beb22c4aff347539ae66669c938b795 schema:name readcube_id
81 schema:value 8bcdfeac100a8d866df409d91fa5aab4636a254821786fd18702dae7cdb14307
82 rdf:type schema:PropertyValue
83 N16501a42d3034719bc928ee016672f9d schema:name nlm_unique_id
84 schema:value 101563288
85 rdf:type schema:PropertyValue
86 N239b48209a15451ba79403b6e7494213 schema:issueNumber 1
87 rdf:type schema:PublicationIssue
88 N3fdb461c4a2845ee925f86537a5e8a6f rdf:first N0957231280b74fd19b2693b85e6d8bef
89 rdf:rest Ndc7658455c1640aebafa8dd3c53a1eea
90 N5e0f6b52830943b0b5e5535fca64866d rdf:first N7e45a52153a3416ea7f0ed9c1cea03ca
91 rdf:rest N81c88e80cd614b9f9f7f2c0239467573
92 N618267e527af44e3889be6d93c19086f schema:name Springer Nature - SN SciGraph project
93 rdf:type schema:Organization
94 N7741fa65b22b4fbb9e27423ba4281e72 rdf:first Ne429b8c1e5a0429d887af32226cc0a1f
95 rdf:rest Nc95b92b40e2b4572b53020bc561dd955
96 N7e45a52153a3416ea7f0ed9c1cea03ca schema:affiliation https://www.grid.ac/institutes/grid.136593.b
97 schema:familyName Kanki
98 schema:givenName Teruo
99 rdf:type schema:Person
100 N81c88e80cd614b9f9f7f2c0239467573 rdf:first Nc11f95c0bc2c40e6b5bc3e598ddae93f
101 rdf:rest N7741fa65b22b4fbb9e27423ba4281e72
102 N8ac4bf717f4d4c34a36477b79176af31 rdf:first Naed2962b3241446c9ee964e2f43b1ff2
103 rdf:rest rdf:nil
104 N9ee3795981ab40ce9d843a2061736c80 schema:affiliation https://www.grid.ac/institutes/grid.136593.b
105 schema:familyName Genchi
106 schema:givenName Shingo
107 rdf:type schema:Person
108 Na569c674603a4d17b1a46c2177aeb694 schema:affiliation https://www.grid.ac/institutes/grid.419082.6
109 schema:familyName Nouchi
110 schema:givenName Ryo
111 rdf:type schema:Person
112 Naed2962b3241446c9ee964e2f43b1ff2 schema:affiliation https://www.grid.ac/institutes/grid.136593.b
113 schema:familyName Tanaka
114 schema:givenName Hidekazu
115 rdf:type schema:Person
116 Nb7c496ac93d64946914218baa5c03d9d schema:volumeNumber 9
117 rdf:type schema:PublicationVolume
118 Nbdd841f2eca74ba0bee05f50fc26d1db rdf:first Nea2cbc7259934164aac6aabaaff9628b
119 rdf:rest Ne204918448f142eb9e92d7a63126c870
120 Nc11f95c0bc2c40e6b5bc3e598ddae93f schema:affiliation https://www.grid.ac/institutes/grid.21941.3f
121 schema:familyName Watanabe
122 schema:givenName Kenji
123 rdf:type schema:Person
124 Nc95b92b40e2b4572b53020bc561dd955 rdf:first Nd8788e3eba9b4a39820d74b83e468715
125 rdf:rest N8ac4bf717f4d4c34a36477b79176af31
126 Nd1eabbc406544bd8ac3e95614c269c71 schema:name doi
127 schema:value 10.1038/s41598-019-39091-8
128 rdf:type schema:PropertyValue
129 Nd8788e3eba9b4a39820d74b83e468715 schema:affiliation https://www.grid.ac/institutes/grid.177174.3
130 schema:familyName Murakami
131 schema:givenName Yasukazu
132 rdf:type schema:Person
133 Ndc7658455c1640aebafa8dd3c53a1eea rdf:first Na569c674603a4d17b1a46c2177aeb694
134 rdf:rest N5e0f6b52830943b0b5e5535fca64866d
135 Ndfb6124ca6db4cf699c0f77cb48b4227 schema:name pubmed_id
136 schema:value 30814545
137 rdf:type schema:PropertyValue
138 Ne204918448f142eb9e92d7a63126c870 rdf:first Nfce80aed19724794a6fc61b8c0f47be9
139 rdf:rest N3fdb461c4a2845ee925f86537a5e8a6f
140 Ne429b8c1e5a0429d887af32226cc0a1f schema:affiliation https://www.grid.ac/institutes/grid.21941.3f
141 schema:familyName Taniguchi
142 schema:givenName Takashi
143 rdf:type schema:Person
144 Nea2cbc7259934164aac6aabaaff9628b schema:affiliation https://www.grid.ac/institutes/grid.136593.b
145 schema:familyName Yamamoto
146 schema:givenName Mahito
147 rdf:type schema:Person
148 Nf2e56fea2b3449e9b30db9fb944ab08c rdf:first N9ee3795981ab40ce9d843a2061736c80
149 rdf:rest Nbdd841f2eca74ba0bee05f50fc26d1db
150 Nf9a4c25494a64a68b108e883bb496a86 schema:name dimensions_id
151 schema:value pub.1112393619
152 rdf:type schema:PropertyValue
153 Nfce80aed19724794a6fc61b8c0f47be9 schema:affiliation https://www.grid.ac/institutes/grid.177174.3
154 schema:familyName Shigematsu
155 schema:givenName Koji
156 rdf:type schema:Person
157 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
158 schema:name Engineering
159 rdf:type schema:DefinedTerm
160 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
161 schema:name Materials Engineering
162 rdf:type schema:DefinedTerm
163 sg:grant.5897058 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-019-39091-8
164 rdf:type schema:MonetaryGrant
165 sg:grant.6128890 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-019-39091-8
166 rdf:type schema:MonetaryGrant
167 sg:grant.6819441 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-019-39091-8
168 rdf:type schema:MonetaryGrant
169 sg:grant.6840080 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-019-39091-8
170 rdf:type schema:MonetaryGrant
171 sg:journal.1045337 schema:issn 2045-2322
172 schema:name Scientific Reports
173 rdf:type schema:Periodical
174 sg:pub.10.1038/ncomms15815 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086116733
175 https://doi.org/10.1038/ncomms15815
176 rdf:type schema:CreativeWork
177 sg:pub.10.1038/ncomms9475 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040684217
178 https://doi.org/10.1038/ncomms9475
179 rdf:type schema:CreativeWork
180 sg:pub.10.1038/nmat1134 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025956058
181 https://doi.org/10.1038/nmat1134
182 rdf:type schema:CreativeWork
183 sg:pub.10.1038/nnano.2010.172 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018587379
184 https://doi.org/10.1038/nnano.2010.172
185 rdf:type schema:CreativeWork
186 sg:pub.10.1038/nphoton.2015.277 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028684577
187 https://doi.org/10.1038/nphoton.2015.277
188 rdf:type schema:CreativeWork
189 sg:pub.10.1038/s41467-018-06858-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1107670544
190 https://doi.org/10.1038/s41467-018-06858-y
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1002/pssa.200779402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047153612
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1016/j.actamat.2014.02.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028136218
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1016/j.apsusc.2004.09.157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033110606
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1016/j.jcrysgro.2004.05.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014734020
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1016/j.jcrysgro.2006.12.061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032042574
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1016/j.materresbull.2018.02.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101082488
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1016/j.mattod.2018.03.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103269335
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1016/j.surfrep.2016.03.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030652617
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1021/acs.chemmater.6b01180 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053800835
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1021/acs.nanolett.7b03449 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092355707
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1021/nl3002205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002874697
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1021/nl3011726 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028670762
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1021/nl303065h schema:sameAs https://app.dimensions.ai/details/publication/pub.1056219655
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1021/nn400358x schema:sameAs https://app.dimensions.ai/details/publication/pub.1048365318
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1021/nn500059s schema:sameAs https://app.dimensions.ai/details/publication/pub.1018113336
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1039/c3nr34054f schema:sameAs https://app.dimensions.ai/details/publication/pub.1043571691
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1063/1.112476 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057660029
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1063/1.1446215 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057706989
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1063/1.1496506 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057712752
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1063/1.3492716 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057961765
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1063/1.3499349 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057963034
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1063/1.3662043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057994326
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1063/1.3700210 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058003984
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1063/1.4709429 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058049455
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1063/1.4758185 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058061298
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1063/1.4758319 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007468154
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1063/1.4870868 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045515915
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1063/1.5000704 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092153407
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1088/0953-8984/20/26/264016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038197455
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1088/2053-1583/1/1/011002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010336747
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1103/physrev.146.543 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060433006
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1103/physrev.155.712 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060434984
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1103/physrevb.5.2541 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060571918
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1103/physrevb.84.113109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060636800
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1103/physrevb.85.020101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060637921
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1103/physrevlett.101.026404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006434043
263 rdf:type schema:CreativeWork
264 https://doi.org/10.1111/j.1151-2916.1969.tb11975.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1001278636
265 rdf:type schema:CreativeWork
266 https://doi.org/10.1126/science.1182383 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050910744
267 rdf:type schema:CreativeWork
268 https://doi.org/10.1143/jjap.44.l1150 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063075713
269 rdf:type schema:CreativeWork
270 https://doi.org/10.1146/annurev-matsci-062910-100347 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021025515
271 rdf:type schema:CreativeWork
272 https://doi.org/10.1364/ao.30.002782 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065106046
273 rdf:type schema:CreativeWork
274 https://www.grid.ac/institutes/grid.136593.b schema:alternateName Osaka University
275 schema:name Institute of Scientific and Industrial Research, Osaka University, 567-0047, Ibaraki, Osaka, Japan
276 rdf:type schema:Organization
277 https://www.grid.ac/institutes/grid.177174.3 schema:alternateName Kyushu University
278 schema:name Department of Applied Quantum Physics and Nuclear Engineering, Faculty of Engineering, Kyushu University, 819-0395, Fukuoka, Japan
279 The Ultramicroscopy Research Center, Kyushu University, 819-0395, Fukuoka, Japan
280 rdf:type schema:Organization
281 https://www.grid.ac/institutes/grid.21941.3f schema:alternateName National Institute for Materials Science
282 schema:name National Institute for Materials Science, 305-0044, Tsukuba, Ibaraki, Japan
283 rdf:type schema:Organization
284 https://www.grid.ac/institutes/grid.419082.6 schema:alternateName Japan Science and Technology Agency
285 schema:name Graduate School of Engineering, Osaka Prefecture University, 599-8570, Sakai, Osaka, Japan
286 JST PRESTO, 332-0012, Kawaguchi, Saitama, Japan
287 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...