Accelerating Neutron Tomography experiments through Artificial Neural Network based reconstruction View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Davide Micieli, Triestino Minniti, Llion Marc Evans, Giuseppe Gorini

ABSTRACT

Neutron Tomography (NT) is a non-destructive technique to investigate the inner structure of a wide range of objects and, in some cases, provides valuable results in comparison to the more common X-ray imaging techniques. However, NT is time consuming and scanning a set of similar objects during a beamtime leads to data redundancy and long acquisition times. Nowadays NT is unfeasible for quality checking study of large quantities of similar objects. One way to decrease the total scan time is to reduce the number of projections. Analytical reconstruction methods are very fast but under this condition generate streaking artifacts in the reconstructed images. Iterative algorithms generally provide better reconstruction for limited data problems, but at the expense of longer reconstruction time. In this study, we propose the recently introduced Neural Network Filtered Back-Projection (NN-FBP) method to optimize the time usage in NT experiments. Simulated and real neutron data were used to assess the performance of the NN-FBP method as a function of the number of projections. For the first time a machine learning based algorithm is applied and tested for NT image reconstruction problem. We demonstrate that the NN-FBP method can reliably reduce acquisition and reconstruction times and it outperforms conventional reconstruction methods used in NT, providing high image quality for limited datasets. More... »

PAGES

2450

References to SciGraph publications

  • 2013-05. Neutron imaging reveals internal plant water dynamics in PLANT AND SOIL
  • 2016-03. Sparse-view neutron CT reconstruction of irradiated fuel assembly using total variation minimization with Poisson statistics in JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY
  • 2015-05. Deep learning in NATURE
  • 2015-12. ImageNet Large Scale Visual Recognition Challenge in INTERNATIONAL JOURNAL OF COMPUTER VISION
  • 2018-12. Low-dose x-ray tomography through a deep convolutional neural network in SCIENTIFIC REPORTS
  • 2017. A Deep Learning Architecture for Limited-Angle Computed Tomography Reconstruction in BILDVERARBEITUNG FÜR DIE MEDIZIN 2017
  • 2018-12. Characterizing pearls structures using X-ray phase-contrast and neutron imaging: a pilot study in SCIENTIFIC REPORTS
  • 2018-06. A review of semantic segmentation using deep neural networks in INTERNATIONAL JOURNAL OF MULTIMEDIA INFORMATION RETRIEVAL
  • 2015. U-Net: Convolutional Networks for Biomedical Image Segmentation in MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION – MICCAI 2015
  • 2016. Building Dual-Domain Representations for Compression Artifacts Reduction in COMPUTER VISION – ECCV 2016
  • 2009. Material Science and Engineering with Neutron Imaging in NEUTRON IMAGING AND APPLICATIONS
  • 2016. Deep Neural Image Denoising in COMPUTER VISION AND GRAPHICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41598-019-38903-1

    DOI

    http://dx.doi.org/10.1038/s41598-019-38903-1

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1112286049

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30792423


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Milano-Bicocca", 
              "id": "https://www.grid.ac/institutes/grid.7563.7", 
              "name": [
                "Universit\u00e0 della Calabria, Dipartimento di Fisica, 87036, Arcavacata di Rende (Cosenza), Italy", 
                "Universit\u00e0 degli Studi Milano-Bicocca, Dipartimento di Fisica \u201cG. Occhialini\u201d, 20126, Milano, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Micieli", 
            "givenName": "Davide", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Rutherford Appleton Laboratory", 
              "id": "https://www.grid.ac/institutes/grid.76978.37", 
              "name": [
                "STFC, Rutherford Appleton Laboratory, ISIS Facility, Harwell, United Kingdom"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Minniti", 
            "givenName": "Triestino", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Swansea University", 
              "id": "https://www.grid.ac/institutes/grid.4827.9", 
              "name": [
                "Culham Centre for Fusion Energy, Culham Science Centre, Abingdon, Oxfordshire, United Kingdom", 
                "College of Engineering, Swansea University, Bay Campus, Fabian Way, Swansea, United Kingdom"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Evans", 
            "givenName": "Llion Marc", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Milano-Bicocca", 
              "id": "https://www.grid.ac/institutes/grid.7563.7", 
              "name": [
                "Universit\u00e0 degli Studi Milano-Bicocca, Dipartimento di Fisica \u201cG. Occhialini\u201d, 20126, Milano, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gorini", 
            "givenName": "Giuseppe", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.ultramic.2015.07.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000744927"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-46418-3_15", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002756650", 
              "https://doi.org/10.1007/978-3-319-46418-3_15"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10967-015-4542-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006090316", 
              "https://doi.org/10.1007/s10967-015-4542-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-46448-0_38", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008831601", 
              "https://doi.org/10.1007/978-3-319-46448-0_38"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11263-015-0816-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009767488", 
              "https://doi.org/10.1007/s11263-015-0816-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature14539", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010020120", 
              "https://doi.org/10.1038/nature14539"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.physb.2006.05.252", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011372006"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0921-4526(99)01254-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012758258"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jsb.2011.07.017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012932766"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-0-387-78693-3_12", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017290440", 
              "https://doi.org/10.1007/978-0-387-78693-3_12"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-24574-4_28", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017774818", 
              "https://doi.org/10.1007/978-3-319-24574-4_28"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.5194/se-7-1281-2016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018414043"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1117/1.3660298", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022020646"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tip.2011.2109730", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024493913"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11104-012-1579-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033040969", 
              "https://doi.org/10.1007/s11104-012-1579-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11104-012-1579-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033040969", 
              "https://doi.org/10.1007/s11104-012-1579-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/access.2016.2624938", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033043929"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ejmp.2012.01.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034888019"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1118/1.1455742", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041874284"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tsmc.1979.4310076", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042805607"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.apradiso.2007.07.011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042861303"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-5193(72)90180-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050964289"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1364/oe.17.008567", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052771824"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1364/oe.17.008567", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052771824"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1053343297", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1053343297", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/jpln.200900188", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053683135"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/jpln.200900188", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053683135"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0029-5515/55/10/104023", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058989947"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0031-9155/57/16/5245", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059029343"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0031-9155/57/23/7923", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059029531"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/1748-0221/11/03/c03014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059171061"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tip.2003.819861", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061640964"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tip.2013.2283142", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061643730"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tip.2013.2293423", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061643802"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tmi.2014.2313751", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061696280"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1143/jjap.42.7151", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1063070878"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1364/boe.8.000679", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1065139084"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1364/oe.24.025129", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1065209131"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.procs.2017.03.178", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084534342"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-662-54345-0_25", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084732069", 
              "https://doi.org/10.1007/978-3-662-54345-0_25"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/3065386", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085642448"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/3065386", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085642448"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tip.2017.2713099", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1086050371"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13735-017-0141-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092975286", 
              "https://doi.org/10.1007/s13735-017-0141-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cvpr.2012.6247952", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093538034"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cvpr.2015.7298965", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093626237"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cvpr.2015.7298594", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094291017"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/iccv.2015.73", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095244979"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/1.9780898719277", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098551296"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tmi.2018.2799231", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100694494"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.nima.2018.01.037", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100744299"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41598-018-19426-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100780758", 
              "https://doi.org/10.1038/s41598-018-19426-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3390/jimaging4030047", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101265138"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1117/12.2295345", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101511513"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tmi.2018.2832656", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103799705"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tmi.2018.2833499", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103855614"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/1748-0221/13/06/c06006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105108392"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41598-018-30545-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106070377", 
              "https://doi.org/10.1038/s41598-018-30545-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.fusengdes.2018.06.017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106318737"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-12", 
        "datePublishedReg": "2019-12-01", 
        "description": "Neutron Tomography (NT) is a non-destructive technique to investigate the inner structure of a wide range of objects and, in some cases, provides valuable results in comparison to the more common X-ray imaging techniques. However, NT is time consuming and scanning a set of similar objects during a beamtime leads to data redundancy and long acquisition times. Nowadays NT is unfeasible for quality checking study of large quantities of similar objects. One way to decrease the total scan time is to reduce the number of projections. Analytical reconstruction methods are very fast but under this condition generate streaking artifacts in the reconstructed images. Iterative algorithms generally provide better reconstruction for limited data problems, but at the expense of longer reconstruction time. In this study, we propose the recently introduced Neural Network Filtered Back-Projection (NN-FBP) method to optimize the time usage in NT experiments. Simulated and real neutron data were used to assess the performance of the NN-FBP method as a function of the number of projections. For the first time a machine learning based algorithm is applied and tested for NT image reconstruction problem. We demonstrate that the NN-FBP method can reliably reduce acquisition and reconstruction times and it outperforms conventional reconstruction methods used in NT, providing high image quality for limited datasets.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/s41598-019-38903-1", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1045337", 
            "issn": [
              "2045-2322"
            ], 
            "name": "Scientific Reports", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "9"
          }
        ], 
        "name": "Accelerating Neutron Tomography experiments through Artificial Neural Network based reconstruction", 
        "pagination": "2450", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "90b8910795a1328d80f5e412172827c4172e520ee57a3d06ec47aaa64ab02bf2"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30792423"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101563288"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41598-019-38903-1"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1112286049"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41598-019-38903-1", 
          "https://app.dimensions.ai/details/publication/pub.1112286049"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T10:27", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000349_0000000349/records_113639_00000005.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://www.nature.com/articles/s41598-019-38903-1"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-38903-1'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-38903-1'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-38903-1'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-38903-1'


     

    This table displays all metadata directly associated to this object as RDF triples.

    269 TRIPLES      21 PREDICATES      84 URIs      21 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41598-019-38903-1 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author N9eeaa28af4894333a271414c6bde325f
    4 schema:citation sg:pub.10.1007/978-0-387-78693-3_12
    5 sg:pub.10.1007/978-3-319-24574-4_28
    6 sg:pub.10.1007/978-3-319-46418-3_15
    7 sg:pub.10.1007/978-3-319-46448-0_38
    8 sg:pub.10.1007/978-3-662-54345-0_25
    9 sg:pub.10.1007/s10967-015-4542-2
    10 sg:pub.10.1007/s11104-012-1579-7
    11 sg:pub.10.1007/s11263-015-0816-y
    12 sg:pub.10.1007/s13735-017-0141-z
    13 sg:pub.10.1038/nature14539
    14 sg:pub.10.1038/s41598-018-19426-7
    15 sg:pub.10.1038/s41598-018-30545-z
    16 https://app.dimensions.ai/details/publication/pub.1053343297
    17 https://doi.org/10.1002/jpln.200900188
    18 https://doi.org/10.1016/0022-5193(72)90180-4
    19 https://doi.org/10.1016/j.apradiso.2007.07.011
    20 https://doi.org/10.1016/j.ejmp.2012.01.003
    21 https://doi.org/10.1016/j.fusengdes.2018.06.017
    22 https://doi.org/10.1016/j.jsb.2011.07.017
    23 https://doi.org/10.1016/j.nima.2018.01.037
    24 https://doi.org/10.1016/j.physb.2006.05.252
    25 https://doi.org/10.1016/j.procs.2017.03.178
    26 https://doi.org/10.1016/j.ultramic.2015.07.001
    27 https://doi.org/10.1016/s0921-4526(99)01254-5
    28 https://doi.org/10.1088/0029-5515/55/10/104023
    29 https://doi.org/10.1088/0031-9155/57/16/5245
    30 https://doi.org/10.1088/0031-9155/57/23/7923
    31 https://doi.org/10.1088/1748-0221/11/03/c03014
    32 https://doi.org/10.1088/1748-0221/13/06/c06006
    33 https://doi.org/10.1109/access.2016.2624938
    34 https://doi.org/10.1109/cvpr.2012.6247952
    35 https://doi.org/10.1109/cvpr.2015.7298594
    36 https://doi.org/10.1109/cvpr.2015.7298965
    37 https://doi.org/10.1109/iccv.2015.73
    38 https://doi.org/10.1109/tip.2003.819861
    39 https://doi.org/10.1109/tip.2011.2109730
    40 https://doi.org/10.1109/tip.2013.2283142
    41 https://doi.org/10.1109/tip.2013.2293423
    42 https://doi.org/10.1109/tip.2017.2713099
    43 https://doi.org/10.1109/tmi.2014.2313751
    44 https://doi.org/10.1109/tmi.2018.2799231
    45 https://doi.org/10.1109/tmi.2018.2832656
    46 https://doi.org/10.1109/tmi.2018.2833499
    47 https://doi.org/10.1109/tsmc.1979.4310076
    48 https://doi.org/10.1117/1.3660298
    49 https://doi.org/10.1117/12.2295345
    50 https://doi.org/10.1118/1.1455742
    51 https://doi.org/10.1137/1.9780898719277
    52 https://doi.org/10.1143/jjap.42.7151
    53 https://doi.org/10.1145/3065386
    54 https://doi.org/10.1364/boe.8.000679
    55 https://doi.org/10.1364/oe.17.008567
    56 https://doi.org/10.1364/oe.24.025129
    57 https://doi.org/10.3390/jimaging4030047
    58 https://doi.org/10.5194/se-7-1281-2016
    59 schema:datePublished 2019-12
    60 schema:datePublishedReg 2019-12-01
    61 schema:description Neutron Tomography (NT) is a non-destructive technique to investigate the inner structure of a wide range of objects and, in some cases, provides valuable results in comparison to the more common X-ray imaging techniques. However, NT is time consuming and scanning a set of similar objects during a beamtime leads to data redundancy and long acquisition times. Nowadays NT is unfeasible for quality checking study of large quantities of similar objects. One way to decrease the total scan time is to reduce the number of projections. Analytical reconstruction methods are very fast but under this condition generate streaking artifacts in the reconstructed images. Iterative algorithms generally provide better reconstruction for limited data problems, but at the expense of longer reconstruction time. In this study, we propose the recently introduced Neural Network Filtered Back-Projection (NN-FBP) method to optimize the time usage in NT experiments. Simulated and real neutron data were used to assess the performance of the NN-FBP method as a function of the number of projections. For the first time a machine learning based algorithm is applied and tested for NT image reconstruction problem. We demonstrate that the NN-FBP method can reliably reduce acquisition and reconstruction times and it outperforms conventional reconstruction methods used in NT, providing high image quality for limited datasets.
    62 schema:genre research_article
    63 schema:inLanguage en
    64 schema:isAccessibleForFree true
    65 schema:isPartOf N1a24153fd4734d56b174e385eb262ee6
    66 N358253e08cbf4ab19fa7ef13e5884b05
    67 sg:journal.1045337
    68 schema:name Accelerating Neutron Tomography experiments through Artificial Neural Network based reconstruction
    69 schema:pagination 2450
    70 schema:productId N2ac5e78e2cea469295c55b17d0630ea5
    71 N7549aca23ae74f3487bedfd179d31835
    72 N85e6ee8dccf54fab857885990c206703
    73 Ncc2cfc8f575f4e6094c2fc7a07984b4d
    74 Nf4edc936681b44bd9e43ac78cb40d4e3
    75 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112286049
    76 https://doi.org/10.1038/s41598-019-38903-1
    77 schema:sdDatePublished 2019-04-11T10:27
    78 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    79 schema:sdPublisher N75c1a58ad0d24c3d924141e6d6b58b15
    80 schema:url https://www.nature.com/articles/s41598-019-38903-1
    81 sgo:license sg:explorer/license/
    82 sgo:sdDataset articles
    83 rdf:type schema:ScholarlyArticle
    84 N1a24153fd4734d56b174e385eb262ee6 schema:issueNumber 1
    85 rdf:type schema:PublicationIssue
    86 N2ac5e78e2cea469295c55b17d0630ea5 schema:name readcube_id
    87 schema:value 90b8910795a1328d80f5e412172827c4172e520ee57a3d06ec47aaa64ab02bf2
    88 rdf:type schema:PropertyValue
    89 N358253e08cbf4ab19fa7ef13e5884b05 schema:volumeNumber 9
    90 rdf:type schema:PublicationVolume
    91 N41aa51d71cc94d76920dce3fc198e9f6 schema:affiliation https://www.grid.ac/institutes/grid.4827.9
    92 schema:familyName Evans
    93 schema:givenName Llion Marc
    94 rdf:type schema:Person
    95 N64dd62893a844ac0bb7d621d5ada1742 rdf:first Nef5d39c3c474466fbe98f71940a637b7
    96 rdf:rest rdf:nil
    97 N7549aca23ae74f3487bedfd179d31835 schema:name dimensions_id
    98 schema:value pub.1112286049
    99 rdf:type schema:PropertyValue
    100 N75c1a58ad0d24c3d924141e6d6b58b15 schema:name Springer Nature - SN SciGraph project
    101 rdf:type schema:Organization
    102 N85e6ee8dccf54fab857885990c206703 schema:name pubmed_id
    103 schema:value 30792423
    104 rdf:type schema:PropertyValue
    105 N8bf91ad4d26f4e2b9d7d24dbf64fdc7f rdf:first Nf358a8e4525b46c0ad79ecdee6ae77b8
    106 rdf:rest Na0cd2d6a1e11494f98a9d4fcc6425a11
    107 N9eeaa28af4894333a271414c6bde325f rdf:first Nd067f7abc472406ead68b64b8c46bf6e
    108 rdf:rest N8bf91ad4d26f4e2b9d7d24dbf64fdc7f
    109 Na0cd2d6a1e11494f98a9d4fcc6425a11 rdf:first N41aa51d71cc94d76920dce3fc198e9f6
    110 rdf:rest N64dd62893a844ac0bb7d621d5ada1742
    111 Ncc2cfc8f575f4e6094c2fc7a07984b4d schema:name doi
    112 schema:value 10.1038/s41598-019-38903-1
    113 rdf:type schema:PropertyValue
    114 Nd067f7abc472406ead68b64b8c46bf6e schema:affiliation https://www.grid.ac/institutes/grid.7563.7
    115 schema:familyName Micieli
    116 schema:givenName Davide
    117 rdf:type schema:Person
    118 Nef5d39c3c474466fbe98f71940a637b7 schema:affiliation https://www.grid.ac/institutes/grid.7563.7
    119 schema:familyName Gorini
    120 schema:givenName Giuseppe
    121 rdf:type schema:Person
    122 Nf358a8e4525b46c0ad79ecdee6ae77b8 schema:affiliation https://www.grid.ac/institutes/grid.76978.37
    123 schema:familyName Minniti
    124 schema:givenName Triestino
    125 rdf:type schema:Person
    126 Nf4edc936681b44bd9e43ac78cb40d4e3 schema:name nlm_unique_id
    127 schema:value 101563288
    128 rdf:type schema:PropertyValue
    129 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    130 schema:name Information and Computing Sciences
    131 rdf:type schema:DefinedTerm
    132 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    133 schema:name Artificial Intelligence and Image Processing
    134 rdf:type schema:DefinedTerm
    135 sg:journal.1045337 schema:issn 2045-2322
    136 schema:name Scientific Reports
    137 rdf:type schema:Periodical
    138 sg:pub.10.1007/978-0-387-78693-3_12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017290440
    139 https://doi.org/10.1007/978-0-387-78693-3_12
    140 rdf:type schema:CreativeWork
    141 sg:pub.10.1007/978-3-319-24574-4_28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017774818
    142 https://doi.org/10.1007/978-3-319-24574-4_28
    143 rdf:type schema:CreativeWork
    144 sg:pub.10.1007/978-3-319-46418-3_15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002756650
    145 https://doi.org/10.1007/978-3-319-46418-3_15
    146 rdf:type schema:CreativeWork
    147 sg:pub.10.1007/978-3-319-46448-0_38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008831601
    148 https://doi.org/10.1007/978-3-319-46448-0_38
    149 rdf:type schema:CreativeWork
    150 sg:pub.10.1007/978-3-662-54345-0_25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084732069
    151 https://doi.org/10.1007/978-3-662-54345-0_25
    152 rdf:type schema:CreativeWork
    153 sg:pub.10.1007/s10967-015-4542-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006090316
    154 https://doi.org/10.1007/s10967-015-4542-2
    155 rdf:type schema:CreativeWork
    156 sg:pub.10.1007/s11104-012-1579-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033040969
    157 https://doi.org/10.1007/s11104-012-1579-7
    158 rdf:type schema:CreativeWork
    159 sg:pub.10.1007/s11263-015-0816-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1009767488
    160 https://doi.org/10.1007/s11263-015-0816-y
    161 rdf:type schema:CreativeWork
    162 sg:pub.10.1007/s13735-017-0141-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1092975286
    163 https://doi.org/10.1007/s13735-017-0141-z
    164 rdf:type schema:CreativeWork
    165 sg:pub.10.1038/nature14539 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010020120
    166 https://doi.org/10.1038/nature14539
    167 rdf:type schema:CreativeWork
    168 sg:pub.10.1038/s41598-018-19426-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100780758
    169 https://doi.org/10.1038/s41598-018-19426-7
    170 rdf:type schema:CreativeWork
    171 sg:pub.10.1038/s41598-018-30545-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1106070377
    172 https://doi.org/10.1038/s41598-018-30545-z
    173 rdf:type schema:CreativeWork
    174 https://app.dimensions.ai/details/publication/pub.1053343297 schema:CreativeWork
    175 https://doi.org/10.1002/jpln.200900188 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053683135
    176 rdf:type schema:CreativeWork
    177 https://doi.org/10.1016/0022-5193(72)90180-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050964289
    178 rdf:type schema:CreativeWork
    179 https://doi.org/10.1016/j.apradiso.2007.07.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042861303
    180 rdf:type schema:CreativeWork
    181 https://doi.org/10.1016/j.ejmp.2012.01.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034888019
    182 rdf:type schema:CreativeWork
    183 https://doi.org/10.1016/j.fusengdes.2018.06.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106318737
    184 rdf:type schema:CreativeWork
    185 https://doi.org/10.1016/j.jsb.2011.07.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012932766
    186 rdf:type schema:CreativeWork
    187 https://doi.org/10.1016/j.nima.2018.01.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100744299
    188 rdf:type schema:CreativeWork
    189 https://doi.org/10.1016/j.physb.2006.05.252 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011372006
    190 rdf:type schema:CreativeWork
    191 https://doi.org/10.1016/j.procs.2017.03.178 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084534342
    192 rdf:type schema:CreativeWork
    193 https://doi.org/10.1016/j.ultramic.2015.07.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000744927
    194 rdf:type schema:CreativeWork
    195 https://doi.org/10.1016/s0921-4526(99)01254-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012758258
    196 rdf:type schema:CreativeWork
    197 https://doi.org/10.1088/0029-5515/55/10/104023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058989947
    198 rdf:type schema:CreativeWork
    199 https://doi.org/10.1088/0031-9155/57/16/5245 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059029343
    200 rdf:type schema:CreativeWork
    201 https://doi.org/10.1088/0031-9155/57/23/7923 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059029531
    202 rdf:type schema:CreativeWork
    203 https://doi.org/10.1088/1748-0221/11/03/c03014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059171061
    204 rdf:type schema:CreativeWork
    205 https://doi.org/10.1088/1748-0221/13/06/c06006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105108392
    206 rdf:type schema:CreativeWork
    207 https://doi.org/10.1109/access.2016.2624938 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033043929
    208 rdf:type schema:CreativeWork
    209 https://doi.org/10.1109/cvpr.2012.6247952 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093538034
    210 rdf:type schema:CreativeWork
    211 https://doi.org/10.1109/cvpr.2015.7298594 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094291017
    212 rdf:type schema:CreativeWork
    213 https://doi.org/10.1109/cvpr.2015.7298965 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093626237
    214 rdf:type schema:CreativeWork
    215 https://doi.org/10.1109/iccv.2015.73 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095244979
    216 rdf:type schema:CreativeWork
    217 https://doi.org/10.1109/tip.2003.819861 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061640964
    218 rdf:type schema:CreativeWork
    219 https://doi.org/10.1109/tip.2011.2109730 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024493913
    220 rdf:type schema:CreativeWork
    221 https://doi.org/10.1109/tip.2013.2283142 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061643730
    222 rdf:type schema:CreativeWork
    223 https://doi.org/10.1109/tip.2013.2293423 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061643802
    224 rdf:type schema:CreativeWork
    225 https://doi.org/10.1109/tip.2017.2713099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086050371
    226 rdf:type schema:CreativeWork
    227 https://doi.org/10.1109/tmi.2014.2313751 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061696280
    228 rdf:type schema:CreativeWork
    229 https://doi.org/10.1109/tmi.2018.2799231 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100694494
    230 rdf:type schema:CreativeWork
    231 https://doi.org/10.1109/tmi.2018.2832656 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103799705
    232 rdf:type schema:CreativeWork
    233 https://doi.org/10.1109/tmi.2018.2833499 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103855614
    234 rdf:type schema:CreativeWork
    235 https://doi.org/10.1109/tsmc.1979.4310076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042805607
    236 rdf:type schema:CreativeWork
    237 https://doi.org/10.1117/1.3660298 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022020646
    238 rdf:type schema:CreativeWork
    239 https://doi.org/10.1117/12.2295345 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101511513
    240 rdf:type schema:CreativeWork
    241 https://doi.org/10.1118/1.1455742 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041874284
    242 rdf:type schema:CreativeWork
    243 https://doi.org/10.1137/1.9780898719277 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098551296
    244 rdf:type schema:CreativeWork
    245 https://doi.org/10.1143/jjap.42.7151 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063070878
    246 rdf:type schema:CreativeWork
    247 https://doi.org/10.1145/3065386 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085642448
    248 rdf:type schema:CreativeWork
    249 https://doi.org/10.1364/boe.8.000679 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065139084
    250 rdf:type schema:CreativeWork
    251 https://doi.org/10.1364/oe.17.008567 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052771824
    252 rdf:type schema:CreativeWork
    253 https://doi.org/10.1364/oe.24.025129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065209131
    254 rdf:type schema:CreativeWork
    255 https://doi.org/10.3390/jimaging4030047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101265138
    256 rdf:type schema:CreativeWork
    257 https://doi.org/10.5194/se-7-1281-2016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018414043
    258 rdf:type schema:CreativeWork
    259 https://www.grid.ac/institutes/grid.4827.9 schema:alternateName Swansea University
    260 schema:name College of Engineering, Swansea University, Bay Campus, Fabian Way, Swansea, United Kingdom
    261 Culham Centre for Fusion Energy, Culham Science Centre, Abingdon, Oxfordshire, United Kingdom
    262 rdf:type schema:Organization
    263 https://www.grid.ac/institutes/grid.7563.7 schema:alternateName University of Milano-Bicocca
    264 schema:name Università degli Studi Milano-Bicocca, Dipartimento di Fisica “G. Occhialini”, 20126, Milano, Italy
    265 Università della Calabria, Dipartimento di Fisica, 87036, Arcavacata di Rende (Cosenza), Italy
    266 rdf:type schema:Organization
    267 https://www.grid.ac/institutes/grid.76978.37 schema:alternateName Rutherford Appleton Laboratory
    268 schema:name STFC, Rutherford Appleton Laboratory, ISIS Facility, Harwell, United Kingdom
    269 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...