Use of artificial neural networks to identify the predictive factors of extracorporeal shock wave therapy treating patients with chronic plantar ... View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Mengchen Yin, Junming Ma, Jinhai Xu, Lin Li, Guanghui Chen, Zhengwang Sun, Yujie Liu, Shaohui He, Jie Ye, Wen Mo

ABSTRACT

The purpose of our study is to identify the predictive factors for a minimum clinically successful therapy after extracorporeal shock wave therapy for chronic plantar fasciitis. The demographic and clinical characteristics were evaluated. The artificial neural networks model was used to choose the significant variables and model the effect of achieving the minimum clinically successful therapy at 6-months' follow-up. The multilayer perceptron model was selected. Higher VAS (Visual Analogue Score) when taking first steps in the morning, presence of plantar fascia spur, shorter duration of symptom had statistical significance in increasing the odd. The artificial neural networks model shows that the sensitivity of predictive factors was 84.3%, 87.9% and 61.4% for VAS, spurs and duration of symptom, respectively. The specificity 35.7%, 37.4% and 22.3% for VAS, spurs and duration of symptom, respectively. The positive predictive value was 69%, 72% and 57% for VAS, spurs and duration of symptom, respectively. The negative predictive value was 82%, 84% and 59%, for VAS, spurs and duration of symptom respectively. The area under the curve was 0.738, 0.882 and 0.520 for VAS, spurs and duration of symptom, respectively. The predictive model showed a good fitting of with an overall accuracy of 92.5%. Higher VAS symptomatized by short-duration, severer pain or plantar fascia spur are important prognostic factors for the efficacy of extracorporeal shock wave therapy. The artificial neural networks predictive model is reasonable and accurate model can help the decision-making for the application of extracorporeal shock wave therapy. More... »

PAGES

4207

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-019-39026-3

DOI

http://dx.doi.org/10.1038/s41598-019-39026-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112706456

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30862876


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Shanghai University of Traditional Chinese Medicine", 
          "id": "https://www.grid.ac/institutes/grid.412540.6", 
          "name": [
            "Department of Orthopaedics, LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yin", 
        "givenName": "Mengchen", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shanghai University of Traditional Chinese Medicine", 
          "id": "https://www.grid.ac/institutes/grid.412540.6", 
          "name": [
            "Department of Orthopaedics, LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ma", 
        "givenName": "Junming", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shanghai University of Traditional Chinese Medicine", 
          "id": "https://www.grid.ac/institutes/grid.412540.6", 
          "name": [
            "Department of Orthopaedics, LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xu", 
        "givenName": "Jinhai", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Bone Tumor Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Lin", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Peking University Third Hospital", 
          "id": "https://www.grid.ac/institutes/grid.411642.4", 
          "name": [
            "Department of Orthopedics, Peking University Third Hospital, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Guanghui", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Bone Tumor Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sun", 
        "givenName": "Zhengwang", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Bone Tumor Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Yujie", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Bone Tumor Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "He", 
        "givenName": "Shaohui", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shanghai University of Traditional Chinese Medicine", 
          "id": "https://www.grid.ac/institutes/grid.412540.6", 
          "name": [
            "Department of Orthopaedics, LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ye", 
        "givenName": "Jie", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shanghai University of Traditional Chinese Medicine", 
          "id": "https://www.grid.ac/institutes/grid.412540.6", 
          "name": [
            "Department of Orthopaedics, LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mo", 
        "givenName": "Wen", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.jsams.2006.02.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001042515"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0268-0033(96)00019-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001280014"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.2165/00007256-200636070-00004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002005749", 
          "https://doi.org/10.2165/00007256-200636070-00004"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apmr.2014.01.033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012463927"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apmr.2012.02.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012640958"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7547/0960270", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017521496"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12306-015-0375-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019204718", 
          "https://doi.org/10.1007/s12306-015-0375-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00192289", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019926987", 
          "https://doi.org/10.1007/bf00192289"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00296-010-1622-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023364612", 
          "https://doi.org/10.1007/s00296-010-1622-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00296-010-1622-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023364612", 
          "https://doi.org/10.1007/s00296-010-1622-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/meg.0b013e3282f198a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023858143"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/meg.0b013e3282f198a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023858143"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/meg.0b013e3282f198a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023858143"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1067-2516(02)80066-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026093263"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1053/j.jfas.2010.01.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026382913"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7547/87507315-90-6-281", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027262008"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jsams.2006.03.028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027937128"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10916-014-0110-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028080754", 
          "https://doi.org/10.1007/s10916-014-0110-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/ard.60.11.1064", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029245110"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1053/j.jfas.2008.11.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030441942"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bmb/ldm005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035756428"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(95)91746-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037070037"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(95)91746-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037070037"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rstb.2006.1961", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037907423"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1757-1146-2-32", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038013520", 
          "https://doi.org/10.1186/1757-1146-2-32"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fas.2011.03.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038753451"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11999-013-3132-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045252517", 
          "https://doi.org/10.1007/s11999-013-3132-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1007/s11999-013-3132-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045252517"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2156-13-37", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052058217", 
          "https://doi.org/10.1186/1471-2156-13-37"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0363546508324176", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053998093"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0363546508324176", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053998093"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s001320050088", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054511897", 
          "https://doi.org/10.1007/s001320050088"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00003086-199611000-00023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060166616"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00003086-199611000-00023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060166616"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00003086-199611000-00023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060166616"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00003086-199611000-00023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060166616"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3171/2009.11.jns09857", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071074307"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3171/2009.11.jns09857", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071074307"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3171/2009.11.jns09857", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071074307"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4252/wjsc.v6.i1.65", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072402258"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5435/00124635-200806000-00006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072859430"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1075124876", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077154832", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077208729", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077634443", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1078448889", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1078465054", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1078767299", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1079103205", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/md.0000000000006090", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083734556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/md.0000000000006090", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083734556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/md.0000000000006090", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083734556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/joa.12607", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084215193"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/pm/pnx113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084602873"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apmr.2017.05.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086115718"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.22034/apjcp.2018.19.2.487", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101222532"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1053/j.jfas.2017.11.030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101887256"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "The purpose of our study is to identify the predictive factors for a minimum clinically successful therapy after extracorporeal shock wave therapy for chronic plantar fasciitis. The demographic and clinical characteristics were evaluated. The artificial neural networks model was used to choose the significant variables and model the effect of achieving the minimum clinically successful therapy at 6-months' follow-up. The multilayer perceptron model was selected. Higher VAS (Visual Analogue Score) when taking first steps in the morning, presence of plantar fascia spur, shorter duration of symptom had statistical significance in increasing the odd. The artificial neural networks model shows that the sensitivity of predictive factors was 84.3%, 87.9% and 61.4% for VAS, spurs and duration of symptom, respectively. The specificity 35.7%, 37.4% and 22.3% for VAS, spurs and duration of symptom, respectively. The positive predictive value was 69%, 72% and 57% for VAS, spurs and duration of symptom, respectively. The negative predictive value was 82%, 84% and 59%, for VAS, spurs and duration of symptom respectively. The area under the curve was 0.738, 0.882 and 0.520 for VAS, spurs and duration of symptom, respectively. The predictive model showed a good fitting of with an overall accuracy of 92.5%. Higher VAS symptomatized by short-duration, severer pain or plantar fascia spur are important prognostic factors for the efficacy of extracorporeal shock wave therapy. The artificial neural networks predictive model is reasonable and accurate model can help the decision-making for the application of extracorporeal shock wave therapy.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-019-39026-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "Use of artificial neural networks to identify the predictive factors of extracorporeal shock wave therapy treating patients with chronic plantar fasciitis", 
    "pagination": "4207", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "8f41e8bf557b84c0c71d328975473fdeeccdad89e1ae6d57e545d9878b92669b"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30862876"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-019-39026-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112706456"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-019-39026-3", 
      "https://app.dimensions.ai/details/publication/pub.1112706456"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000368_0000000368/records_78959_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-019-39026-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-39026-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-39026-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-39026-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-39026-3'


 

This table displays all metadata directly associated to this object as RDF triples.

268 TRIPLES      21 PREDICATES      74 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-019-39026-3 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N3483757fd73645c5b9b38825dc4f3bb7
4 schema:citation sg:pub.10.1007/bf00192289
5 sg:pub.10.1007/s001320050088
6 sg:pub.10.1007/s00296-010-1622-z
7 sg:pub.10.1007/s10916-014-0110-5
8 sg:pub.10.1007/s11999-013-3132-2
9 sg:pub.10.1007/s12306-015-0375-y
10 sg:pub.10.1186/1471-2156-13-37
11 sg:pub.10.1186/1757-1146-2-32
12 sg:pub.10.2165/00007256-200636070-00004
13 https://app.dimensions.ai/details/publication/pub.1075124876
14 https://app.dimensions.ai/details/publication/pub.1077154832
15 https://app.dimensions.ai/details/publication/pub.1077208729
16 https://app.dimensions.ai/details/publication/pub.1077634443
17 https://app.dimensions.ai/details/publication/pub.1078448889
18 https://app.dimensions.ai/details/publication/pub.1078465054
19 https://app.dimensions.ai/details/publication/pub.1078767299
20 https://app.dimensions.ai/details/publication/pub.1079103205
21 https://doi.org/10.1007/s11999-013-3132-2
22 https://doi.org/10.1016/0268-0033(96)00019-8
23 https://doi.org/10.1016/j.apmr.2012.02.023
24 https://doi.org/10.1016/j.apmr.2014.01.033
25 https://doi.org/10.1016/j.apmr.2017.05.016
26 https://doi.org/10.1016/j.fas.2011.03.003
27 https://doi.org/10.1016/j.jsams.2006.02.004
28 https://doi.org/10.1016/j.jsams.2006.03.028
29 https://doi.org/10.1016/s0140-6736(95)91746-2
30 https://doi.org/10.1016/s1067-2516(02)80066-7
31 https://doi.org/10.1053/j.jfas.2008.11.001
32 https://doi.org/10.1053/j.jfas.2010.01.001
33 https://doi.org/10.1053/j.jfas.2017.11.030
34 https://doi.org/10.1093/bmb/ldm005
35 https://doi.org/10.1093/pm/pnx113
36 https://doi.org/10.1097/00003086-199611000-00023
37 https://doi.org/10.1097/md.0000000000006090
38 https://doi.org/10.1097/meg.0b013e3282f198a0
39 https://doi.org/10.1098/rstb.2006.1961
40 https://doi.org/10.1111/joa.12607
41 https://doi.org/10.1136/ard.60.11.1064
42 https://doi.org/10.1177/0363546508324176
43 https://doi.org/10.22034/apjcp.2018.19.2.487
44 https://doi.org/10.3171/2009.11.jns09857
45 https://doi.org/10.4252/wjsc.v6.i1.65
46 https://doi.org/10.5435/00124635-200806000-00006
47 https://doi.org/10.7547/0960270
48 https://doi.org/10.7547/87507315-90-6-281
49 schema:datePublished 2019-12
50 schema:datePublishedReg 2019-12-01
51 schema:description The purpose of our study is to identify the predictive factors for a minimum clinically successful therapy after extracorporeal shock wave therapy for chronic plantar fasciitis. The demographic and clinical characteristics were evaluated. The artificial neural networks model was used to choose the significant variables and model the effect of achieving the minimum clinically successful therapy at 6-months' follow-up. The multilayer perceptron model was selected. Higher VAS (Visual Analogue Score) when taking first steps in the morning, presence of plantar fascia spur, shorter duration of symptom had statistical significance in increasing the odd. The artificial neural networks model shows that the sensitivity of predictive factors was 84.3%, 87.9% and 61.4% for VAS, spurs and duration of symptom, respectively. The specificity 35.7%, 37.4% and 22.3% for VAS, spurs and duration of symptom, respectively. The positive predictive value was 69%, 72% and 57% for VAS, spurs and duration of symptom, respectively. The negative predictive value was 82%, 84% and 59%, for VAS, spurs and duration of symptom respectively. The area under the curve was 0.738, 0.882 and 0.520 for VAS, spurs and duration of symptom, respectively. The predictive model showed a good fitting of with an overall accuracy of 92.5%. Higher VAS symptomatized by short-duration, severer pain or plantar fascia spur are important prognostic factors for the efficacy of extracorporeal shock wave therapy. The artificial neural networks predictive model is reasonable and accurate model can help the decision-making for the application of extracorporeal shock wave therapy.
52 schema:genre research_article
53 schema:inLanguage en
54 schema:isAccessibleForFree true
55 schema:isPartOf N1eb8e6664e1c41b5a1251f337202f0bd
56 Nfb36aeaa8fe340b49ed171c3d2e8d30e
57 sg:journal.1045337
58 schema:name Use of artificial neural networks to identify the predictive factors of extracorporeal shock wave therapy treating patients with chronic plantar fasciitis
59 schema:pagination 4207
60 schema:productId N2dce20060aa64f43865bc440e0d0b1d2
61 N3435a004a9774e1aaaa38e511a5fd760
62 N4569b92d22514ab585394de21f213f2c
63 Na6820b8f1db54aa98459a2ac1f7dcb17
64 Nee17fe5e338d4032a34d37dbe8388b49
65 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112706456
66 https://doi.org/10.1038/s41598-019-39026-3
67 schema:sdDatePublished 2019-04-11T13:19
68 schema:sdLicense https://scigraph.springernature.com/explorer/license/
69 schema:sdPublisher N6255295b78a04679bf891511bf9be26d
70 schema:url https://www.nature.com/articles/s41598-019-39026-3
71 sgo:license sg:explorer/license/
72 sgo:sdDataset articles
73 rdf:type schema:ScholarlyArticle
74 N0390e92d43754dd29b63e2db3fc78079 schema:name Department of Bone Tumor Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
75 rdf:type schema:Organization
76 N0c83ee8ae0f4431c8114f7a6c452f533 schema:affiliation N1fa83ad9888f4efb9a926f43b30f154c
77 schema:familyName Sun
78 schema:givenName Zhengwang
79 rdf:type schema:Person
80 N135ac5204fce49e1820ed9172cd1f3ce rdf:first N2d9bed5a775043e4bbc42cc0437596ee
81 rdf:rest Ne5990250c4314ba48a0b35f73172420d
82 N1eb8e6664e1c41b5a1251f337202f0bd schema:volumeNumber 9
83 rdf:type schema:PublicationVolume
84 N1fa83ad9888f4efb9a926f43b30f154c schema:name Department of Bone Tumor Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
85 rdf:type schema:Organization
86 N24c325250be54463879a97dd0655b5ad schema:name Department of Bone Tumor Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
87 rdf:type schema:Organization
88 N258127f47e2a47078b009247aefe9945 rdf:first Nc1bc537b4e024119af682cffc8a974be
89 rdf:rest N7033127567ba4168837bb6ca30a3dca7
90 N2d9bed5a775043e4bbc42cc0437596ee schema:affiliation N8eec36c2d5794cea9a14583f9410f50d
91 schema:familyName Li
92 schema:givenName Lin
93 rdf:type schema:Person
94 N2dce20060aa64f43865bc440e0d0b1d2 schema:name doi
95 schema:value 10.1038/s41598-019-39026-3
96 rdf:type schema:PropertyValue
97 N30806a0f5e374e04941d19fa2d9eeb16 rdf:first N4dcb838a42474be1a17d949958150513
98 rdf:rest N46b6b68e22bd425c863bdebf1f5e844a
99 N3435a004a9774e1aaaa38e511a5fd760 schema:name readcube_id
100 schema:value 8f41e8bf557b84c0c71d328975473fdeeccdad89e1ae6d57e545d9878b92669b
101 rdf:type schema:PropertyValue
102 N3483757fd73645c5b9b38825dc4f3bb7 rdf:first N480bf40bd41949f290348ce75a385fd7
103 rdf:rest N30806a0f5e374e04941d19fa2d9eeb16
104 N400c0f3dda554e46b925f5bb8659a7ec schema:affiliation https://www.grid.ac/institutes/grid.411642.4
105 schema:familyName Chen
106 schema:givenName Guanghui
107 rdf:type schema:Person
108 N4569b92d22514ab585394de21f213f2c schema:name nlm_unique_id
109 schema:value 101563288
110 rdf:type schema:PropertyValue
111 N46b6b68e22bd425c863bdebf1f5e844a rdf:first N9525af03bd674041815ddb61d3275fc6
112 rdf:rest N135ac5204fce49e1820ed9172cd1f3ce
113 N480bf40bd41949f290348ce75a385fd7 schema:affiliation https://www.grid.ac/institutes/grid.412540.6
114 schema:familyName Yin
115 schema:givenName Mengchen
116 rdf:type schema:Person
117 N4dcb838a42474be1a17d949958150513 schema:affiliation https://www.grid.ac/institutes/grid.412540.6
118 schema:familyName Ma
119 schema:givenName Junming
120 rdf:type schema:Person
121 N6255295b78a04679bf891511bf9be26d schema:name Springer Nature - SN SciGraph project
122 rdf:type schema:Organization
123 N7033127567ba4168837bb6ca30a3dca7 rdf:first N70acefd75f53413dab169253290332e9
124 rdf:rest rdf:nil
125 N70acefd75f53413dab169253290332e9 schema:affiliation https://www.grid.ac/institutes/grid.412540.6
126 schema:familyName Mo
127 schema:givenName Wen
128 rdf:type schema:Person
129 N8eec36c2d5794cea9a14583f9410f50d schema:name Department of Bone Tumor Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
130 rdf:type schema:Organization
131 N9525af03bd674041815ddb61d3275fc6 schema:affiliation https://www.grid.ac/institutes/grid.412540.6
132 schema:familyName Xu
133 schema:givenName Jinhai
134 rdf:type schema:Person
135 N952d8d7671f2474e92a84fceb74579bb rdf:first Na74bf8219f4b458483b0a633c9f46506
136 rdf:rest N258127f47e2a47078b009247aefe9945
137 Na6820b8f1db54aa98459a2ac1f7dcb17 schema:name dimensions_id
138 schema:value pub.1112706456
139 rdf:type schema:PropertyValue
140 Na74bf8219f4b458483b0a633c9f46506 schema:affiliation N0390e92d43754dd29b63e2db3fc78079
141 schema:familyName He
142 schema:givenName Shaohui
143 rdf:type schema:Person
144 Nc1bc537b4e024119af682cffc8a974be schema:affiliation https://www.grid.ac/institutes/grid.412540.6
145 schema:familyName Ye
146 schema:givenName Jie
147 rdf:type schema:Person
148 Ne1130bcc3dbc4715be56c84cc0481947 rdf:first N0c83ee8ae0f4431c8114f7a6c452f533
149 rdf:rest Ne7037727e2f34d76aa799de98284dd54
150 Ne37f93ba560742859fc81117a9873220 schema:affiliation N24c325250be54463879a97dd0655b5ad
151 schema:familyName Liu
152 schema:givenName Yujie
153 rdf:type schema:Person
154 Ne5990250c4314ba48a0b35f73172420d rdf:first N400c0f3dda554e46b925f5bb8659a7ec
155 rdf:rest Ne1130bcc3dbc4715be56c84cc0481947
156 Ne7037727e2f34d76aa799de98284dd54 rdf:first Ne37f93ba560742859fc81117a9873220
157 rdf:rest N952d8d7671f2474e92a84fceb74579bb
158 Nee17fe5e338d4032a34d37dbe8388b49 schema:name pubmed_id
159 schema:value 30862876
160 rdf:type schema:PropertyValue
161 Nfb36aeaa8fe340b49ed171c3d2e8d30e schema:issueNumber 1
162 rdf:type schema:PublicationIssue
163 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
164 schema:name Information and Computing Sciences
165 rdf:type schema:DefinedTerm
166 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
167 schema:name Artificial Intelligence and Image Processing
168 rdf:type schema:DefinedTerm
169 sg:journal.1045337 schema:issn 2045-2322
170 schema:name Scientific Reports
171 rdf:type schema:Periodical
172 sg:pub.10.1007/bf00192289 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019926987
173 https://doi.org/10.1007/bf00192289
174 rdf:type schema:CreativeWork
175 sg:pub.10.1007/s001320050088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054511897
176 https://doi.org/10.1007/s001320050088
177 rdf:type schema:CreativeWork
178 sg:pub.10.1007/s00296-010-1622-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1023364612
179 https://doi.org/10.1007/s00296-010-1622-z
180 rdf:type schema:CreativeWork
181 sg:pub.10.1007/s10916-014-0110-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028080754
182 https://doi.org/10.1007/s10916-014-0110-5
183 rdf:type schema:CreativeWork
184 sg:pub.10.1007/s11999-013-3132-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045252517
185 https://doi.org/10.1007/s11999-013-3132-2
186 rdf:type schema:CreativeWork
187 sg:pub.10.1007/s12306-015-0375-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1019204718
188 https://doi.org/10.1007/s12306-015-0375-y
189 rdf:type schema:CreativeWork
190 sg:pub.10.1186/1471-2156-13-37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052058217
191 https://doi.org/10.1186/1471-2156-13-37
192 rdf:type schema:CreativeWork
193 sg:pub.10.1186/1757-1146-2-32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038013520
194 https://doi.org/10.1186/1757-1146-2-32
195 rdf:type schema:CreativeWork
196 sg:pub.10.2165/00007256-200636070-00004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002005749
197 https://doi.org/10.2165/00007256-200636070-00004
198 rdf:type schema:CreativeWork
199 https://app.dimensions.ai/details/publication/pub.1075124876 schema:CreativeWork
200 https://app.dimensions.ai/details/publication/pub.1077154832 schema:CreativeWork
201 https://app.dimensions.ai/details/publication/pub.1077208729 schema:CreativeWork
202 https://app.dimensions.ai/details/publication/pub.1077634443 schema:CreativeWork
203 https://app.dimensions.ai/details/publication/pub.1078448889 schema:CreativeWork
204 https://app.dimensions.ai/details/publication/pub.1078465054 schema:CreativeWork
205 https://app.dimensions.ai/details/publication/pub.1078767299 schema:CreativeWork
206 https://app.dimensions.ai/details/publication/pub.1079103205 schema:CreativeWork
207 https://doi.org/10.1007/s11999-013-3132-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045252517
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1016/0268-0033(96)00019-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001280014
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1016/j.apmr.2012.02.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012640958
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1016/j.apmr.2014.01.033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012463927
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1016/j.apmr.2017.05.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086115718
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1016/j.fas.2011.03.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038753451
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1016/j.jsams.2006.02.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001042515
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1016/j.jsams.2006.03.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027937128
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1016/s0140-6736(95)91746-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037070037
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1016/s1067-2516(02)80066-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026093263
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1053/j.jfas.2008.11.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030441942
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1053/j.jfas.2010.01.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026382913
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1053/j.jfas.2017.11.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101887256
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1093/bmb/ldm005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035756428
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1093/pm/pnx113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084602873
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1097/00003086-199611000-00023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060166616
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1097/md.0000000000006090 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083734556
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1097/meg.0b013e3282f198a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023858143
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1098/rstb.2006.1961 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037907423
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1111/joa.12607 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084215193
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1136/ard.60.11.1064 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029245110
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1177/0363546508324176 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053998093
250 rdf:type schema:CreativeWork
251 https://doi.org/10.22034/apjcp.2018.19.2.487 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101222532
252 rdf:type schema:CreativeWork
253 https://doi.org/10.3171/2009.11.jns09857 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071074307
254 rdf:type schema:CreativeWork
255 https://doi.org/10.4252/wjsc.v6.i1.65 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072402258
256 rdf:type schema:CreativeWork
257 https://doi.org/10.5435/00124635-200806000-00006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072859430
258 rdf:type schema:CreativeWork
259 https://doi.org/10.7547/0960270 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017521496
260 rdf:type schema:CreativeWork
261 https://doi.org/10.7547/87507315-90-6-281 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027262008
262 rdf:type schema:CreativeWork
263 https://www.grid.ac/institutes/grid.411642.4 schema:alternateName Peking University Third Hospital
264 schema:name Department of Orthopedics, Peking University Third Hospital, Beijing, China
265 rdf:type schema:Organization
266 https://www.grid.ac/institutes/grid.412540.6 schema:alternateName Shanghai University of Traditional Chinese Medicine
267 schema:name Department of Orthopaedics, LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
268 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...