Maximizing Network Resilience against Malicious Attacks View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Wenguo Li, Yong Li, Yi Tan, Yijia Cao, Chun Chen, Ye Cai, Kwang Y. Lee, Michael Pecht

ABSTRACT

The threat of a malicious attack is one of the major security problems in complex networks. Resilience is the system-level self-adjusting ability of a complex network to retain its basic functionality and recover rapidly from major disruptions. Despite numerous heuristic enhancement methods, there is a research gap in maximizing network resilience: current heuristic methods are designed to immunize vital nodes or modify a network to a specific onion-like structure and cannot maximize resilience theoretically via network structure. Here we map complex networks onto a physical elastic system to introduce indices of network resilience, and propose a unified theoretical framework and general approach, which can address the optimal problem of network resilience by slightly modifying network structures (i.e., by adding a set of structural edges). We demonstrate the high efficiency of this approach on three realistic networks as well as two artificial random networks. Case studies show that the proposed approach can maximize the resilience of complex networks while maintaining their topological functionality. This approach helps to unveil hitherto hidden functions of some inconspicuous components, which in turn, can be used to guide the design of resilient systems, offer an effective and efficient approach for mitigating malicious attacks, and furnish self-healing to reconstruct failed infrastructure systems. More... »

PAGES

2261

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-019-38781-7

DOI

http://dx.doi.org/10.1038/s41598-019-38781-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112229647

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30783193


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Computation Theory and Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Hunan City University", 
          "id": "https://www.grid.ac/institutes/grid.464328.f", 
          "name": [
            "College of Electrical and Information Engineering, Hunan University, 410082, Changsha, China", 
            "School of Information and Electronic Engineering, Hunan City University, 413000, Yiyang, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Wenguo", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hunan University", 
          "id": "https://www.grid.ac/institutes/grid.67293.39", 
          "name": [
            "College of Electrical and Information Engineering, Hunan University, 410082, Changsha, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Yong", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hunan University", 
          "id": "https://www.grid.ac/institutes/grid.67293.39", 
          "name": [
            "College of Electrical and Information Engineering, Hunan University, 410082, Changsha, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tan", 
        "givenName": "Yi", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hunan University", 
          "id": "https://www.grid.ac/institutes/grid.67293.39", 
          "name": [
            "College of Electrical and Information Engineering, Hunan University, 410082, Changsha, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cao", 
        "givenName": "Yijia", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hunan University", 
          "id": "https://www.grid.ac/institutes/grid.67293.39", 
          "name": [
            "College of Electrical and Information Engineering, Hunan University, 410082, Changsha, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Chun", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Changsha University of Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.440669.9", 
          "name": [
            "School of Electrical and Information Engineering, Changsha University of Science and Technology, 410114, Changsha, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cai", 
        "givenName": "Ye", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Baylor University", 
          "id": "https://www.grid.ac/institutes/grid.252890.4", 
          "name": [
            "Department of Electrical and Computer Engineering, Baylor University, 76798-7356, Waco, Texas, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Kwang Y.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Maryland, College Park", 
          "id": "https://www.grid.ac/institutes/grid.164295.d", 
          "name": [
            "CALCE Electronics Products and Systems Center, University of Maryland, 20742, College Park, Maryland, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pecht", 
        "givenName": "Michael", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physreve.84.026106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002582424"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.84.026106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002582424"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.91.247901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003364971"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.91.247901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003364971"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.86.3682", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003429390"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.86.3682", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003429390"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1009440108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007073067"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep37954", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007684767", 
          "https://doi.org/10.1038/srep37954"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35019019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008269744", 
          "https://doi.org/10.1038/35019019"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35019019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008269744", 
          "https://doi.org/10.1038/35019019"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.286.5439.509", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010080128"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11280-014-0275-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011099533", 
          "https://doi.org/10.1007/s11280-014-0275-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.85.066130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014095324"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.85.066130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014095324"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys1746", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016710118", 
          "https://doi.org/10.1038/nphys1746"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ress.2013.07.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017469535"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ssci.2012.09.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018294102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys2327", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027641380", 
          "https://doi.org/10.1038/nphys2327"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.85.046109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030170081"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.85.046109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030170081"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature14604", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030304197", 
          "https://doi.org/10.1038/nature14604"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/518035a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031466635", 
          "https://doi.org/10.1038/518035a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjb/e2004-00112-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032100993", 
          "https://doi.org/10.1140/epjb/e2004-00112-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physrep.2016.06.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033168473"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physrep.2016.06.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033168473"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1751-8113/42/19/195003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048235713"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/comnet/cnt010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050614215"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature16948", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051997515", 
          "https://doi.org/10.1038/nature16948"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature16948", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051997515", 
          "https://doi.org/10.1038/nature16948"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/jar.33.4.3629752", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058909178"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.88.022810", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060745204"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.88.022810", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060745204"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0129183111016841", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062905351"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/s41598-016-0007-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085372626"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jproc.2017.2685558", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085483288"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511780356", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098700502"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "The threat of a malicious attack is one of the major security problems in complex networks. Resilience is the system-level self-adjusting ability of a complex network to retain its basic functionality and recover rapidly from major disruptions. Despite numerous heuristic enhancement methods, there is a research gap in maximizing network resilience: current heuristic methods are designed to immunize vital nodes or modify a network to a specific onion-like structure and cannot maximize resilience theoretically via network structure. Here we map complex networks onto a physical elastic system to introduce indices of network resilience, and propose a unified theoretical framework and general approach, which can address the optimal problem of network resilience by slightly modifying network structures (i.e., by adding a set of structural edges). We demonstrate the high efficiency of this approach on three realistic networks as well as two artificial random networks. Case studies show that the proposed approach can maximize the resilience of complex networks while maintaining their topological functionality. This approach helps to unveil hitherto hidden functions of some inconspicuous components, which in turn, can be used to guide the design of resilient systems, offer an effective and efficient approach for mitigating malicious attacks, and furnish self-healing to reconstruct failed infrastructure systems.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-019-38781-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "Maximizing Network Resilience against Malicious Attacks", 
    "pagination": "2261", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d99c2ed958cbdca3d2deb85d33f213e4aae285bb16d1ef18b3c3b29cbdb8c131"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30783193"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-019-38781-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112229647"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-019-38781-7", 
      "https://app.dimensions.ai/details/publication/pub.1112229647"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:40", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000346_0000000346/records_99836_00000004.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-019-38781-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-38781-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-38781-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-38781-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-38781-7'


 

This table displays all metadata directly associated to this object as RDF triples.

212 TRIPLES      21 PREDICATES      56 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-019-38781-7 schema:about anzsrc-for:08
2 anzsrc-for:0802
3 schema:author Nc9e75387c9e2466db8fe692614e86068
4 schema:citation sg:pub.10.1007/s11280-014-0275-3
5 sg:pub.10.1038/35019019
6 sg:pub.10.1038/518035a
7 sg:pub.10.1038/nature14604
8 sg:pub.10.1038/nature16948
9 sg:pub.10.1038/nphys1746
10 sg:pub.10.1038/nphys2327
11 sg:pub.10.1038/srep37954
12 sg:pub.10.1140/epjb/e2004-00112-3
13 https://doi.org/10.1016/j.physrep.2016.06.007
14 https://doi.org/10.1016/j.ress.2013.07.004
15 https://doi.org/10.1016/j.ssci.2012.09.011
16 https://doi.org/10.1017/cbo9780511780356
17 https://doi.org/10.1038/s41598-016-0007-2
18 https://doi.org/10.1073/pnas.1009440108
19 https://doi.org/10.1086/jar.33.4.3629752
20 https://doi.org/10.1088/1751-8113/42/19/195003
21 https://doi.org/10.1093/comnet/cnt010
22 https://doi.org/10.1103/physreve.84.026106
23 https://doi.org/10.1103/physreve.85.046109
24 https://doi.org/10.1103/physreve.85.066130
25 https://doi.org/10.1103/physreve.88.022810
26 https://doi.org/10.1103/physrevlett.86.3682
27 https://doi.org/10.1103/physrevlett.91.247901
28 https://doi.org/10.1109/jproc.2017.2685558
29 https://doi.org/10.1126/science.286.5439.509
30 https://doi.org/10.1142/s0129183111016841
31 schema:datePublished 2019-12
32 schema:datePublishedReg 2019-12-01
33 schema:description The threat of a malicious attack is one of the major security problems in complex networks. Resilience is the system-level self-adjusting ability of a complex network to retain its basic functionality and recover rapidly from major disruptions. Despite numerous heuristic enhancement methods, there is a research gap in maximizing network resilience: current heuristic methods are designed to immunize vital nodes or modify a network to a specific onion-like structure and cannot maximize resilience theoretically via network structure. Here we map complex networks onto a physical elastic system to introduce indices of network resilience, and propose a unified theoretical framework and general approach, which can address the optimal problem of network resilience by slightly modifying network structures (i.e., by adding a set of structural edges). We demonstrate the high efficiency of this approach on three realistic networks as well as two artificial random networks. Case studies show that the proposed approach can maximize the resilience of complex networks while maintaining their topological functionality. This approach helps to unveil hitherto hidden functions of some inconspicuous components, which in turn, can be used to guide the design of resilient systems, offer an effective and efficient approach for mitigating malicious attacks, and furnish self-healing to reconstruct failed infrastructure systems.
34 schema:genre research_article
35 schema:inLanguage en
36 schema:isAccessibleForFree true
37 schema:isPartOf N0a61abe94bcf4355aedf903b429e7cf2
38 Nc4b12abbf3004a1991550feafafb77be
39 sg:journal.1045337
40 schema:name Maximizing Network Resilience against Malicious Attacks
41 schema:pagination 2261
42 schema:productId N429952fb7caf4b0790caa7dbb3f12ed2
43 N7b53bacda26f4d22b0f022e0e8675bd6
44 N9eeff940115046178af3ab770df51ba1
45 N9f20912318af498585e5b46becd0a9e7
46 Nd70c295d5f2c4453bc7b5dfbc170f148
47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112229647
48 https://doi.org/10.1038/s41598-019-38781-7
49 schema:sdDatePublished 2019-04-11T09:40
50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
51 schema:sdPublisher N69a9747ed0ea4b5f97e136cc5c181e64
52 schema:url https://www.nature.com/articles/s41598-019-38781-7
53 sgo:license sg:explorer/license/
54 sgo:sdDataset articles
55 rdf:type schema:ScholarlyArticle
56 N026242ad90874331bb26d629c972789e schema:affiliation https://www.grid.ac/institutes/grid.67293.39
57 schema:familyName Tan
58 schema:givenName Yi
59 rdf:type schema:Person
60 N03bbaef7a64149f29828954861ba81ac schema:affiliation https://www.grid.ac/institutes/grid.440669.9
61 schema:familyName Cai
62 schema:givenName Ye
63 rdf:type schema:Person
64 N0a61abe94bcf4355aedf903b429e7cf2 schema:issueNumber 1
65 rdf:type schema:PublicationIssue
66 N1964fcad50b5403194823a8eb7f6b5fe schema:affiliation https://www.grid.ac/institutes/grid.252890.4
67 schema:familyName Lee
68 schema:givenName Kwang Y.
69 rdf:type schema:Person
70 N3f10ad3de16640c580f3d1855dace623 rdf:first N95d0a97c9c184f2b9b2dca3e63840495
71 rdf:rest rdf:nil
72 N429952fb7caf4b0790caa7dbb3f12ed2 schema:name dimensions_id
73 schema:value pub.1112229647
74 rdf:type schema:PropertyValue
75 N59245473f0034eeb92bed90c3db7eaf9 rdf:first N03bbaef7a64149f29828954861ba81ac
76 rdf:rest N77e1f33750a2495d806106b41ddcf251
77 N5a90604444bd4d249668bf1f993b4ff4 schema:affiliation https://www.grid.ac/institutes/grid.67293.39
78 schema:familyName Cao
79 schema:givenName Yijia
80 rdf:type schema:Person
81 N642361c6a48b42499aab829d88ddab1b schema:affiliation https://www.grid.ac/institutes/grid.67293.39
82 schema:familyName Chen
83 schema:givenName Chun
84 rdf:type schema:Person
85 N69a9747ed0ea4b5f97e136cc5c181e64 schema:name Springer Nature - SN SciGraph project
86 rdf:type schema:Organization
87 N77e1f33750a2495d806106b41ddcf251 rdf:first N1964fcad50b5403194823a8eb7f6b5fe
88 rdf:rest N3f10ad3de16640c580f3d1855dace623
89 N7b53bacda26f4d22b0f022e0e8675bd6 schema:name pubmed_id
90 schema:value 30783193
91 rdf:type schema:PropertyValue
92 N89d3ab9a81c042f0b2eed934dca2719c rdf:first N5a90604444bd4d249668bf1f993b4ff4
93 rdf:rest Nc2fe20717146486aabb1a3fadf75e8d8
94 N8dedc19aa8df43c8a9917f56a49e7026 schema:affiliation https://www.grid.ac/institutes/grid.464328.f
95 schema:familyName Li
96 schema:givenName Wenguo
97 rdf:type schema:Person
98 N95d0a97c9c184f2b9b2dca3e63840495 schema:affiliation https://www.grid.ac/institutes/grid.164295.d
99 schema:familyName Pecht
100 schema:givenName Michael
101 rdf:type schema:Person
102 N9eeff940115046178af3ab770df51ba1 schema:name readcube_id
103 schema:value d99c2ed958cbdca3d2deb85d33f213e4aae285bb16d1ef18b3c3b29cbdb8c131
104 rdf:type schema:PropertyValue
105 N9f20912318af498585e5b46becd0a9e7 schema:name doi
106 schema:value 10.1038/s41598-019-38781-7
107 rdf:type schema:PropertyValue
108 Nc22caa55c52a4498929c5bf8e938ef5c rdf:first N026242ad90874331bb26d629c972789e
109 rdf:rest N89d3ab9a81c042f0b2eed934dca2719c
110 Nc2fe20717146486aabb1a3fadf75e8d8 rdf:first N642361c6a48b42499aab829d88ddab1b
111 rdf:rest N59245473f0034eeb92bed90c3db7eaf9
112 Nc4b12abbf3004a1991550feafafb77be schema:volumeNumber 9
113 rdf:type schema:PublicationVolume
114 Nc9e75387c9e2466db8fe692614e86068 rdf:first N8dedc19aa8df43c8a9917f56a49e7026
115 rdf:rest Ncf8f5c38de414f9b9735e661e07513f0
116 Ncf8f5c38de414f9b9735e661e07513f0 rdf:first Ne25f59d8ca3c4078b006a4db23760bfa
117 rdf:rest Nc22caa55c52a4498929c5bf8e938ef5c
118 Nd70c295d5f2c4453bc7b5dfbc170f148 schema:name nlm_unique_id
119 schema:value 101563288
120 rdf:type schema:PropertyValue
121 Ne25f59d8ca3c4078b006a4db23760bfa schema:affiliation https://www.grid.ac/institutes/grid.67293.39
122 schema:familyName Li
123 schema:givenName Yong
124 rdf:type schema:Person
125 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
126 schema:name Information and Computing Sciences
127 rdf:type schema:DefinedTerm
128 anzsrc-for:0802 schema:inDefinedTermSet anzsrc-for:
129 schema:name Computation Theory and Mathematics
130 rdf:type schema:DefinedTerm
131 sg:journal.1045337 schema:issn 2045-2322
132 schema:name Scientific Reports
133 rdf:type schema:Periodical
134 sg:pub.10.1007/s11280-014-0275-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011099533
135 https://doi.org/10.1007/s11280-014-0275-3
136 rdf:type schema:CreativeWork
137 sg:pub.10.1038/35019019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008269744
138 https://doi.org/10.1038/35019019
139 rdf:type schema:CreativeWork
140 sg:pub.10.1038/518035a schema:sameAs https://app.dimensions.ai/details/publication/pub.1031466635
141 https://doi.org/10.1038/518035a
142 rdf:type schema:CreativeWork
143 sg:pub.10.1038/nature14604 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030304197
144 https://doi.org/10.1038/nature14604
145 rdf:type schema:CreativeWork
146 sg:pub.10.1038/nature16948 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051997515
147 https://doi.org/10.1038/nature16948
148 rdf:type schema:CreativeWork
149 sg:pub.10.1038/nphys1746 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016710118
150 https://doi.org/10.1038/nphys1746
151 rdf:type schema:CreativeWork
152 sg:pub.10.1038/nphys2327 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027641380
153 https://doi.org/10.1038/nphys2327
154 rdf:type schema:CreativeWork
155 sg:pub.10.1038/srep37954 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007684767
156 https://doi.org/10.1038/srep37954
157 rdf:type schema:CreativeWork
158 sg:pub.10.1140/epjb/e2004-00112-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032100993
159 https://doi.org/10.1140/epjb/e2004-00112-3
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/j.physrep.2016.06.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033168473
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/j.ress.2013.07.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017469535
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/j.ssci.2012.09.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018294102
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1017/cbo9780511780356 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098700502
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1038/s41598-016-0007-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085372626
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1073/pnas.1009440108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007073067
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1086/jar.33.4.3629752 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058909178
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1088/1751-8113/42/19/195003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048235713
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1093/comnet/cnt010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050614215
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1103/physreve.84.026106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002582424
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1103/physreve.85.046109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030170081
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1103/physreve.85.066130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014095324
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1103/physreve.88.022810 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060745204
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1103/physrevlett.86.3682 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003429390
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1103/physrevlett.91.247901 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003364971
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1109/jproc.2017.2685558 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085483288
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1126/science.286.5439.509 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010080128
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1142/s0129183111016841 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062905351
196 rdf:type schema:CreativeWork
197 https://www.grid.ac/institutes/grid.164295.d schema:alternateName University of Maryland, College Park
198 schema:name CALCE Electronics Products and Systems Center, University of Maryland, 20742, College Park, Maryland, USA
199 rdf:type schema:Organization
200 https://www.grid.ac/institutes/grid.252890.4 schema:alternateName Baylor University
201 schema:name Department of Electrical and Computer Engineering, Baylor University, 76798-7356, Waco, Texas, USA
202 rdf:type schema:Organization
203 https://www.grid.ac/institutes/grid.440669.9 schema:alternateName Changsha University of Science and Technology
204 schema:name School of Electrical and Information Engineering, Changsha University of Science and Technology, 410114, Changsha, China
205 rdf:type schema:Organization
206 https://www.grid.ac/institutes/grid.464328.f schema:alternateName Hunan City University
207 schema:name College of Electrical and Information Engineering, Hunan University, 410082, Changsha, China
208 School of Information and Electronic Engineering, Hunan City University, 413000, Yiyang, China
209 rdf:type schema:Organization
210 https://www.grid.ac/institutes/grid.67293.39 schema:alternateName Hunan University
211 schema:name College of Electrical and Information Engineering, Hunan University, 410082, Changsha, China
212 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...