A novel range-verification method using ionoacoustic wave generated from spherical gold markers for particle-beam therapy: a simulation study View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-03-08

AUTHORS

Taisuke Takayanagi, Tomoki Uesaka, Masanori Kitaoka, Mehmet Burcin Unlu, Kikuo Umegaki, Hiroki Shirato, Lei Xing, Taeko Matsuura

ABSTRACT

This study proposes a novel alternative range-verification method for proton beam with acoustic waves generated from spherical metal markers. When proton beam is incident on metal markers, most of the resulting pressure waves are confined in the markers because of the large difference in acoustic impedance between the metal and tissue. However, acoustic waves with frequency equal to marker's resonant frequency escape this confinement; the marker briefly acts as an acoustic transmitter. Herein, this phenomenon is exploited to measure the range of the proton beam. We test the proposed strategy in 3-D simulations, combining the dose calculations with modelling of acoustic-wave propagation. A spherical gold marker of 2.0 mm diameter was placed in water with a 60 MeV proton beam incident on it. We investigated the dependence of pressure waves on the width of beam pulse and marker position. At short beam pulse, specific high-frequency acoustic waves of 1.62 MHz originating from the marker were observed in wave simulations, whose amplitude correlated with the distance between the marker and Bragg peak. Results indicate that the Bragg peak position can be estimated by measuring the acoustic wave amplitudes from the marker, using a single detector properly designed for the resonance frequency. More... »

PAGES

4011

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-019-38889-w

DOI

http://dx.doi.org/10.1038/s41598-019-38889-w

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112641483

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30850625


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Acoustics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gold", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Proton Therapy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Protons", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sound", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Water", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Hitachi Ltd., 1-1 7-chome, Omika-cho, Hitachi-shi, Ibaraki 319-1292 Japan", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Graduate School of Biomedical Science and Engineering, Hokkaido University, North-13 West-8, Kita-ku, Sapporo, Hokkaido 060-8628 Japan", 
            "Hitachi Ltd., 1-1 7-chome, Omika-cho, Hitachi-shi, Ibaraki 319-1292 Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Takayanagi", 
        "givenName": "Taisuke", 
        "id": "sg:person.01320367144.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01320367144.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Graduate School of Biomedical Science and Engineering, Hokkaido University, North-13 West-8, Kita-ku, Sapporo, Hokkaido 060-8628 Japan", 
          "id": "http://www.grid.ac/institutes/grid.39158.36", 
          "name": [
            "Graduate School of Biomedical Science and Engineering, Hokkaido University, North-13 West-8, Kita-ku, Sapporo, Hokkaido 060-8628 Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Uesaka", 
        "givenName": "Tomoki", 
        "id": "sg:person.011503017415.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011503017415.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hitachi Ltd., 1-1 7-chome, Omika-cho, Hitachi-shi, Ibaraki 319-1292 Japan", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Hitachi Ltd., 1-1 7-chome, Omika-cho, Hitachi-shi, Ibaraki 319-1292 Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kitaoka", 
        "givenName": "Masanori", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiation Oncology, Division of Medical Physics, Stanford University School of Medicine, Stanford, CA USA", 
          "id": "http://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, 060-8648 Japan", 
            "Department of Physics, Bogazici University, Bebek, Istanbul 34342 Turkey", 
            "Department of Radiation Oncology, Division of Medical Physics, Stanford University School of Medicine, Stanford, CA USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Unlu", 
        "givenName": "Mehmet Burcin", 
        "id": "sg:person.0646045323.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0646045323.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Proton Beam Therapy Center, Hokkaido University Hospital, North-15 West-7, Kita-ku, Sapporo, Hokkaido 060-8638 Japan", 
          "id": "http://www.grid.ac/institutes/grid.412167.7", 
          "name": [
            "Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, 060-8648 Japan", 
            "Faculty of Engineering, Hokkaido University, North-13 West-8, Kita-ku, Sapporo, Hokkaido 060-8628 Japan", 
            "Proton Beam Therapy Center, Hokkaido University Hospital, North-15 West-7, Kita-ku, Sapporo, Hokkaido 060-8638 Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Umegaki", 
        "givenName": "Kikuo", 
        "id": "sg:person.01110277137.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01110277137.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Proton Beam Therapy Center, Hokkaido University Hospital, North-15 West-7, Kita-ku, Sapporo, Hokkaido 060-8638 Japan", 
          "id": "http://www.grid.ac/institutes/grid.412167.7", 
          "name": [
            "Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, 060-8648 Japan", 
            "Proton Beam Therapy Center, Hokkaido University Hospital, North-15 West-7, Kita-ku, Sapporo, Hokkaido 060-8638 Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shirato", 
        "givenName": "Hiroki", 
        "id": "sg:person.0634263213.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0634263213.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiation Oncology, Division of Medical Physics, Stanford University School of Medicine, Stanford, CA USA", 
          "id": "http://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, 060-8648 Japan", 
            "Department of Radiation Oncology, Division of Medical Physics, Stanford University School of Medicine, Stanford, CA USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xing", 
        "givenName": "Lei", 
        "id": "sg:person.01207715653.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01207715653.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Proton Beam Therapy Center, Hokkaido University Hospital, North-15 West-7, Kita-ku, Sapporo, Hokkaido 060-8638 Japan", 
          "id": "http://www.grid.ac/institutes/grid.412167.7", 
          "name": [
            "Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, 060-8648 Japan", 
            "Faculty of Engineering, Hokkaido University, North-13 West-8, Kita-ku, Sapporo, Hokkaido 060-8628 Japan", 
            "Proton Beam Therapy Center, Hokkaido University Hospital, North-15 West-7, Kita-ku, Sapporo, Hokkaido 060-8638 Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Matsuura", 
        "givenName": "Taeko", 
        "id": "sg:person.0722074237.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0722074237.06"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/srep29305", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021694913", 
          "https://doi.org/10.1038/srep29305"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03-08", 
    "datePublishedReg": "2019-03-08", 
    "description": "This study proposes a novel alternative range-verification method for proton beam with acoustic waves generated from spherical metal markers. When proton beam is incident on metal markers, most of the resulting pressure waves are confined in the markers because of the large difference in acoustic impedance between the metal and tissue. However, acoustic waves with frequency equal to marker's resonant frequency escape this confinement; the marker briefly acts as an acoustic transmitter. Herein, this phenomenon is exploited to measure the range of the proton beam. We test the proposed strategy in 3-D simulations, combining the dose calculations with modelling of acoustic-wave propagation. A spherical gold marker of 2.0\u2009mm diameter was placed in water with a 60\u2009MeV proton beam incident on it. We investigated the dependence of pressure waves on the width of beam pulse and marker position. At short beam pulse, specific high-frequency acoustic waves of 1.62\u2009MHz originating from the marker were observed in wave simulations, whose amplitude correlated with the distance between the marker and Bragg peak. Results indicate that the Bragg peak position can be estimated by measuring the acoustic wave amplitudes from the marker, using a single detector properly designed for the resonance frequency.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/s41598-019-38889-w", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7534451", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.5910230", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "keywords": [
      "range verification method", 
      "proton beam", 
      "spherical gold markers", 
      "beam pulse", 
      "acoustic waves", 
      "MeV proton beam incident", 
      "short beam pulses", 
      "proton beam incident", 
      "Bragg peak position", 
      "high-frequency acoustic waves", 
      "particle beam therapy", 
      "acoustic wave amplitude", 
      "beam incident", 
      "single detector", 
      "Bragg peak", 
      "resonant frequency", 
      "pressure waves", 
      "peak position", 
      "acoustic wave propagation", 
      "beam", 
      "resonance frequency", 
      "dose calculations", 
      "waves", 
      "pulses", 
      "gold markers", 
      "wave simulations", 
      "acoustic impedance", 
      "wave amplitude", 
      "confinement", 
      "detector", 
      "amplitude", 
      "simulations", 
      "metal markers", 
      "MHz", 
      "calculations", 
      "simulation study", 
      "frequency", 
      "width", 
      "dependence", 
      "marker positions", 
      "incidents", 
      "impedance", 
      "propagation", 
      "peak", 
      "large differences", 
      "distance", 
      "metals", 
      "modelling", 
      "method", 
      "phenomenon", 
      "position", 
      "diameter", 
      "water", 
      "acoustic transmitters", 
      "range", 
      "transmitter", 
      "Herein", 
      "results", 
      "study", 
      "briefly", 
      "strategies", 
      "differences", 
      "tissue", 
      "therapy", 
      "markers", 
      "novel alternative range-verification method", 
      "alternative range-verification method", 
      "spherical metal markers", 
      "marker's resonant frequency", 
      "marker briefly", 
      "specific high-frequency acoustic waves", 
      "novel range-verification method", 
      "ionoacoustic wave"
    ], 
    "name": "A novel range-verification method using ionoacoustic wave generated from spherical gold markers for particle-beam therapy: a simulation study", 
    "pagination": "4011", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112641483"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-019-38889-w"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30850625"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-019-38889-w", 
      "https://app.dimensions.ai/details/publication/pub.1112641483"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:46", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_827.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/s41598-019-38889-w"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-38889-w'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-38889-w'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-38889-w'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-38889-w'


 

This table displays all metadata directly associated to this object as RDF triples.

232 TRIPLES      22 PREDICATES      107 URIs      98 LITERALS      14 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-019-38889-w schema:about N5ba5f6a6404f45c2bea0694510f4bd8d
2 N720bb10a68fe415fb595755a32649904
3 N9d59ac19a43b44daac2ad0690adff2df
4 Nb58b5f479da546f4b2c3c7af0b986ede
5 Nbf6c20f3f914436e90de5e0260c7f1af
6 Nf3b8e350997b4cd889b0f66cf0929926
7 Nfb80b6c7e56742f282d95a0db2384e3c
8 anzsrc-for:02
9 anzsrc-for:0299
10 schema:author Nad86fa11b452480fa7a2feda44851a0e
11 schema:citation sg:pub.10.1038/srep29305
12 schema:datePublished 2019-03-08
13 schema:datePublishedReg 2019-03-08
14 schema:description This study proposes a novel alternative range-verification method for proton beam with acoustic waves generated from spherical metal markers. When proton beam is incident on metal markers, most of the resulting pressure waves are confined in the markers because of the large difference in acoustic impedance between the metal and tissue. However, acoustic waves with frequency equal to marker's resonant frequency escape this confinement; the marker briefly acts as an acoustic transmitter. Herein, this phenomenon is exploited to measure the range of the proton beam. We test the proposed strategy in 3-D simulations, combining the dose calculations with modelling of acoustic-wave propagation. A spherical gold marker of 2.0 mm diameter was placed in water with a 60 MeV proton beam incident on it. We investigated the dependence of pressure waves on the width of beam pulse and marker position. At short beam pulse, specific high-frequency acoustic waves of 1.62 MHz originating from the marker were observed in wave simulations, whose amplitude correlated with the distance between the marker and Bragg peak. Results indicate that the Bragg peak position can be estimated by measuring the acoustic wave amplitudes from the marker, using a single detector properly designed for the resonance frequency.
15 schema:genre article
16 schema:inLanguage en
17 schema:isAccessibleForFree true
18 schema:isPartOf N29abbe59c3204d42b1c07eed70bbaf6c
19 N4e54fd09b21b4d6f95fabc0fcdfffb45
20 sg:journal.1045337
21 schema:keywords Bragg peak
22 Bragg peak position
23 Herein
24 MHz
25 MeV proton beam incident
26 acoustic impedance
27 acoustic transmitters
28 acoustic wave amplitude
29 acoustic wave propagation
30 acoustic waves
31 alternative range-verification method
32 amplitude
33 beam
34 beam incident
35 beam pulse
36 briefly
37 calculations
38 confinement
39 dependence
40 detector
41 diameter
42 differences
43 distance
44 dose calculations
45 frequency
46 gold markers
47 high-frequency acoustic waves
48 impedance
49 incidents
50 ionoacoustic wave
51 large differences
52 marker briefly
53 marker positions
54 marker's resonant frequency
55 markers
56 metal markers
57 metals
58 method
59 modelling
60 novel alternative range-verification method
61 novel range-verification method
62 particle beam therapy
63 peak
64 peak position
65 phenomenon
66 position
67 pressure waves
68 propagation
69 proton beam
70 proton beam incident
71 pulses
72 range
73 range verification method
74 resonance frequency
75 resonant frequency
76 results
77 short beam pulses
78 simulation study
79 simulations
80 single detector
81 specific high-frequency acoustic waves
82 spherical gold markers
83 spherical metal markers
84 strategies
85 study
86 therapy
87 tissue
88 transmitter
89 water
90 wave amplitude
91 wave simulations
92 waves
93 width
94 schema:name A novel range-verification method using ionoacoustic wave generated from spherical gold markers for particle-beam therapy: a simulation study
95 schema:pagination 4011
96 schema:productId N76fe0a96343740d5b515123dbdd5a671
97 Ncc9aa22a53054da2bd176c02f47e39b4
98 Ne82345788d4b45bba42e92c3e84f70bd
99 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112641483
100 https://doi.org/10.1038/s41598-019-38889-w
101 schema:sdDatePublished 2021-12-01T19:46
102 schema:sdLicense https://scigraph.springernature.com/explorer/license/
103 schema:sdPublisher Nd8f6b1425a3846629d2d6e1933f3d2ea
104 schema:url https://doi.org/10.1038/s41598-019-38889-w
105 sgo:license sg:explorer/license/
106 sgo:sdDataset articles
107 rdf:type schema:ScholarlyArticle
108 N0d4b2c1fc37b4e39b18c9d7d9c50c582 rdf:first sg:person.01207715653.04
109 rdf:rest Nb406c5c35e9b4839b5a079e06c69b77d
110 N29abbe59c3204d42b1c07eed70bbaf6c schema:volumeNumber 9
111 rdf:type schema:PublicationVolume
112 N341fd077df3e453fb00eb1df39834f8f rdf:first sg:person.01110277137.80
113 rdf:rest N59f6dd92bb894c54bab4c3337e79d79a
114 N4654634184c24c39bdff4cb74fed5188 rdf:first N7c481f374a804e6884b910de089d4928
115 rdf:rest Nf4302dff963742b3b3a86ad28c275e03
116 N4e54fd09b21b4d6f95fabc0fcdfffb45 schema:issueNumber 1
117 rdf:type schema:PublicationIssue
118 N59f6dd92bb894c54bab4c3337e79d79a rdf:first sg:person.0634263213.16
119 rdf:rest N0d4b2c1fc37b4e39b18c9d7d9c50c582
120 N5ba5f6a6404f45c2bea0694510f4bd8d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Radiation
122 rdf:type schema:DefinedTerm
123 N720bb10a68fe415fb595755a32649904 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Gold
125 rdf:type schema:DefinedTerm
126 N76fe0a96343740d5b515123dbdd5a671 schema:name pubmed_id
127 schema:value 30850625
128 rdf:type schema:PropertyValue
129 N7c481f374a804e6884b910de089d4928 schema:affiliation grid-institutes:None
130 schema:familyName Kitaoka
131 schema:givenName Masanori
132 rdf:type schema:Person
133 N9d59ac19a43b44daac2ad0690adff2df schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Proton Therapy
135 rdf:type schema:DefinedTerm
136 Nad86fa11b452480fa7a2feda44851a0e rdf:first sg:person.01320367144.34
137 rdf:rest Nf4bc61f5188b4caeaa19ec4e854bb451
138 Nb406c5c35e9b4839b5a079e06c69b77d rdf:first sg:person.0722074237.06
139 rdf:rest rdf:nil
140 Nb58b5f479da546f4b2c3c7af0b986ede schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Protons
142 rdf:type schema:DefinedTerm
143 Nbf6c20f3f914436e90de5e0260c7f1af schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
144 schema:name Water
145 rdf:type schema:DefinedTerm
146 Ncc9aa22a53054da2bd176c02f47e39b4 schema:name doi
147 schema:value 10.1038/s41598-019-38889-w
148 rdf:type schema:PropertyValue
149 Nd8f6b1425a3846629d2d6e1933f3d2ea schema:name Springer Nature - SN SciGraph project
150 rdf:type schema:Organization
151 Ne82345788d4b45bba42e92c3e84f70bd schema:name dimensions_id
152 schema:value pub.1112641483
153 rdf:type schema:PropertyValue
154 Nf3b8e350997b4cd889b0f66cf0929926 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
155 schema:name Acoustics
156 rdf:type schema:DefinedTerm
157 Nf4302dff963742b3b3a86ad28c275e03 rdf:first sg:person.0646045323.83
158 rdf:rest N341fd077df3e453fb00eb1df39834f8f
159 Nf4bc61f5188b4caeaa19ec4e854bb451 rdf:first sg:person.011503017415.12
160 rdf:rest N4654634184c24c39bdff4cb74fed5188
161 Nfb80b6c7e56742f282d95a0db2384e3c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
162 schema:name Sound
163 rdf:type schema:DefinedTerm
164 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
165 schema:name Physical Sciences
166 rdf:type schema:DefinedTerm
167 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
168 schema:name Other Physical Sciences
169 rdf:type schema:DefinedTerm
170 sg:grant.5910230 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-019-38889-w
171 rdf:type schema:MonetaryGrant
172 sg:grant.7534451 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-019-38889-w
173 rdf:type schema:MonetaryGrant
174 sg:journal.1045337 schema:issn 2045-2322
175 schema:name Scientific Reports
176 schema:publisher Springer Nature
177 rdf:type schema:Periodical
178 sg:person.01110277137.80 schema:affiliation grid-institutes:grid.412167.7
179 schema:familyName Umegaki
180 schema:givenName Kikuo
181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01110277137.80
182 rdf:type schema:Person
183 sg:person.011503017415.12 schema:affiliation grid-institutes:grid.39158.36
184 schema:familyName Uesaka
185 schema:givenName Tomoki
186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011503017415.12
187 rdf:type schema:Person
188 sg:person.01207715653.04 schema:affiliation grid-institutes:grid.168010.e
189 schema:familyName Xing
190 schema:givenName Lei
191 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01207715653.04
192 rdf:type schema:Person
193 sg:person.01320367144.34 schema:affiliation grid-institutes:None
194 schema:familyName Takayanagi
195 schema:givenName Taisuke
196 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01320367144.34
197 rdf:type schema:Person
198 sg:person.0634263213.16 schema:affiliation grid-institutes:grid.412167.7
199 schema:familyName Shirato
200 schema:givenName Hiroki
201 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0634263213.16
202 rdf:type schema:Person
203 sg:person.0646045323.83 schema:affiliation grid-institutes:grid.168010.e
204 schema:familyName Unlu
205 schema:givenName Mehmet Burcin
206 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0646045323.83
207 rdf:type schema:Person
208 sg:person.0722074237.06 schema:affiliation grid-institutes:grid.412167.7
209 schema:familyName Matsuura
210 schema:givenName Taeko
211 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0722074237.06
212 rdf:type schema:Person
213 sg:pub.10.1038/srep29305 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021694913
214 https://doi.org/10.1038/srep29305
215 rdf:type schema:CreativeWork
216 grid-institutes:None schema:alternateName Hitachi Ltd., 1-1 7-chome, Omika-cho, Hitachi-shi, Ibaraki 319-1292 Japan
217 schema:name Graduate School of Biomedical Science and Engineering, Hokkaido University, North-13 West-8, Kita-ku, Sapporo, Hokkaido 060-8628 Japan
218 Hitachi Ltd., 1-1 7-chome, Omika-cho, Hitachi-shi, Ibaraki 319-1292 Japan
219 rdf:type schema:Organization
220 grid-institutes:grid.168010.e schema:alternateName Department of Radiation Oncology, Division of Medical Physics, Stanford University School of Medicine, Stanford, CA USA
221 schema:name Department of Physics, Bogazici University, Bebek, Istanbul 34342 Turkey
222 Department of Radiation Oncology, Division of Medical Physics, Stanford University School of Medicine, Stanford, CA USA
223 Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, 060-8648 Japan
224 rdf:type schema:Organization
225 grid-institutes:grid.39158.36 schema:alternateName Graduate School of Biomedical Science and Engineering, Hokkaido University, North-13 West-8, Kita-ku, Sapporo, Hokkaido 060-8628 Japan
226 schema:name Graduate School of Biomedical Science and Engineering, Hokkaido University, North-13 West-8, Kita-ku, Sapporo, Hokkaido 060-8628 Japan
227 rdf:type schema:Organization
228 grid-institutes:grid.412167.7 schema:alternateName Proton Beam Therapy Center, Hokkaido University Hospital, North-15 West-7, Kita-ku, Sapporo, Hokkaido 060-8638 Japan
229 schema:name Faculty of Engineering, Hokkaido University, North-13 West-8, Kita-ku, Sapporo, Hokkaido 060-8628 Japan
230 Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, 060-8648 Japan
231 Proton Beam Therapy Center, Hokkaido University Hospital, North-15 West-7, Kita-ku, Sapporo, Hokkaido 060-8638 Japan
232 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...