Covariance statistics and network analysis of brain PET imaging studies View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Mattia Veronese, Lucia Moro, Marco Arcolin, Ottavia Dipasquale, Gaia Rizzo, Paul Expert, Wasim Khan, Patrick M. Fisher, Claus Svarer, Alessandra Bertoldo, Oliver Howes, Federico E. Turkheimer

ABSTRACT

The analysis of structural and functional neuroimaging data using graph theory has increasingly become a popular approach for visualising and understanding anatomical and functional relationships between different cerebral areas. In this work we applied a network-based approach for brain PET studies using population-based covariance matrices, with the aim to explore topological tracer kinetic differences in cross-sectional investigations. Simulations, test-retest studies and applications to cross-sectional datasets from three different tracers ([18F]FDG, [18F]FDOPA and [11C]SB217045) and more than 400 PET scans were investigated to assess the applicability of the methodology in healthy controls and patients. A validation of statistics, including the assessment of false positive differences in parametric versus permutation testing, was also performed. Results showed good reproducibility and general applicability of the method within the range of experimental settings typical of PET neuroimaging studies, with permutation being the method of choice for the statistical analysis. The use of graph theory for the quantification of [18F]FDG brain PET covariance, including the definition of an entropy metric, proved to be particularly relevant for Alzheimer's disease, showing an association with the progression of the pathology. This study shows that covariance statistics can be applied to PET neuroimaging data to investigate the topological characteristics of the tracer kinetics and its related targets, although sensitivity to experimental variables, group inhomogeneities and image resolution need to be considered when the method is applied to cross-sectional studies. More... »

PAGES

2496

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-019-39005-8

DOI

http://dx.doi.org/10.1038/s41598-019-39005-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112286065

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30792460


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "King's College London", 
          "id": "https://www.grid.ac/institutes/grid.13097.3c", 
          "name": [
            "Department of Neuroimaging, IoPPN, King\u2019s College London, London, United Kingdom"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Veronese", 
        "givenName": "Mattia", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Padua", 
          "id": "https://www.grid.ac/institutes/grid.5608.b", 
          "name": [
            "Department of Neuroimaging, IoPPN, King\u2019s College London, London, United Kingdom", 
            "Department of Information Engineering, University of Padova, Padova, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Moro", 
        "givenName": "Lucia", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Padua", 
          "id": "https://www.grid.ac/institutes/grid.5608.b", 
          "name": [
            "Department of Neuroimaging, IoPPN, King\u2019s College London, London, United Kingdom", 
            "Department of Information Engineering, University of Padova, Padova, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Arcolin", 
        "givenName": "Marco", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "King's College London", 
          "id": "https://www.grid.ac/institutes/grid.13097.3c", 
          "name": [
            "Department of Neuroimaging, IoPPN, King\u2019s College London, London, United Kingdom"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dipasquale", 
        "givenName": "Ottavia", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Invicro UK, London, United Kingdom"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rizzo", 
        "givenName": "Gaia", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Imperial College London", 
          "id": "https://www.grid.ac/institutes/grid.7445.2", 
          "name": [
            "Department of Neuroimaging, IoPPN, King\u2019s College London, London, United Kingdom", 
            "Department of Mathematics, Imperial College London, London, United Kingdom", 
            "EPSRC Centre for Mathematics of Precision Healthcare, Imperial College London, London, United Kingdom"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Expert", 
        "givenName": "Paul", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Florey Institute of Neuroscience and Mental Health", 
          "id": "https://www.grid.ac/institutes/grid.418025.a", 
          "name": [
            "Department of Neuroimaging, IoPPN, King\u2019s College London, London, United Kingdom", 
            "Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, Melbourne, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Khan", 
        "givenName": "Wasim", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Rigshospitalet", 
          "id": "https://www.grid.ac/institutes/grid.475435.4", 
          "name": [
            "Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fisher", 
        "givenName": "Patrick M.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Rigshospitalet", 
          "id": "https://www.grid.ac/institutes/grid.475435.4", 
          "name": [
            "Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Svarer", 
        "givenName": "Claus", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Padua", 
          "id": "https://www.grid.ac/institutes/grid.5608.b", 
          "name": [
            "Department of Information Engineering, University of Padova, Padova, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bertoldo", 
        "givenName": "Alessandra", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "King's College London", 
          "id": "https://www.grid.ac/institutes/grid.13097.3c", 
          "name": [
            "Department of Psychosis studies, IoPPN, King\u2019s College London, London, United Kingdom"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Howes", 
        "givenName": "Oliver", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "King's College London", 
          "id": "https://www.grid.ac/institutes/grid.13097.3c", 
          "name": [
            "Department of Neuroimaging, IoPPN, King\u2019s College London, London, United Kingdom"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Turkheimer", 
        "givenName": "Federico E.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.mri.2007.02.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000749849"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jalz.2010.03.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003190117"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.euroneuro.2010.03.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003351308"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/brain/121.6.1013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003449769"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/syn.20765", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004310335"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/syn.20765", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004310335"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrn2575", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004953014", 
          "https://doi.org/10.1038/nrn2575"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.87.198701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005667063"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.87.198701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005667063"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.71.065103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006241339"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.71.065103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006241339"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hbm.10123", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007780347"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/archneur.1988.00520310055018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008302384"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1073858409338217", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009564848"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1073858409338217", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009564848"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jpsychires.2009.07.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010077190"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1523/jneurosci.1929-08.2008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010403014"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/jcbfm.2011.11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013254151"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/jcbfm.2011.11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013254151"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hbm.1058", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014056708"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0893-6080(00)00059-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014377289"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bbi.2015.12.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014806338"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nn1578", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015360634", 
          "https://doi.org/10.1038/nn1578"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nn1578", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015360634", 
          "https://doi.org/10.1038/nn1578"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0021976", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015839665"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep02853", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022145014", 
          "https://doi.org/10.1038/srep02853"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2009.10.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022342218"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0016291", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022405455"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-008-0808-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023205354", 
          "https://doi.org/10.1007/s00259-008-0808-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-008-0808-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023205354", 
          "https://doi.org/10.1007/s00259-008-0808-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/gerona/59.6.b573", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023677200"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2009.12.058", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024473537"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/nimg.2000.0608", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027023678"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2016.04.047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027786945"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2967/jnumed.108.058552", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028093537"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1196/annals.1395.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028266787"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hbm.22298", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028489980"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2009.12.120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028581904"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hbm.23305", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030205711"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2015.04.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031739774"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2015.04.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031739774"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2015.04.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031739774"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0006-8993(87)91107-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032493977"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0006-8993(87)91107-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032493977"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/schbul/sbp006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033026242"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/schbul/sbp006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033026242"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nm.3290", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034437233", 
          "https://doi.org/10.1038/nm.3290"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0095146", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034855443"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neurobiolaging.2009.07.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035861817"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2013.05.054", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037509639"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0925-4927(91)90014-h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037992915"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0925-4927(91)90014-h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037992915"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.0030017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040127483"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.0030017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040127483"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2004.04.032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040864907"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hbm.22630", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041015602"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0271678x15622465", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041248840"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0271678x15622465", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041248840"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2004.10.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042130680"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2016.07.043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043122371"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2788.1990.tb01535.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044162682"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/jcbfm.1984.73", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044498907"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/jcbfm.1984.73", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044498907"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuint.2003.12.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045769723"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00146952", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046270008", 
          "https://doi.org/10.1007/bf00146952"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00146952", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046270008", 
          "https://doi.org/10.1007/bf00146952"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2967/jnumed.112.105346", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047771119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2010.02.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048364180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10334-010-0205-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049367536", 
          "https://doi.org/10.1007/s10334-010-0205-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10334-010-0205-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049367536", 
          "https://doi.org/10.1007/s10334-010-0205-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/npp.2014.87", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049779758", 
          "https://doi.org/10.1038/npp.2014.87"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/npp.2014.87", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049779758", 
          "https://doi.org/10.1038/npp.2014.87"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrn3901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050031228", 
          "https://doi.org/10.1038/nrn3901"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0165-0173(94)00016-i", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052696584"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neurobiolaging.2012.01.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052867167"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hbm.22753", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053330616"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/brain.2012.0086", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059239705"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/23.531882", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061130792"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tns.2002.998689", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061731810"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1176/appi.ajp.159.5.738", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063494620"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0271678x16654497", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063806096"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0271678x16654497", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063806096"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/01.wnl.0000240127.89601.83", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064348609"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/01.wnl.0000240127.89601.83", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064348609"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/01.wnl.0000240127.89601.83", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064348609"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1076805161", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1610909114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083395305"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nicl.2017.03.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084099096"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2017.04.062", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085107030"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0271678x17708692", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085616300"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0271678x17708692", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085616300"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-017-04102-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086179705", 
          "https://doi.org/10.1038/s41598-017-04102-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hbm.23843", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092189577"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/med/9780199541164.001.0001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095892332"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13550-018-0366-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100991994", 
          "https://doi.org/10.1186/s13550-018-0366-8"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "The analysis of structural and functional neuroimaging data using graph theory has increasingly become a popular approach for visualising and understanding anatomical and functional relationships between different cerebral areas. In this work we applied a network-based approach for brain PET studies using population-based covariance matrices, with the aim to explore topological tracer kinetic differences in cross-sectional investigations. Simulations, test-retest studies and applications to cross-sectional datasets from three different tracers ([18F]FDG, [18F]FDOPA and [11C]SB217045) and more than 400 PET scans were investigated to assess the applicability of the methodology in healthy controls and patients. A validation of statistics, including the assessment of false positive differences in parametric versus permutation testing, was also performed. Results showed good reproducibility and general applicability of the method within the range of experimental settings typical of PET neuroimaging studies, with permutation being the method of choice for the statistical analysis. The use of graph theory for the quantification of [18F]FDG brain PET covariance, including the definition of an entropy metric, proved to be particularly relevant for Alzheimer's disease, showing an association with the progression of the pathology. This study shows that covariance statistics can be applied to PET neuroimaging data to investigate the topological characteristics of the tracer kinetics and its related targets, although sensitivity to experimental variables, group inhomogeneities and image resolution need to be considered when the method is applied to cross-sectional studies.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-019-39005-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2758912", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2687006", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.7132465", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "Covariance statistics and network analysis of brain PET imaging studies", 
    "pagination": "2496", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "76cfb0f3bb86faef54bc3f418995ad47391b6ba5146dde135f6a8d85f3558394"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30792460"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-019-39005-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112286065"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-019-39005-8", 
      "https://app.dimensions.ai/details/publication/pub.1112286065"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:18", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000368_0000000368/records_78938_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-019-39005-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-39005-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-39005-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-39005-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-39005-8'


 

This table displays all metadata directly associated to this object as RDF triples.

387 TRIPLES      21 PREDICATES      102 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-019-39005-8 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N0192a91595614b688439c42b6ee05037
4 schema:citation sg:pub.10.1007/bf00146952
5 sg:pub.10.1007/s00259-008-0808-z
6 sg:pub.10.1007/s10334-010-0205-z
7 sg:pub.10.1038/nm.3290
8 sg:pub.10.1038/nn1578
9 sg:pub.10.1038/npp.2014.87
10 sg:pub.10.1038/nrn2575
11 sg:pub.10.1038/nrn3901
12 sg:pub.10.1038/s41598-017-04102-z
13 sg:pub.10.1038/srep02853
14 sg:pub.10.1186/s13550-018-0366-8
15 https://app.dimensions.ai/details/publication/pub.1076805161
16 https://doi.org/10.1001/archneur.1988.00520310055018
17 https://doi.org/10.1002/hbm.10123
18 https://doi.org/10.1002/hbm.1058
19 https://doi.org/10.1002/hbm.22298
20 https://doi.org/10.1002/hbm.22630
21 https://doi.org/10.1002/hbm.22753
22 https://doi.org/10.1002/hbm.23305
23 https://doi.org/10.1002/hbm.23843
24 https://doi.org/10.1002/syn.20765
25 https://doi.org/10.1006/nimg.2000.0608
26 https://doi.org/10.1016/0006-8993(87)91107-3
27 https://doi.org/10.1016/0165-0173(94)00016-i
28 https://doi.org/10.1016/0925-4927(91)90014-h
29 https://doi.org/10.1016/j.bbi.2015.12.011
30 https://doi.org/10.1016/j.euroneuro.2010.03.008
31 https://doi.org/10.1016/j.jalz.2010.03.003
32 https://doi.org/10.1016/j.jpsychires.2009.07.011
33 https://doi.org/10.1016/j.mri.2007.02.012
34 https://doi.org/10.1016/j.neuint.2003.12.005
35 https://doi.org/10.1016/j.neurobiolaging.2009.07.002
36 https://doi.org/10.1016/j.neurobiolaging.2012.01.005
37 https://doi.org/10.1016/j.neuroimage.2004.04.032
38 https://doi.org/10.1016/j.neuroimage.2004.10.017
39 https://doi.org/10.1016/j.neuroimage.2009.10.003
40 https://doi.org/10.1016/j.neuroimage.2009.12.058
41 https://doi.org/10.1016/j.neuroimage.2009.12.120
42 https://doi.org/10.1016/j.neuroimage.2010.02.009
43 https://doi.org/10.1016/j.neuroimage.2013.05.054
44 https://doi.org/10.1016/j.neuroimage.2015.04.025
45 https://doi.org/10.1016/j.neuroimage.2016.04.047
46 https://doi.org/10.1016/j.neuroimage.2016.07.043
47 https://doi.org/10.1016/j.neuroimage.2017.04.062
48 https://doi.org/10.1016/j.nicl.2017.03.011
49 https://doi.org/10.1016/s0893-6080(00)00059-9
50 https://doi.org/10.1038/jcbfm.1984.73
51 https://doi.org/10.1038/jcbfm.2011.11
52 https://doi.org/10.1073/pnas.1610909114
53 https://doi.org/10.1089/brain.2012.0086
54 https://doi.org/10.1093/brain/121.6.1013
55 https://doi.org/10.1093/gerona/59.6.b573
56 https://doi.org/10.1093/med/9780199541164.001.0001
57 https://doi.org/10.1093/schbul/sbp006
58 https://doi.org/10.1103/physreve.71.065103
59 https://doi.org/10.1103/physrevlett.87.198701
60 https://doi.org/10.1109/23.531882
61 https://doi.org/10.1109/tns.2002.998689
62 https://doi.org/10.1111/j.1365-2788.1990.tb01535.x
63 https://doi.org/10.1176/appi.ajp.159.5.738
64 https://doi.org/10.1177/0271678x15622465
65 https://doi.org/10.1177/0271678x16654497
66 https://doi.org/10.1177/0271678x17708692
67 https://doi.org/10.1177/1073858409338217
68 https://doi.org/10.1196/annals.1395.001
69 https://doi.org/10.1212/01.wnl.0000240127.89601.83
70 https://doi.org/10.1371/journal.pcbi.0030017
71 https://doi.org/10.1371/journal.pone.0016291
72 https://doi.org/10.1371/journal.pone.0021976
73 https://doi.org/10.1371/journal.pone.0095146
74 https://doi.org/10.1523/jneurosci.1929-08.2008
75 https://doi.org/10.2967/jnumed.108.058552
76 https://doi.org/10.2967/jnumed.112.105346
77 schema:datePublished 2019-12
78 schema:datePublishedReg 2019-12-01
79 schema:description The analysis of structural and functional neuroimaging data using graph theory has increasingly become a popular approach for visualising and understanding anatomical and functional relationships between different cerebral areas. In this work we applied a network-based approach for brain PET studies using population-based covariance matrices, with the aim to explore topological tracer kinetic differences in cross-sectional investigations. Simulations, test-retest studies and applications to cross-sectional datasets from three different tracers ([<sup>18</sup>F]FDG, [<sup>18</sup>F]FDOPA and [<sup>11</sup>C]SB217045) and more than 400 PET scans were investigated to assess the applicability of the methodology in healthy controls and patients. A validation of statistics, including the assessment of false positive differences in parametric versus permutation testing, was also performed. Results showed good reproducibility and general applicability of the method within the range of experimental settings typical of PET neuroimaging studies, with permutation being the method of choice for the statistical analysis. The use of graph theory for the quantification of [<sup>18</sup>F]FDG brain PET covariance, including the definition of an entropy metric, proved to be particularly relevant for Alzheimer's disease, showing an association with the progression of the pathology. This study shows that covariance statistics can be applied to PET neuroimaging data to investigate the topological characteristics of the tracer kinetics and its related targets, although sensitivity to experimental variables, group inhomogeneities and image resolution need to be considered when the method is applied to cross-sectional studies.
80 schema:genre research_article
81 schema:inLanguage en
82 schema:isAccessibleForFree true
83 schema:isPartOf N6800d0f71d684afea82f16b6f04a8e20
84 N6a60c734639d41338f5245d0d3ac19be
85 sg:journal.1045337
86 schema:name Covariance statistics and network analysis of brain PET imaging studies
87 schema:pagination 2496
88 schema:productId N1f8bd2eb7219470d9b476a0ed72cf76f
89 N35ec7f17fc6c40b9b35cebc6dcecd39a
90 N8eda5cefc7b14bf5aaae4e70274c1665
91 Na835174ad72f4505a6ce889ffef5e762
92 Nd2775f54b77f43cba1f7dad6534cc3d4
93 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112286065
94 https://doi.org/10.1038/s41598-019-39005-8
95 schema:sdDatePublished 2019-04-11T13:18
96 schema:sdLicense https://scigraph.springernature.com/explorer/license/
97 schema:sdPublisher Ndc9b6154bce04c9794cd60429502e2f0
98 schema:url https://www.nature.com/articles/s41598-019-39005-8
99 sgo:license sg:explorer/license/
100 sgo:sdDataset articles
101 rdf:type schema:ScholarlyArticle
102 N0192a91595614b688439c42b6ee05037 rdf:first N21816438fbdc4d62bb9d86c8417800de
103 rdf:rest N5a4a7bb54d1241bd8f895a639b84cf74
104 N075b16239c8c42669fc608b4b14ec616 rdf:first Nfa2d90329d0443069a2de14768414c34
105 rdf:rest Nfba71c9b648e4284a7e9fade87766dfa
106 N1f8bd2eb7219470d9b476a0ed72cf76f schema:name dimensions_id
107 schema:value pub.1112286065
108 rdf:type schema:PropertyValue
109 N2034b6efdd354f11b7c4041ae0d76461 schema:affiliation https://www.grid.ac/institutes/grid.13097.3c
110 schema:familyName Turkheimer
111 schema:givenName Federico E.
112 rdf:type schema:Person
113 N21816438fbdc4d62bb9d86c8417800de schema:affiliation https://www.grid.ac/institutes/grid.13097.3c
114 schema:familyName Veronese
115 schema:givenName Mattia
116 rdf:type schema:Person
117 N23c650510cb54e69bf55197e2f0a9e03 schema:affiliation N51c70bb2caf644499c7852d29c722ddb
118 schema:familyName Rizzo
119 schema:givenName Gaia
120 rdf:type schema:Person
121 N34b2083042764028bb76ea8453510868 rdf:first N58b909723c3545f0bf6a787500a8ff7d
122 rdf:rest Na213e59a1ba54f65b1e30459a0564a95
123 N35ec7f17fc6c40b9b35cebc6dcecd39a schema:name readcube_id
124 schema:value 76cfb0f3bb86faef54bc3f418995ad47391b6ba5146dde135f6a8d85f3558394
125 rdf:type schema:PropertyValue
126 N3f6ffc42b33d4b0aa891cf9c9aa16295 rdf:first N5386407eed8d425e869ce1ee11595aa3
127 rdf:rest Nd65dc815e50b40b3b38497c19e9dc3f0
128 N46230e573d554cf084e079ef51b0c8f8 rdf:first N4c474f5e6ef54d3b8e92378956dc5582
129 rdf:rest N9969c1dd113a4c8bb178c2803c34261d
130 N490a0399a3b745989ba3353f91c44e31 schema:affiliation https://www.grid.ac/institutes/grid.5608.b
131 schema:familyName Bertoldo
132 schema:givenName Alessandra
133 rdf:type schema:Person
134 N4c474f5e6ef54d3b8e92378956dc5582 schema:affiliation https://www.grid.ac/institutes/grid.7445.2
135 schema:familyName Expert
136 schema:givenName Paul
137 rdf:type schema:Person
138 N4d566e6fdb6b4cf3876026be59e1b97d rdf:first Na000d212f3cd45f09bc4190ac00105a9
139 rdf:rest N34b2083042764028bb76ea8453510868
140 N51c70bb2caf644499c7852d29c722ddb schema:name Invicro UK, London, United Kingdom
141 rdf:type schema:Organization
142 N5386407eed8d425e869ce1ee11595aa3 schema:affiliation https://www.grid.ac/institutes/grid.13097.3c
143 schema:familyName Howes
144 schema:givenName Oliver
145 rdf:type schema:Person
146 N58b909723c3545f0bf6a787500a8ff7d schema:affiliation https://www.grid.ac/institutes/grid.13097.3c
147 schema:familyName Dipasquale
148 schema:givenName Ottavia
149 rdf:type schema:Person
150 N5a4a7bb54d1241bd8f895a639b84cf74 rdf:first Nd4fdade0a74d41dabe77eeff09fb13f3
151 rdf:rest N4d566e6fdb6b4cf3876026be59e1b97d
152 N5fb31e01d4d544b9bf925f8183e93d18 schema:affiliation https://www.grid.ac/institutes/grid.418025.a
153 schema:familyName Khan
154 schema:givenName Wasim
155 rdf:type schema:Person
156 N6800d0f71d684afea82f16b6f04a8e20 schema:issueNumber 1
157 rdf:type schema:PublicationIssue
158 N6a60c734639d41338f5245d0d3ac19be schema:volumeNumber 9
159 rdf:type schema:PublicationVolume
160 N7c626395055c4a9899126b00781ad5e5 schema:affiliation https://www.grid.ac/institutes/grid.475435.4
161 schema:familyName Svarer
162 schema:givenName Claus
163 rdf:type schema:Person
164 N8344982347da4defaa7149fdc70e845b rdf:first N490a0399a3b745989ba3353f91c44e31
165 rdf:rest N3f6ffc42b33d4b0aa891cf9c9aa16295
166 N8eda5cefc7b14bf5aaae4e70274c1665 schema:name nlm_unique_id
167 schema:value 101563288
168 rdf:type schema:PropertyValue
169 N9969c1dd113a4c8bb178c2803c34261d rdf:first N5fb31e01d4d544b9bf925f8183e93d18
170 rdf:rest N075b16239c8c42669fc608b4b14ec616
171 Na000d212f3cd45f09bc4190ac00105a9 schema:affiliation https://www.grid.ac/institutes/grid.5608.b
172 schema:familyName Arcolin
173 schema:givenName Marco
174 rdf:type schema:Person
175 Na213e59a1ba54f65b1e30459a0564a95 rdf:first N23c650510cb54e69bf55197e2f0a9e03
176 rdf:rest N46230e573d554cf084e079ef51b0c8f8
177 Na835174ad72f4505a6ce889ffef5e762 schema:name pubmed_id
178 schema:value 30792460
179 rdf:type schema:PropertyValue
180 Nd2775f54b77f43cba1f7dad6534cc3d4 schema:name doi
181 schema:value 10.1038/s41598-019-39005-8
182 rdf:type schema:PropertyValue
183 Nd4fdade0a74d41dabe77eeff09fb13f3 schema:affiliation https://www.grid.ac/institutes/grid.5608.b
184 schema:familyName Moro
185 schema:givenName Lucia
186 rdf:type schema:Person
187 Nd65dc815e50b40b3b38497c19e9dc3f0 rdf:first N2034b6efdd354f11b7c4041ae0d76461
188 rdf:rest rdf:nil
189 Ndc9b6154bce04c9794cd60429502e2f0 schema:name Springer Nature - SN SciGraph project
190 rdf:type schema:Organization
191 Nfa2d90329d0443069a2de14768414c34 schema:affiliation https://www.grid.ac/institutes/grid.475435.4
192 schema:familyName Fisher
193 schema:givenName Patrick M.
194 rdf:type schema:Person
195 Nfba71c9b648e4284a7e9fade87766dfa rdf:first N7c626395055c4a9899126b00781ad5e5
196 rdf:rest N8344982347da4defaa7149fdc70e845b
197 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
198 schema:name Mathematical Sciences
199 rdf:type schema:DefinedTerm
200 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
201 schema:name Statistics
202 rdf:type schema:DefinedTerm
203 sg:grant.2687006 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-019-39005-8
204 rdf:type schema:MonetaryGrant
205 sg:grant.2758912 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-019-39005-8
206 rdf:type schema:MonetaryGrant
207 sg:grant.7132465 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-019-39005-8
208 rdf:type schema:MonetaryGrant
209 sg:journal.1045337 schema:issn 2045-2322
210 schema:name Scientific Reports
211 rdf:type schema:Periodical
212 sg:pub.10.1007/bf00146952 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046270008
213 https://doi.org/10.1007/bf00146952
214 rdf:type schema:CreativeWork
215 sg:pub.10.1007/s00259-008-0808-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1023205354
216 https://doi.org/10.1007/s00259-008-0808-z
217 rdf:type schema:CreativeWork
218 sg:pub.10.1007/s10334-010-0205-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1049367536
219 https://doi.org/10.1007/s10334-010-0205-z
220 rdf:type schema:CreativeWork
221 sg:pub.10.1038/nm.3290 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034437233
222 https://doi.org/10.1038/nm.3290
223 rdf:type schema:CreativeWork
224 sg:pub.10.1038/nn1578 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015360634
225 https://doi.org/10.1038/nn1578
226 rdf:type schema:CreativeWork
227 sg:pub.10.1038/npp.2014.87 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049779758
228 https://doi.org/10.1038/npp.2014.87
229 rdf:type schema:CreativeWork
230 sg:pub.10.1038/nrn2575 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004953014
231 https://doi.org/10.1038/nrn2575
232 rdf:type schema:CreativeWork
233 sg:pub.10.1038/nrn3901 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050031228
234 https://doi.org/10.1038/nrn3901
235 rdf:type schema:CreativeWork
236 sg:pub.10.1038/s41598-017-04102-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1086179705
237 https://doi.org/10.1038/s41598-017-04102-z
238 rdf:type schema:CreativeWork
239 sg:pub.10.1038/srep02853 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022145014
240 https://doi.org/10.1038/srep02853
241 rdf:type schema:CreativeWork
242 sg:pub.10.1186/s13550-018-0366-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100991994
243 https://doi.org/10.1186/s13550-018-0366-8
244 rdf:type schema:CreativeWork
245 https://app.dimensions.ai/details/publication/pub.1076805161 schema:CreativeWork
246 https://doi.org/10.1001/archneur.1988.00520310055018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008302384
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1002/hbm.10123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007780347
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1002/hbm.1058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014056708
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1002/hbm.22298 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028489980
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1002/hbm.22630 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041015602
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1002/hbm.22753 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053330616
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1002/hbm.23305 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030205711
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1002/hbm.23843 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092189577
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1002/syn.20765 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004310335
263 rdf:type schema:CreativeWork
264 https://doi.org/10.1006/nimg.2000.0608 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027023678
265 rdf:type schema:CreativeWork
266 https://doi.org/10.1016/0006-8993(87)91107-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032493977
267 rdf:type schema:CreativeWork
268 https://doi.org/10.1016/0165-0173(94)00016-i schema:sameAs https://app.dimensions.ai/details/publication/pub.1052696584
269 rdf:type schema:CreativeWork
270 https://doi.org/10.1016/0925-4927(91)90014-h schema:sameAs https://app.dimensions.ai/details/publication/pub.1037992915
271 rdf:type schema:CreativeWork
272 https://doi.org/10.1016/j.bbi.2015.12.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014806338
273 rdf:type schema:CreativeWork
274 https://doi.org/10.1016/j.euroneuro.2010.03.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003351308
275 rdf:type schema:CreativeWork
276 https://doi.org/10.1016/j.jalz.2010.03.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003190117
277 rdf:type schema:CreativeWork
278 https://doi.org/10.1016/j.jpsychires.2009.07.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010077190
279 rdf:type schema:CreativeWork
280 https://doi.org/10.1016/j.mri.2007.02.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000749849
281 rdf:type schema:CreativeWork
282 https://doi.org/10.1016/j.neuint.2003.12.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045769723
283 rdf:type schema:CreativeWork
284 https://doi.org/10.1016/j.neurobiolaging.2009.07.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035861817
285 rdf:type schema:CreativeWork
286 https://doi.org/10.1016/j.neurobiolaging.2012.01.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052867167
287 rdf:type schema:CreativeWork
288 https://doi.org/10.1016/j.neuroimage.2004.04.032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040864907
289 rdf:type schema:CreativeWork
290 https://doi.org/10.1016/j.neuroimage.2004.10.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042130680
291 rdf:type schema:CreativeWork
292 https://doi.org/10.1016/j.neuroimage.2009.10.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022342218
293 rdf:type schema:CreativeWork
294 https://doi.org/10.1016/j.neuroimage.2009.12.058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024473537
295 rdf:type schema:CreativeWork
296 https://doi.org/10.1016/j.neuroimage.2009.12.120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028581904
297 rdf:type schema:CreativeWork
298 https://doi.org/10.1016/j.neuroimage.2010.02.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048364180
299 rdf:type schema:CreativeWork
300 https://doi.org/10.1016/j.neuroimage.2013.05.054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037509639
301 rdf:type schema:CreativeWork
302 https://doi.org/10.1016/j.neuroimage.2015.04.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031739774
303 rdf:type schema:CreativeWork
304 https://doi.org/10.1016/j.neuroimage.2016.04.047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027786945
305 rdf:type schema:CreativeWork
306 https://doi.org/10.1016/j.neuroimage.2016.07.043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043122371
307 rdf:type schema:CreativeWork
308 https://doi.org/10.1016/j.neuroimage.2017.04.062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085107030
309 rdf:type schema:CreativeWork
310 https://doi.org/10.1016/j.nicl.2017.03.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084099096
311 rdf:type schema:CreativeWork
312 https://doi.org/10.1016/s0893-6080(00)00059-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014377289
313 rdf:type schema:CreativeWork
314 https://doi.org/10.1038/jcbfm.1984.73 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044498907
315 rdf:type schema:CreativeWork
316 https://doi.org/10.1038/jcbfm.2011.11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013254151
317 rdf:type schema:CreativeWork
318 https://doi.org/10.1073/pnas.1610909114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083395305
319 rdf:type schema:CreativeWork
320 https://doi.org/10.1089/brain.2012.0086 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059239705
321 rdf:type schema:CreativeWork
322 https://doi.org/10.1093/brain/121.6.1013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003449769
323 rdf:type schema:CreativeWork
324 https://doi.org/10.1093/gerona/59.6.b573 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023677200
325 rdf:type schema:CreativeWork
326 https://doi.org/10.1093/med/9780199541164.001.0001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095892332
327 rdf:type schema:CreativeWork
328 https://doi.org/10.1093/schbul/sbp006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033026242
329 rdf:type schema:CreativeWork
330 https://doi.org/10.1103/physreve.71.065103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006241339
331 rdf:type schema:CreativeWork
332 https://doi.org/10.1103/physrevlett.87.198701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005667063
333 rdf:type schema:CreativeWork
334 https://doi.org/10.1109/23.531882 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061130792
335 rdf:type schema:CreativeWork
336 https://doi.org/10.1109/tns.2002.998689 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061731810
337 rdf:type schema:CreativeWork
338 https://doi.org/10.1111/j.1365-2788.1990.tb01535.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1044162682
339 rdf:type schema:CreativeWork
340 https://doi.org/10.1176/appi.ajp.159.5.738 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063494620
341 rdf:type schema:CreativeWork
342 https://doi.org/10.1177/0271678x15622465 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041248840
343 rdf:type schema:CreativeWork
344 https://doi.org/10.1177/0271678x16654497 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063806096
345 rdf:type schema:CreativeWork
346 https://doi.org/10.1177/0271678x17708692 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085616300
347 rdf:type schema:CreativeWork
348 https://doi.org/10.1177/1073858409338217 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009564848
349 rdf:type schema:CreativeWork
350 https://doi.org/10.1196/annals.1395.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028266787
351 rdf:type schema:CreativeWork
352 https://doi.org/10.1212/01.wnl.0000240127.89601.83 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064348609
353 rdf:type schema:CreativeWork
354 https://doi.org/10.1371/journal.pcbi.0030017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040127483
355 rdf:type schema:CreativeWork
356 https://doi.org/10.1371/journal.pone.0016291 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022405455
357 rdf:type schema:CreativeWork
358 https://doi.org/10.1371/journal.pone.0021976 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015839665
359 rdf:type schema:CreativeWork
360 https://doi.org/10.1371/journal.pone.0095146 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034855443
361 rdf:type schema:CreativeWork
362 https://doi.org/10.1523/jneurosci.1929-08.2008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010403014
363 rdf:type schema:CreativeWork
364 https://doi.org/10.2967/jnumed.108.058552 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028093537
365 rdf:type schema:CreativeWork
366 https://doi.org/10.2967/jnumed.112.105346 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047771119
367 rdf:type schema:CreativeWork
368 https://www.grid.ac/institutes/grid.13097.3c schema:alternateName King's College London
369 schema:name Department of Neuroimaging, IoPPN, King’s College London, London, United Kingdom
370 Department of Psychosis studies, IoPPN, King’s College London, London, United Kingdom
371 rdf:type schema:Organization
372 https://www.grid.ac/institutes/grid.418025.a schema:alternateName Florey Institute of Neuroscience and Mental Health
373 schema:name Department of Neuroimaging, IoPPN, King’s College London, London, United Kingdom
374 Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, Melbourne, Australia
375 rdf:type schema:Organization
376 https://www.grid.ac/institutes/grid.475435.4 schema:alternateName Rigshospitalet
377 schema:name Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
378 rdf:type schema:Organization
379 https://www.grid.ac/institutes/grid.5608.b schema:alternateName University of Padua
380 schema:name Department of Information Engineering, University of Padova, Padova, Italy
381 Department of Neuroimaging, IoPPN, King’s College London, London, United Kingdom
382 rdf:type schema:Organization
383 https://www.grid.ac/institutes/grid.7445.2 schema:alternateName Imperial College London
384 schema:name Department of Mathematics, Imperial College London, London, United Kingdom
385 Department of Neuroimaging, IoPPN, King’s College London, London, United Kingdom
386 EPSRC Centre for Mathematics of Precision Healthcare, Imperial College London, London, United Kingdom
387 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...