Accelerating Neutron Tomography experiments through Artificial Neural Network based reconstruction View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-02-21

AUTHORS

Davide Micieli, Triestino Minniti, Llion Marc Evans, Giuseppe Gorini

ABSTRACT

Neutron Tomography (NT) is a non-destructive technique to investigate the inner structure of a wide range of objects and, in some cases, provides valuable results in comparison to the more common X-ray imaging techniques. However, NT is time consuming and scanning a set of similar objects during a beamtime leads to data redundancy and long acquisition times. Nowadays NT is unfeasible for quality checking study of large quantities of similar objects. One way to decrease the total scan time is to reduce the number of projections. Analytical reconstruction methods are very fast but under this condition generate streaking artifacts in the reconstructed images. Iterative algorithms generally provide better reconstruction for limited data problems, but at the expense of longer reconstruction time. In this study, we propose the recently introduced Neural Network Filtered Back-Projection (NN-FBP) method to optimize the time usage in NT experiments. Simulated and real neutron data were used to assess the performance of the NN-FBP method as a function of the number of projections. For the first time a machine learning based algorithm is applied and tested for NT image reconstruction problem. We demonstrate that the NN-FBP method can reliably reduce acquisition and reconstruction times and it outperforms conventional reconstruction methods used in NT, providing high image quality for limited datasets. More... »

PAGES

2450

References to SciGraph publications

  • 2013-01-17. Neutron imaging reveals internal plant water dynamics in PLANT AND SOIL
  • 2015-10-26. Sparse-view neutron CT reconstruction of irradiated fuel assembly using total variation minimization with Poisson statistics in JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY
  • 2015-05-27. Deep learning in NATURE
  • 2008. Computed Tomography, From Photon Statistics to Modern Cone-Beam CT in NONE
  • 2015-04-11. ImageNet Large Scale Visual Recognition Challenge in INTERNATIONAL JOURNAL OF COMPUTER VISION
  • 2018-02-07. Low-dose x-ray tomography through a deep convolutional neural network in SCIENTIFIC REPORTS
  • 2017-03-01. A Deep Learning Architecture for Limited-Angle Computed Tomography Reconstruction in BILDVERARBEITUNG FÜR DIE MEDIZIN 2017
  • 2018-08-14. Characterizing pearls structures using X-ray phase-contrast and neutron imaging: a pilot study in SCIENTIFIC REPORTS
  • 2017-11-24. A review of semantic segmentation using deep neural networks in INTERNATIONAL JOURNAL OF MULTIMEDIA INFORMATION RETRIEVAL
  • 2015-11-18. U-Net: Convolutional Networks for Biomedical Image Segmentation in MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION – MICCAI 2015
  • 2016-09-17. Building Dual-Domain Representations for Compression Artifacts Reduction in COMPUTER VISION – ECCV 2016
  • 2009-03-17. Material Science and Engineering with Neutron Imaging in NEUTRON IMAGING AND APPLICATIONS
  • 2016-09-10. Deep Neural Image Denoising in COMPUTER VISION AND GRAPHICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41598-019-38903-1

    DOI

    http://dx.doi.org/10.1038/s41598-019-38903-1

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1112286049

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30792423


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Universit\u00e0 degli Studi Milano-Bicocca, Dipartimento di Fisica \u201cG. Occhialini\u201d, Milano, 20126 Italy", 
              "id": "http://www.grid.ac/institutes/grid.7563.7", 
              "name": [
                "Universit\u00e0 della Calabria, Dipartimento di Fisica, Arcavacata di Rende (Cosenza), 87036 Italy", 
                "Universit\u00e0 degli Studi Milano-Bicocca, Dipartimento di Fisica \u201cG. Occhialini\u201d, Milano, 20126 Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Micieli", 
            "givenName": "Davide", 
            "id": "sg:person.013524303472.77", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013524303472.77"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "STFC, Rutherford Appleton Laboratory, ISIS Facility, Harwell, United Kingdom", 
              "id": "http://www.grid.ac/institutes/grid.76978.37", 
              "name": [
                "STFC, Rutherford Appleton Laboratory, ISIS Facility, Harwell, United Kingdom"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Minniti", 
            "givenName": "Triestino", 
            "id": "sg:person.014202135415.36", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014202135415.36"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "College of Engineering, Swansea University, Bay Campus, Fabian Way, Swansea, United Kingdom", 
              "id": "http://www.grid.ac/institutes/grid.4827.9", 
              "name": [
                "Culham Centre for Fusion Energy, Culham Science Centre, Abingdon, Oxfordshire United Kingdom", 
                "College of Engineering, Swansea University, Bay Campus, Fabian Way, Swansea, United Kingdom"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Evans", 
            "givenName": "Llion Marc", 
            "id": "sg:person.010102014155.52", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010102014155.52"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Universit\u00e0 degli Studi Milano-Bicocca, Dipartimento di Fisica \u201cG. Occhialini\u201d, Milano, 20126 Italy", 
              "id": "http://www.grid.ac/institutes/grid.7563.7", 
              "name": [
                "Universit\u00e0 degli Studi Milano-Bicocca, Dipartimento di Fisica \u201cG. Occhialini\u201d, Milano, 20126 Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gorini", 
            "givenName": "Giuseppe", 
            "id": "sg:person.0607536460.23", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0607536460.23"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s11263-015-0816-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009767488", 
              "https://doi.org/10.1007/s11263-015-0816-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11104-012-1579-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033040969", 
              "https://doi.org/10.1007/s11104-012-1579-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-46418-3_15", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002756650", 
              "https://doi.org/10.1007/978-3-319-46418-3_15"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41598-018-19426-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100780758", 
              "https://doi.org/10.1038/s41598-018-19426-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10967-015-4542-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006090316", 
              "https://doi.org/10.1007/s10967-015-4542-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-24574-4_28", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017774818", 
              "https://doi.org/10.1007/978-3-319-24574-4_28"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-39408-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053343297", 
              "https://doi.org/10.1007/978-3-540-39408-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41598-018-30545-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106070377", 
              "https://doi.org/10.1038/s41598-018-30545-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature14539", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010020120", 
              "https://doi.org/10.1038/nature14539"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-46448-0_38", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008831601", 
              "https://doi.org/10.1007/978-3-319-46448-0_38"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-662-54345-0_25", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084732069", 
              "https://doi.org/10.1007/978-3-662-54345-0_25"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-0-387-78693-3_12", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017290440", 
              "https://doi.org/10.1007/978-0-387-78693-3_12"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13735-017-0141-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092975286", 
              "https://doi.org/10.1007/s13735-017-0141-z"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-02-21", 
        "datePublishedReg": "2019-02-21", 
        "description": "Neutron Tomography (NT) is a non-destructive technique to investigate the inner structure of a wide range of objects and, in some cases, provides valuable results in comparison to the more common X-ray imaging techniques. However, NT is time consuming and scanning a set of similar objects during a beamtime leads to data redundancy and long acquisition times. Nowadays NT is unfeasible for quality checking study of large quantities of similar objects. One way to decrease the total scan time is to reduce the number of projections. Analytical reconstruction methods are very fast but under this condition generate streaking artifacts in the reconstructed images. Iterative algorithms generally provide better reconstruction for limited data problems, but at the expense of longer reconstruction time. In this study, we propose the recently introduced Neural Network Filtered Back-Projection (NN-FBP) method to optimize the time usage in NT experiments. Simulated and real neutron data were used to assess the performance of the NN-FBP method as a function of the number of projections. For the first time a machine learning based algorithm is applied and tested for NT image reconstruction problem. We demonstrate that the NN-FBP method can reliably reduce acquisition and reconstruction times and it outperforms conventional reconstruction methods used in NT, providing high image quality for limited datasets.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/s41598-019-38903-1", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.7388991", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1045337", 
            "issn": [
              "2045-2322"
            ], 
            "name": "Scientific Reports", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "9"
          }
        ], 
        "keywords": [
          "reconstruction time", 
          "number of projections", 
          "similar objects", 
          "long reconstruction times", 
          "neutron tomography", 
          "artificial neural network", 
          "limited data problem", 
          "image reconstruction problem", 
          "reconstruction method", 
          "data redundancy", 
          "conventional reconstruction methods", 
          "neural network", 
          "high image quality", 
          "data problem", 
          "ray imaging techniques", 
          "filtered back-projection method", 
          "neutron tomography experiments", 
          "reconstruction problem", 
          "reconstructed images", 
          "time usage", 
          "limited dataset", 
          "iterative algorithm", 
          "image quality", 
          "better reconstruction", 
          "neutron data", 
          "back-projection method", 
          "analytical reconstruction methods", 
          "long acquisition times", 
          "algorithm", 
          "objects", 
          "tomography experiments", 
          "valuable results", 
          "acquisition time", 
          "non-destructive technique", 
          "imaging techniques", 
          "machine", 
          "dataset", 
          "inner structure", 
          "total scan time", 
          "network", 
          "redundancy", 
          "scan time", 
          "images", 
          "beamtime", 
          "technique", 
          "usage", 
          "method", 
          "set", 
          "reconstruction", 
          "quality", 
          "first time", 
          "artifacts", 
          "NT experiments", 
          "performance", 
          "experiments", 
          "time", 
          "wide range", 
          "large quantities", 
          "projections", 
          "acquisition", 
          "number", 
          "way", 
          "data", 
          "structure", 
          "expense", 
          "range", 
          "results", 
          "tomography", 
          "quantity", 
          "function", 
          "comparison", 
          "cases", 
          "conditions", 
          "study", 
          "problem", 
          "Neural Network Filtered Back-Projection (NN-FBP) method", 
          "Network Filtered Back-Projection (NN-FBP) method", 
          "real neutron data", 
          "NN-FBP method", 
          "NT image reconstruction problem"
        ], 
        "name": "Accelerating Neutron Tomography experiments through Artificial Neural Network based reconstruction", 
        "pagination": "2450", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1112286049"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41598-019-38903-1"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30792423"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41598-019-38903-1", 
          "https://app.dimensions.ai/details/publication/pub.1112286049"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-12-01T19:44", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_800.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/s41598-019-38903-1"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-38903-1'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-38903-1'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-38903-1'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-38903-1'


     

    This table displays all metadata directly associated to this object as RDF triples.

    224 TRIPLES      22 PREDICATES      119 URIs      98 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41598-019-38903-1 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author N4f615c4d3f9141a388ca0bd8f6e2f5d4
    4 schema:citation sg:pub.10.1007/978-0-387-78693-3_12
    5 sg:pub.10.1007/978-3-319-24574-4_28
    6 sg:pub.10.1007/978-3-319-46418-3_15
    7 sg:pub.10.1007/978-3-319-46448-0_38
    8 sg:pub.10.1007/978-3-540-39408-2
    9 sg:pub.10.1007/978-3-662-54345-0_25
    10 sg:pub.10.1007/s10967-015-4542-2
    11 sg:pub.10.1007/s11104-012-1579-7
    12 sg:pub.10.1007/s11263-015-0816-y
    13 sg:pub.10.1007/s13735-017-0141-z
    14 sg:pub.10.1038/nature14539
    15 sg:pub.10.1038/s41598-018-19426-7
    16 sg:pub.10.1038/s41598-018-30545-z
    17 schema:datePublished 2019-02-21
    18 schema:datePublishedReg 2019-02-21
    19 schema:description Neutron Tomography (NT) is a non-destructive technique to investigate the inner structure of a wide range of objects and, in some cases, provides valuable results in comparison to the more common X-ray imaging techniques. However, NT is time consuming and scanning a set of similar objects during a beamtime leads to data redundancy and long acquisition times. Nowadays NT is unfeasible for quality checking study of large quantities of similar objects. One way to decrease the total scan time is to reduce the number of projections. Analytical reconstruction methods are very fast but under this condition generate streaking artifacts in the reconstructed images. Iterative algorithms generally provide better reconstruction for limited data problems, but at the expense of longer reconstruction time. In this study, we propose the recently introduced Neural Network Filtered Back-Projection (NN-FBP) method to optimize the time usage in NT experiments. Simulated and real neutron data were used to assess the performance of the NN-FBP method as a function of the number of projections. For the first time a machine learning based algorithm is applied and tested for NT image reconstruction problem. We demonstrate that the NN-FBP method can reliably reduce acquisition and reconstruction times and it outperforms conventional reconstruction methods used in NT, providing high image quality for limited datasets.
    20 schema:genre article
    21 schema:inLanguage en
    22 schema:isAccessibleForFree true
    23 schema:isPartOf N3a42d9eefca943359ec4290c4bc8a5c8
    24 N47c8fa32a7344428bbb3c7b30cbcedf7
    25 sg:journal.1045337
    26 schema:keywords NN-FBP method
    27 NT experiments
    28 NT image reconstruction problem
    29 Network Filtered Back-Projection (NN-FBP) method
    30 Neural Network Filtered Back-Projection (NN-FBP) method
    31 acquisition
    32 acquisition time
    33 algorithm
    34 analytical reconstruction methods
    35 artifacts
    36 artificial neural network
    37 back-projection method
    38 beamtime
    39 better reconstruction
    40 cases
    41 comparison
    42 conditions
    43 conventional reconstruction methods
    44 data
    45 data problem
    46 data redundancy
    47 dataset
    48 expense
    49 experiments
    50 filtered back-projection method
    51 first time
    52 function
    53 high image quality
    54 image quality
    55 image reconstruction problem
    56 images
    57 imaging techniques
    58 inner structure
    59 iterative algorithm
    60 large quantities
    61 limited data problem
    62 limited dataset
    63 long acquisition times
    64 long reconstruction times
    65 machine
    66 method
    67 network
    68 neural network
    69 neutron data
    70 neutron tomography
    71 neutron tomography experiments
    72 non-destructive technique
    73 number
    74 number of projections
    75 objects
    76 performance
    77 problem
    78 projections
    79 quality
    80 quantity
    81 range
    82 ray imaging techniques
    83 real neutron data
    84 reconstructed images
    85 reconstruction
    86 reconstruction method
    87 reconstruction problem
    88 reconstruction time
    89 redundancy
    90 results
    91 scan time
    92 set
    93 similar objects
    94 structure
    95 study
    96 technique
    97 time
    98 time usage
    99 tomography
    100 tomography experiments
    101 total scan time
    102 usage
    103 valuable results
    104 way
    105 wide range
    106 schema:name Accelerating Neutron Tomography experiments through Artificial Neural Network based reconstruction
    107 schema:pagination 2450
    108 schema:productId N2a584cf2187f479fb280a220f728323f
    109 N4edafee6cb07420caf4b93d0c51cf22d
    110 Nd1c00515333e46bba5eafa3e4ef48cb3
    111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112286049
    112 https://doi.org/10.1038/s41598-019-38903-1
    113 schema:sdDatePublished 2021-12-01T19:44
    114 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    115 schema:sdPublisher N713e0bbff8d94c0090cf6821df8febf5
    116 schema:url https://doi.org/10.1038/s41598-019-38903-1
    117 sgo:license sg:explorer/license/
    118 sgo:sdDataset articles
    119 rdf:type schema:ScholarlyArticle
    120 N2a584cf2187f479fb280a220f728323f schema:name dimensions_id
    121 schema:value pub.1112286049
    122 rdf:type schema:PropertyValue
    123 N3a42d9eefca943359ec4290c4bc8a5c8 schema:volumeNumber 9
    124 rdf:type schema:PublicationVolume
    125 N47c8fa32a7344428bbb3c7b30cbcedf7 schema:issueNumber 1
    126 rdf:type schema:PublicationIssue
    127 N4edafee6cb07420caf4b93d0c51cf22d schema:name doi
    128 schema:value 10.1038/s41598-019-38903-1
    129 rdf:type schema:PropertyValue
    130 N4f615c4d3f9141a388ca0bd8f6e2f5d4 rdf:first sg:person.013524303472.77
    131 rdf:rest Nfa2319b74fa14b6c9525e41de6062d27
    132 N713e0bbff8d94c0090cf6821df8febf5 schema:name Springer Nature - SN SciGraph project
    133 rdf:type schema:Organization
    134 Nc5368a98547c442cb0b15d61e60fc61b rdf:first sg:person.010102014155.52
    135 rdf:rest Ncada55c4e54546fe9d7ee4cd78b3128b
    136 Ncada55c4e54546fe9d7ee4cd78b3128b rdf:first sg:person.0607536460.23
    137 rdf:rest rdf:nil
    138 Nd1c00515333e46bba5eafa3e4ef48cb3 schema:name pubmed_id
    139 schema:value 30792423
    140 rdf:type schema:PropertyValue
    141 Nfa2319b74fa14b6c9525e41de6062d27 rdf:first sg:person.014202135415.36
    142 rdf:rest Nc5368a98547c442cb0b15d61e60fc61b
    143 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    144 schema:name Information and Computing Sciences
    145 rdf:type schema:DefinedTerm
    146 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    147 schema:name Artificial Intelligence and Image Processing
    148 rdf:type schema:DefinedTerm
    149 sg:grant.7388991 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-019-38903-1
    150 rdf:type schema:MonetaryGrant
    151 sg:journal.1045337 schema:issn 2045-2322
    152 schema:name Scientific Reports
    153 schema:publisher Springer Nature
    154 rdf:type schema:Periodical
    155 sg:person.010102014155.52 schema:affiliation grid-institutes:grid.4827.9
    156 schema:familyName Evans
    157 schema:givenName Llion Marc
    158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010102014155.52
    159 rdf:type schema:Person
    160 sg:person.013524303472.77 schema:affiliation grid-institutes:grid.7563.7
    161 schema:familyName Micieli
    162 schema:givenName Davide
    163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013524303472.77
    164 rdf:type schema:Person
    165 sg:person.014202135415.36 schema:affiliation grid-institutes:grid.76978.37
    166 schema:familyName Minniti
    167 schema:givenName Triestino
    168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014202135415.36
    169 rdf:type schema:Person
    170 sg:person.0607536460.23 schema:affiliation grid-institutes:grid.7563.7
    171 schema:familyName Gorini
    172 schema:givenName Giuseppe
    173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0607536460.23
    174 rdf:type schema:Person
    175 sg:pub.10.1007/978-0-387-78693-3_12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017290440
    176 https://doi.org/10.1007/978-0-387-78693-3_12
    177 rdf:type schema:CreativeWork
    178 sg:pub.10.1007/978-3-319-24574-4_28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017774818
    179 https://doi.org/10.1007/978-3-319-24574-4_28
    180 rdf:type schema:CreativeWork
    181 sg:pub.10.1007/978-3-319-46418-3_15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002756650
    182 https://doi.org/10.1007/978-3-319-46418-3_15
    183 rdf:type schema:CreativeWork
    184 sg:pub.10.1007/978-3-319-46448-0_38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008831601
    185 https://doi.org/10.1007/978-3-319-46448-0_38
    186 rdf:type schema:CreativeWork
    187 sg:pub.10.1007/978-3-540-39408-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053343297
    188 https://doi.org/10.1007/978-3-540-39408-2
    189 rdf:type schema:CreativeWork
    190 sg:pub.10.1007/978-3-662-54345-0_25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084732069
    191 https://doi.org/10.1007/978-3-662-54345-0_25
    192 rdf:type schema:CreativeWork
    193 sg:pub.10.1007/s10967-015-4542-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006090316
    194 https://doi.org/10.1007/s10967-015-4542-2
    195 rdf:type schema:CreativeWork
    196 sg:pub.10.1007/s11104-012-1579-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033040969
    197 https://doi.org/10.1007/s11104-012-1579-7
    198 rdf:type schema:CreativeWork
    199 sg:pub.10.1007/s11263-015-0816-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1009767488
    200 https://doi.org/10.1007/s11263-015-0816-y
    201 rdf:type schema:CreativeWork
    202 sg:pub.10.1007/s13735-017-0141-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1092975286
    203 https://doi.org/10.1007/s13735-017-0141-z
    204 rdf:type schema:CreativeWork
    205 sg:pub.10.1038/nature14539 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010020120
    206 https://doi.org/10.1038/nature14539
    207 rdf:type schema:CreativeWork
    208 sg:pub.10.1038/s41598-018-19426-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100780758
    209 https://doi.org/10.1038/s41598-018-19426-7
    210 rdf:type schema:CreativeWork
    211 sg:pub.10.1038/s41598-018-30545-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1106070377
    212 https://doi.org/10.1038/s41598-018-30545-z
    213 rdf:type schema:CreativeWork
    214 grid-institutes:grid.4827.9 schema:alternateName College of Engineering, Swansea University, Bay Campus, Fabian Way, Swansea, United Kingdom
    215 schema:name College of Engineering, Swansea University, Bay Campus, Fabian Way, Swansea, United Kingdom
    216 Culham Centre for Fusion Energy, Culham Science Centre, Abingdon, Oxfordshire United Kingdom
    217 rdf:type schema:Organization
    218 grid-institutes:grid.7563.7 schema:alternateName Università degli Studi Milano-Bicocca, Dipartimento di Fisica “G. Occhialini”, Milano, 20126 Italy
    219 schema:name Università degli Studi Milano-Bicocca, Dipartimento di Fisica “G. Occhialini”, Milano, 20126 Italy
    220 Università della Calabria, Dipartimento di Fisica, Arcavacata di Rende (Cosenza), 87036 Italy
    221 rdf:type schema:Organization
    222 grid-institutes:grid.76978.37 schema:alternateName STFC, Rutherford Appleton Laboratory, ISIS Facility, Harwell, United Kingdom
    223 schema:name STFC, Rutherford Appleton Laboratory, ISIS Facility, Harwell, United Kingdom
    224 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...