Optimization of the co-digestion of sewage sludge, maize straw and cow manure: microbial responses and effect of fractional organic characteristics View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Liangliang Wei, Kena Qin, Jing Ding, Mao Xue, Chaoyong Yang, Junqiu Jiang, Qingliang Zhao

ABSTRACT

The aim of this study was to evaluate the efficiency and optimization of co-digestion using sewage sludge (SS), maize straw (MS) and cow manure (CM) as feeds, and the effects of the mixing ratio and C/N ratio of the substrates were analyzed in detail. Among the three substrates tested, CM/MS exhibited better digestion than CM/SS and SS/MS in terms of all measures, including total daily biogas and net methane volume production, due to the hydrophilic characteristics and high level of biodegradability of CM, as well as its higher C/N ratio. The average biogas production was 613.8 mL/g VS for the co-digestion of CM/MS at a feed concentration of 15 g VS/L and using a 1:1 mixing ratio (C/N ratio of 28.3). The co-digestion of SS/CM/MS performed better than the individual digestion of the components because of the balanced C/N ratios and supply of carbon. The optimum conditions for maximizing methane potential were an SS:CM:MS ratio of 30:35:35 and a bulk VS concentration of 15.0 g VS/L, which led to a maximum methane production of 8047.31 mL (C/N ratio of 12.7). The high-throughput sequencing analysis showed clear differences in microbial communities during the entire co-digestion process. More... »

PAGES

2374

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-019-38829-8

DOI

http://dx.doi.org/10.1038/s41598-019-38829-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112226306

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30787412


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0904", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Harbin Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.19373.3f", 
          "name": [
            "State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, 150090, Harbin, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wei", 
        "givenName": "Liangliang", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harbin Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.19373.3f", 
          "name": [
            "State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, 150090, Harbin, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Qin", 
        "givenName": "Kena", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harbin Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.19373.3f", 
          "name": [
            "State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, 150090, Harbin, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ding", 
        "givenName": "Jing", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harbin Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.19373.3f", 
          "name": [
            "State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, 150090, Harbin, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xue", 
        "givenName": "Mao", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tianjin Municipal Engineering Design and Research Institute", 
          "id": "https://www.grid.ac/institutes/grid.496146.8", 
          "name": [
            "Tianjin Municipal Engineering Design & Research Institute, 300051, Tianjin, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Chaoyong", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harbin Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.19373.3f", 
          "name": [
            "State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, 150090, Harbin, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jiang", 
        "givenName": "Junqiu", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harbin Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.19373.3f", 
          "name": [
            "State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, 150090, Harbin, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhao", 
        "givenName": "Qingliang", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.renene.2006.11.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001216261"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jher.2012.10.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001869296"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cej.2014.11.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002250827"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00253-013-4867-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002535339", 
          "https://doi.org/10.1007/s00253-013-4867-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.micres.2012.06.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002872046"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.renene.2007.05.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005529640"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.wasman.2015.08.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007006542"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biortech.2010.01.052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012635354"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biombioe.2010.02.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013314163"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jaap.2016.09.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014056330"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12010-008-8511-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014449641", 
          "https://doi.org/10.1007/s12010-008-8511-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.watres.2010.11.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016461651"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/es034354c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017553873"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/es034354c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017553873"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biortech.2012.09.081", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017726425"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biortech.2012.09.081", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017726425"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biortech.2016.07.116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018117746"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chemosphere.2014.01.070", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019943465"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11434-007-0339-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021790312", 
          "https://doi.org/10.1007/s11434-007-0339-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jenvman.2016.05.047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031945624"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ismej.2009.2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032031594", 
          "https://doi.org/10.1038/ismej.2009.2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biortech.2012.06.058", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032708608"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1001-0742(09)60157-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038669718"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0960-8524(00)00023-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041776385"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biortech.2016.05.100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041867788"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biortech.2016.05.100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041867788"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apenergy.2014.02.035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042892432"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.watres.2014.11.041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045624803"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aem.71.1.331-338.2005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048522751"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1099/00221287-148-11-3521", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060370936"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1081526491", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cej.2018.01.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100267942"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cej.2018.01.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100267942"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biortech.2018.03.074", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101551667"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chemosphere.2018.06.147", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105135641"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "The aim of this study was to evaluate the efficiency and optimization of co-digestion using sewage sludge (SS), maize straw (MS) and cow manure (CM) as feeds, and the effects of the mixing ratio and C/N ratio of the substrates were analyzed in detail. Among the three substrates tested, CM/MS exhibited better digestion than CM/SS and SS/MS in terms of all measures, including total daily biogas and net methane volume production, due to the hydrophilic characteristics and high level of biodegradability of CM, as well as its higher C/N ratio. The average biogas production was 613.8\u2009mL/g VS for the co-digestion of CM/MS at a feed concentration of 15\u2009g VS/L and using a 1:1 mixing ratio (C/N ratio of 28.3). The co-digestion of SS/CM/MS performed better than the individual digestion of the components because of the balanced C/N ratios and supply of carbon. The optimum conditions for maximizing methane potential were an SS:CM:MS ratio of 30:35:35 and a bulk VS concentration of 15.0\u2009g VS/L, which led to a maximum methane production of 8047.31\u2009mL (C/N ratio of 12.7). The high-throughput sequencing analysis showed clear differences in microbial communities during the entire co-digestion process.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-019-38829-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "Optimization of the co-digestion of sewage sludge, maize straw and cow manure: microbial responses and effect of fractional organic characteristics", 
    "pagination": "2374", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "81822142984a3d18e573876fada871abdcafb4f7d0a5df9c7bd4a351fb7bb0d9"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30787412"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-019-38829-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112226306"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-019-38829-8", 
      "https://app.dimensions.ai/details/publication/pub.1112226306"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:37", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000349_0000000349/records_113673_00000005.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-019-38829-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-38829-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-38829-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-38829-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-38829-8'


 

This table displays all metadata directly associated to this object as RDF triples.

202 TRIPLES      21 PREDICATES      60 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-019-38829-8 schema:about anzsrc-for:09
2 anzsrc-for:0904
3 schema:author Nb986fd21ce4742eeb663bd4b00b10e75
4 schema:citation sg:pub.10.1007/s00253-013-4867-0
5 sg:pub.10.1007/s11434-007-0339-1
6 sg:pub.10.1007/s12010-008-8511-x
7 sg:pub.10.1038/ismej.2009.2
8 https://app.dimensions.ai/details/publication/pub.1081526491
9 https://doi.org/10.1016/j.apenergy.2014.02.035
10 https://doi.org/10.1016/j.biombioe.2010.02.018
11 https://doi.org/10.1016/j.biortech.2010.01.052
12 https://doi.org/10.1016/j.biortech.2012.06.058
13 https://doi.org/10.1016/j.biortech.2012.09.081
14 https://doi.org/10.1016/j.biortech.2016.05.100
15 https://doi.org/10.1016/j.biortech.2016.07.116
16 https://doi.org/10.1016/j.biortech.2018.03.074
17 https://doi.org/10.1016/j.cej.2014.11.005
18 https://doi.org/10.1016/j.cej.2018.01.016
19 https://doi.org/10.1016/j.chemosphere.2014.01.070
20 https://doi.org/10.1016/j.chemosphere.2018.06.147
21 https://doi.org/10.1016/j.jaap.2016.09.008
22 https://doi.org/10.1016/j.jenvman.2016.05.047
23 https://doi.org/10.1016/j.jher.2012.10.003
24 https://doi.org/10.1016/j.micres.2012.06.002
25 https://doi.org/10.1016/j.renene.2006.11.015
26 https://doi.org/10.1016/j.renene.2007.05.001
27 https://doi.org/10.1016/j.wasman.2015.08.020
28 https://doi.org/10.1016/j.watres.2010.11.003
29 https://doi.org/10.1016/j.watres.2014.11.041
30 https://doi.org/10.1016/s0960-8524(00)00023-7
31 https://doi.org/10.1016/s1001-0742(09)60157-1
32 https://doi.org/10.1021/es034354c
33 https://doi.org/10.1099/00221287-148-11-3521
34 https://doi.org/10.1128/aem.71.1.331-338.2005
35 schema:datePublished 2019-12
36 schema:datePublishedReg 2019-12-01
37 schema:description The aim of this study was to evaluate the efficiency and optimization of co-digestion using sewage sludge (SS), maize straw (MS) and cow manure (CM) as feeds, and the effects of the mixing ratio and C/N ratio of the substrates were analyzed in detail. Among the three substrates tested, CM/MS exhibited better digestion than CM/SS and SS/MS in terms of all measures, including total daily biogas and net methane volume production, due to the hydrophilic characteristics and high level of biodegradability of CM, as well as its higher C/N ratio. The average biogas production was 613.8 mL/g VS for the co-digestion of CM/MS at a feed concentration of 15 g VS/L and using a 1:1 mixing ratio (C/N ratio of 28.3). The co-digestion of SS/CM/MS performed better than the individual digestion of the components because of the balanced C/N ratios and supply of carbon. The optimum conditions for maximizing methane potential were an SS:CM:MS ratio of 30:35:35 and a bulk VS concentration of 15.0 g VS/L, which led to a maximum methane production of 8047.31 mL (C/N ratio of 12.7). The high-throughput sequencing analysis showed clear differences in microbial communities during the entire co-digestion process.
38 schema:genre research_article
39 schema:inLanguage en
40 schema:isAccessibleForFree true
41 schema:isPartOf N22fa8e4cfc62493d9f38bb06a0ba59a7
42 Na4785902889a4f7595e2e1725862d5fe
43 sg:journal.1045337
44 schema:name Optimization of the co-digestion of sewage sludge, maize straw and cow manure: microbial responses and effect of fractional organic characteristics
45 schema:pagination 2374
46 schema:productId N0bdabd8cc611435b85fbffadb931eba2
47 N1e784de2662941eca952af31920979db
48 Na4d62dd300db4204a210fe335742046e
49 Nbfd2de1c861847528bdaba198455d44e
50 Nf9ba4a89d2a14f579e0e45808f1ad61d
51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112226306
52 https://doi.org/10.1038/s41598-019-38829-8
53 schema:sdDatePublished 2019-04-11T10:37
54 schema:sdLicense https://scigraph.springernature.com/explorer/license/
55 schema:sdPublisher N229e1c56339f443fb5ab51874f92d19a
56 schema:url https://www.nature.com/articles/s41598-019-38829-8
57 sgo:license sg:explorer/license/
58 sgo:sdDataset articles
59 rdf:type schema:ScholarlyArticle
60 N0bdabd8cc611435b85fbffadb931eba2 schema:name dimensions_id
61 schema:value pub.1112226306
62 rdf:type schema:PropertyValue
63 N1a7282cfe3d6410e972b0862ab35cada schema:affiliation https://www.grid.ac/institutes/grid.19373.3f
64 schema:familyName Jiang
65 schema:givenName Junqiu
66 rdf:type schema:Person
67 N1e784de2662941eca952af31920979db schema:name pubmed_id
68 schema:value 30787412
69 rdf:type schema:PropertyValue
70 N20e56efab9674b069abd52d255025165 rdf:first Ne5a347d9247b4979828b75016f7ee2aa
71 rdf:rest rdf:nil
72 N229e1c56339f443fb5ab51874f92d19a schema:name Springer Nature - SN SciGraph project
73 rdf:type schema:Organization
74 N22fa8e4cfc62493d9f38bb06a0ba59a7 schema:volumeNumber 9
75 rdf:type schema:PublicationVolume
76 N2e57c5b3a3c249c0b49ff470e4f0d8ba schema:affiliation https://www.grid.ac/institutes/grid.19373.3f
77 schema:familyName Ding
78 schema:givenName Jing
79 rdf:type schema:Person
80 N339e8ed821e54ab4bce5b01210ea76fd rdf:first Nc013993dfbca4f3092428f1e0b906bac
81 rdf:rest Nf3169978f33649dd840aa39c38dc3f4d
82 N869871b2e2704a87a6ea68f05f39a302 schema:affiliation https://www.grid.ac/institutes/grid.19373.3f
83 schema:familyName Xue
84 schema:givenName Mao
85 rdf:type schema:Person
86 Na4785902889a4f7595e2e1725862d5fe schema:issueNumber 1
87 rdf:type schema:PublicationIssue
88 Na4d62dd300db4204a210fe335742046e schema:name nlm_unique_id
89 schema:value 101563288
90 rdf:type schema:PropertyValue
91 Nb5b127e50f664ff398f3b542e68646f6 rdf:first Nfb27160ee1954edebc1d711f4087244a
92 rdf:rest Ndb7576b741b4470f8602c2c9fee7cae6
93 Nb986fd21ce4742eeb663bd4b00b10e75 rdf:first Nd856440b93944b7a86ea7930a9c4f467
94 rdf:rest N339e8ed821e54ab4bce5b01210ea76fd
95 Nbfd2de1c861847528bdaba198455d44e schema:name doi
96 schema:value 10.1038/s41598-019-38829-8
97 rdf:type schema:PropertyValue
98 Nc013993dfbca4f3092428f1e0b906bac schema:affiliation https://www.grid.ac/institutes/grid.19373.3f
99 schema:familyName Qin
100 schema:givenName Kena
101 rdf:type schema:Person
102 Nc545752a9264493a869c837e3e36dedf rdf:first N869871b2e2704a87a6ea68f05f39a302
103 rdf:rest Nb5b127e50f664ff398f3b542e68646f6
104 Nd856440b93944b7a86ea7930a9c4f467 schema:affiliation https://www.grid.ac/institutes/grid.19373.3f
105 schema:familyName Wei
106 schema:givenName Liangliang
107 rdf:type schema:Person
108 Ndb7576b741b4470f8602c2c9fee7cae6 rdf:first N1a7282cfe3d6410e972b0862ab35cada
109 rdf:rest N20e56efab9674b069abd52d255025165
110 Ne5a347d9247b4979828b75016f7ee2aa schema:affiliation https://www.grid.ac/institutes/grid.19373.3f
111 schema:familyName Zhao
112 schema:givenName Qingliang
113 rdf:type schema:Person
114 Nf3169978f33649dd840aa39c38dc3f4d rdf:first N2e57c5b3a3c249c0b49ff470e4f0d8ba
115 rdf:rest Nc545752a9264493a869c837e3e36dedf
116 Nf9ba4a89d2a14f579e0e45808f1ad61d schema:name readcube_id
117 schema:value 81822142984a3d18e573876fada871abdcafb4f7d0a5df9c7bd4a351fb7bb0d9
118 rdf:type schema:PropertyValue
119 Nfb27160ee1954edebc1d711f4087244a schema:affiliation https://www.grid.ac/institutes/grid.496146.8
120 schema:familyName Yang
121 schema:givenName Chaoyong
122 rdf:type schema:Person
123 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
124 schema:name Engineering
125 rdf:type schema:DefinedTerm
126 anzsrc-for:0904 schema:inDefinedTermSet anzsrc-for:
127 schema:name Chemical Engineering
128 rdf:type schema:DefinedTerm
129 sg:journal.1045337 schema:issn 2045-2322
130 schema:name Scientific Reports
131 rdf:type schema:Periodical
132 sg:pub.10.1007/s00253-013-4867-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002535339
133 https://doi.org/10.1007/s00253-013-4867-0
134 rdf:type schema:CreativeWork
135 sg:pub.10.1007/s11434-007-0339-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021790312
136 https://doi.org/10.1007/s11434-007-0339-1
137 rdf:type schema:CreativeWork
138 sg:pub.10.1007/s12010-008-8511-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1014449641
139 https://doi.org/10.1007/s12010-008-8511-x
140 rdf:type schema:CreativeWork
141 sg:pub.10.1038/ismej.2009.2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032031594
142 https://doi.org/10.1038/ismej.2009.2
143 rdf:type schema:CreativeWork
144 https://app.dimensions.ai/details/publication/pub.1081526491 schema:CreativeWork
145 https://doi.org/10.1016/j.apenergy.2014.02.035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042892432
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.biombioe.2010.02.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013314163
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/j.biortech.2010.01.052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012635354
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.biortech.2012.06.058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032708608
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/j.biortech.2012.09.081 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017726425
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/j.biortech.2016.05.100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041867788
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/j.biortech.2016.07.116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018117746
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/j.biortech.2018.03.074 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101551667
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/j.cej.2014.11.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002250827
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/j.cej.2018.01.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100267942
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/j.chemosphere.2014.01.070 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019943465
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/j.chemosphere.2018.06.147 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105135641
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/j.jaap.2016.09.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014056330
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/j.jenvman.2016.05.047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031945624
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/j.jher.2012.10.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001869296
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/j.micres.2012.06.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002872046
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/j.renene.2006.11.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001216261
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/j.renene.2007.05.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005529640
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/j.wasman.2015.08.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007006542
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/j.watres.2010.11.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016461651
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1016/j.watres.2014.11.041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045624803
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1016/s0960-8524(00)00023-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041776385
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1016/s1001-0742(09)60157-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038669718
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1021/es034354c schema:sameAs https://app.dimensions.ai/details/publication/pub.1017553873
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1099/00221287-148-11-3521 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060370936
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1128/aem.71.1.331-338.2005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048522751
196 rdf:type schema:CreativeWork
197 https://www.grid.ac/institutes/grid.19373.3f schema:alternateName Harbin Institute of Technology
198 schema:name State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, 150090, Harbin, China
199 rdf:type schema:Organization
200 https://www.grid.ac/institutes/grid.496146.8 schema:alternateName Tianjin Municipal Engineering Design and Research Institute
201 schema:name Tianjin Municipal Engineering Design & Research Institute, 300051, Tianjin, China
202 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...