Estimation of Arterial Viscosity Based on an Oscillometric Method and Its Application in Evaluating the Vascular Endothelial Function View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Hiroshi Tanaka, Akihisa Mito, Harutoyo Hirano, Zu Soh, Ryuji Nakamura, Noboru Saeki, Masashi Kawamoto, Yukihito Higashi, Masao Yoshizumi, Toshio Tsuji

ABSTRACT

This paper proposes an algorithm for estimating the arterial viscosity using cuff pressures and pulse waves measured by an automatic oscillometric sphygmomanometer. A change in the arterial viscosity during the enclosed-zone flow-mediated dilation test is calculated as an index for evaluating the vascular endothelial function %η. In all, 43 individuals participated in this study. After the index %η was calculated, the accuracy of the index %η in distinguishing healthy subjects and subjects at a high risk of arteriosclerosis was tested via a receiving operating characteristic (ROC) analysis. The calculated %η for the healthy participants and those at a high risk of arteriosclerosis was 13.4 ± 55.1% and -32.7 ± 34.0% (mean ± S.D.), respectively. The area under the ROC curve was 0.77. Thus, it was concluded that the proposed method can be used to evaluate the vascular endothelial function. More... »

PAGES

2609

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-019-38776-4

DOI

http://dx.doi.org/10.1038/s41598-019-38776-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112308324

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30796239


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Cardiorespiratory Medicine and Haematology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Hiroshima University", 
          "id": "https://www.grid.ac/institutes/grid.257022.0", 
          "name": [
            "Department of System Cybernetics, Graduate School of Engineering, Hiroshima University, 739-8527, Higashi-Hiroshima, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tanaka", 
        "givenName": "Hiroshi", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hiroshima University", 
          "id": "https://www.grid.ac/institutes/grid.257022.0", 
          "name": [
            "Department of System Cybernetics, Graduate School of Engineering, Hiroshima University, 739-8527, Higashi-Hiroshima, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mito", 
        "givenName": "Akihisa", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shizuoka University", 
          "id": "https://www.grid.ac/institutes/grid.263536.7", 
          "name": [
            "Academic Institute, College of Engineering, Shizuoka University, 432-8561, Hamamatsu, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hirano", 
        "givenName": "Harutoyo", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hiroshima University", 
          "id": "https://www.grid.ac/institutes/grid.257022.0", 
          "name": [
            "Department of System Cybernetics, Faculty of Engineering, Hiroshima University, 739-8527, Higashi-Hiroshima, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Soh", 
        "givenName": "Zu", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hiroshima University", 
          "id": "https://www.grid.ac/institutes/grid.257022.0", 
          "name": [
            "Department of Anesthesiology and Critical Care, Graduate School of Biomedical and Health Sciences, Hiroshima University, 734-8553, Hiroshima, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nakamura", 
        "givenName": "Ryuji", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hiroshima University", 
          "id": "https://www.grid.ac/institutes/grid.257022.0", 
          "name": [
            "Department of Anesthesiology and Critical Care, Graduate School of Biomedical and Health Sciences, Hiroshima University, 734-8553, Hiroshima, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Saeki", 
        "givenName": "Noboru", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hiroshima University", 
          "id": "https://www.grid.ac/institutes/grid.257022.0", 
          "name": [
            "Department of Anesthesiology and Critical Care, Graduate School of Biomedical and Health Sciences, Hiroshima University, 734-8553, Hiroshima, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kawamoto", 
        "givenName": "Masashi", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hiroshima University Hospital", 
          "id": "https://www.grid.ac/institutes/grid.470097.d", 
          "name": [
            "Department of Regeneration and Medicine, Research Center for Radiation Genome Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, 734-8553, Hiroshima, Japan", 
            "Division of Regeneration and Medicine, Hiroshima University Hospital, 734-8551, Hiroshima, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Higashi", 
        "givenName": "Yukihito", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hiroshima University", 
          "id": "https://www.grid.ac/institutes/grid.257022.0", 
          "name": [
            "Department of Cardiovascular Physiology and Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 734-8553, Hiroshima, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yoshizumi", 
        "givenName": "Masao", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hiroshima University", 
          "id": "https://www.grid.ac/institutes/grid.257022.0", 
          "name": [
            "Department of System Cybernetics, Graduate School of Engineering, Hiroshima University, 739-8527, Higashi-Hiroshima, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tsuji", 
        "givenName": "Toshio", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf02446804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001213973", 
          "https://doi.org/10.1007/bf02446804"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02446804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001213973", 
          "https://doi.org/10.1007/bf02446804"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/dc14-s081", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009852107"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3324/haematol.2011.055202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016389634"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1358863x12450095", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018289849"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1358863x12450095", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018289849"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0140-6736(92)93147-f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018847241"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0140-6736(92)93147-f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018847241"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11517-012-0955-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023093171", 
          "https://doi.org/10.1007/s11517-012-0955-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1475-925x-11-56", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025491177", 
          "https://doi.org/10.1186/1475-925x-11-56"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00421-014-3058-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026080487", 
          "https://doi.org/10.1007/s00421-014-3058-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0021-9290(70)90036-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026285492"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jjcc.2014.01.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027624474"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.amjmed.2013.04.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028562481"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10067-009-1118-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031731948", 
          "https://doi.org/10.1007/s10067-009-1118-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10067-009-1118-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031731948", 
          "https://doi.org/10.1007/s10067-009-1118-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1752-8062.2008.00050.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031766383"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.cir.90.5.2285", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032929086"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1253/circj.cj-08-1102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036564915"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.9746/sicetr.49.1029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042073201"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2170/jjphysiol.22.103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043468490"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejm199007053230105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046925494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0021-9290(80)90191-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049710523"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40292-013-0001-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050414680", 
          "https://doi.org/10.1007/s40292-013-0001-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1253/circj.cj-08-0789", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051766950"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0031-9155/55/12/019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059028202"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0031-9155/55/12/019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059028202"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/hypertensionaha.116.07650", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063345142"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/hypertensionaha.116.07650", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063345142"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/hypertensionaha.116.07650", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063345142"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/jaha.116.004385", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063345317"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/embc.2013.6610069", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078796773"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/smc.2013.640", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093744306"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "This paper proposes an algorithm for estimating the arterial viscosity using cuff pressures and pulse waves measured by an automatic oscillometric sphygmomanometer. A change in the arterial viscosity during the enclosed-zone flow-mediated dilation test is calculated as an index for evaluating the vascular endothelial function %\u03b7. In all, 43 individuals participated in this study. After the index %\u03b7 was calculated, the accuracy of the index %\u03b7 in distinguishing healthy subjects and subjects at a high risk of arteriosclerosis was tested via a receiving operating characteristic (ROC) analysis. The calculated %\u03b7 for the healthy participants and those at a high risk of arteriosclerosis was 13.4\u2009\u00b1\u200955.1% and -32.7\u2009\u00b1\u200934.0% (mean\u2009\u00b1\u2009S.D.), respectively. The area under the ROC curve was 0.77. Thus, it was concluded that the proposed method can be used to evaluate the vascular endothelial function.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-019-38776-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "Estimation of Arterial Viscosity Based on an Oscillometric Method and Its Application in Evaluating the Vascular Endothelial Function", 
    "pagination": "2609", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "500e5a8a80934b0ec186e02dcab06e099db94f93c059a23ffe4e32838160e64f"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30796239"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-019-38776-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112308324"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-019-38776-4", 
      "https://app.dimensions.ai/details/publication/pub.1112308324"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:36", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000349_0000000349/records_113670_00000005.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-019-38776-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-38776-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-38776-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-38776-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-38776-4'


 

This table displays all metadata directly associated to this object as RDF triples.

215 TRIPLES      21 PREDICATES      55 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-019-38776-4 schema:about anzsrc-for:11
2 anzsrc-for:1102
3 schema:author Na7a1f1e17b3c42cc8d5e14f13e62dfcd
4 schema:citation sg:pub.10.1007/bf02446804
5 sg:pub.10.1007/s00421-014-3058-8
6 sg:pub.10.1007/s10067-009-1118-y
7 sg:pub.10.1007/s11517-012-0955-z
8 sg:pub.10.1007/s40292-013-0001-8
9 sg:pub.10.1186/1475-925x-11-56
10 https://doi.org/10.1016/0021-9290(70)90036-9
11 https://doi.org/10.1016/0021-9290(80)90191-8
12 https://doi.org/10.1016/0140-6736(92)93147-f
13 https://doi.org/10.1016/j.amjmed.2013.04.024
14 https://doi.org/10.1016/j.jjcc.2014.01.004
15 https://doi.org/10.1056/nejm199007053230105
16 https://doi.org/10.1088/0031-9155/55/12/019
17 https://doi.org/10.1109/embc.2013.6610069
18 https://doi.org/10.1109/smc.2013.640
19 https://doi.org/10.1111/j.1752-8062.2008.00050.x
20 https://doi.org/10.1161/01.cir.90.5.2285
21 https://doi.org/10.1161/hypertensionaha.116.07650
22 https://doi.org/10.1161/jaha.116.004385
23 https://doi.org/10.1177/1358863x12450095
24 https://doi.org/10.1253/circj.cj-08-0789
25 https://doi.org/10.1253/circj.cj-08-1102
26 https://doi.org/10.2170/jjphysiol.22.103
27 https://doi.org/10.2337/dc14-s081
28 https://doi.org/10.3324/haematol.2011.055202
29 https://doi.org/10.9746/sicetr.49.1029
30 schema:datePublished 2019-12
31 schema:datePublishedReg 2019-12-01
32 schema:description This paper proposes an algorithm for estimating the arterial viscosity using cuff pressures and pulse waves measured by an automatic oscillometric sphygmomanometer. A change in the arterial viscosity during the enclosed-zone flow-mediated dilation test is calculated as an index for evaluating the vascular endothelial function %η. In all, 43 individuals participated in this study. After the index %η was calculated, the accuracy of the index %η in distinguishing healthy subjects and subjects at a high risk of arteriosclerosis was tested via a receiving operating characteristic (ROC) analysis. The calculated %η for the healthy participants and those at a high risk of arteriosclerosis was 13.4 ± 55.1% and -32.7 ± 34.0% (mean ± S.D.), respectively. The area under the ROC curve was 0.77. Thus, it was concluded that the proposed method can be used to evaluate the vascular endothelial function.
33 schema:genre research_article
34 schema:inLanguage en
35 schema:isAccessibleForFree true
36 schema:isPartOf N098a3d61a0ce4afa935730393a782e89
37 N89a03ed1c31e471b9eea5e59ceeb3fbe
38 sg:journal.1045337
39 schema:name Estimation of Arterial Viscosity Based on an Oscillometric Method and Its Application in Evaluating the Vascular Endothelial Function
40 schema:pagination 2609
41 schema:productId N930b6c331d524d7385c21a7eb033b217
42 N981005d477414d038ad0d4bf71fef1f3
43 Na5ca4fe936ca473cb6a812269daa52c7
44 Ne5f530ebec654336ae96a560c508f0d6
45 Nfce3bb034d7248fd841457dbf8f84c2d
46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112308324
47 https://doi.org/10.1038/s41598-019-38776-4
48 schema:sdDatePublished 2019-04-11T10:36
49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
50 schema:sdPublisher Na6b5d363d957439085e8cfcf1c1554f4
51 schema:url https://www.nature.com/articles/s41598-019-38776-4
52 sgo:license sg:explorer/license/
53 sgo:sdDataset articles
54 rdf:type schema:ScholarlyArticle
55 N098a3d61a0ce4afa935730393a782e89 schema:issueNumber 1
56 rdf:type schema:PublicationIssue
57 N0fbed7fc74554d77894c302c51998142 schema:affiliation https://www.grid.ac/institutes/grid.257022.0
58 schema:familyName Soh
59 schema:givenName Zu
60 rdf:type schema:Person
61 N12fa1845801a4dfe862abcf72c46ef9e schema:affiliation https://www.grid.ac/institutes/grid.257022.0
62 schema:familyName Yoshizumi
63 schema:givenName Masao
64 rdf:type schema:Person
65 N13e033bffd6144e0a96729485b3afd34 schema:affiliation https://www.grid.ac/institutes/grid.257022.0
66 schema:familyName Tsuji
67 schema:givenName Toshio
68 rdf:type schema:Person
69 N206b345c36f74c678810c84bc3bcc6cf rdf:first N13e033bffd6144e0a96729485b3afd34
70 rdf:rest rdf:nil
71 N4808c40122dd42e1ad4253c779e20107 rdf:first N0fbed7fc74554d77894c302c51998142
72 rdf:rest Nda742d8ca13d4a709b640d5ac431c92a
73 N63560f24ac01434e9743fbc253d10414 rdf:first N7abba66430054f1ebd2ebb95358e111e
74 rdf:rest N7dc17de0113142d2bc307229f4cdd040
75 N68c6e67511724170a2ba60799ff54e1c rdf:first Ned623eaa1965475d896677793a8d9e25
76 rdf:rest N9e36f91efcea4d77841e1c7e27a2c293
77 N7abba66430054f1ebd2ebb95358e111e schema:affiliation https://www.grid.ac/institutes/grid.470097.d
78 schema:familyName Higashi
79 schema:givenName Yukihito
80 rdf:type schema:Person
81 N7dc17de0113142d2bc307229f4cdd040 rdf:first N12fa1845801a4dfe862abcf72c46ef9e
82 rdf:rest N206b345c36f74c678810c84bc3bcc6cf
83 N89a03ed1c31e471b9eea5e59ceeb3fbe schema:volumeNumber 9
84 rdf:type schema:PublicationVolume
85 N930b6c331d524d7385c21a7eb033b217 schema:name dimensions_id
86 schema:value pub.1112308324
87 rdf:type schema:PropertyValue
88 N981005d477414d038ad0d4bf71fef1f3 schema:name pubmed_id
89 schema:value 30796239
90 rdf:type schema:PropertyValue
91 N9a561dd755b14eb8b442979f2630f8d0 schema:affiliation https://www.grid.ac/institutes/grid.263536.7
92 schema:familyName Hirano
93 schema:givenName Harutoyo
94 rdf:type schema:Person
95 N9e36f91efcea4d77841e1c7e27a2c293 rdf:first N9a561dd755b14eb8b442979f2630f8d0
96 rdf:rest N4808c40122dd42e1ad4253c779e20107
97 Na058ce2ba74a4ffcac8adb523e61f899 rdf:first Na66da9dc73a443d695789c89d26d736b
98 rdf:rest Ne4c2b761f1874b959d9a297bde977764
99 Na5ca4fe936ca473cb6a812269daa52c7 schema:name nlm_unique_id
100 schema:value 101563288
101 rdf:type schema:PropertyValue
102 Na66da9dc73a443d695789c89d26d736b schema:affiliation https://www.grid.ac/institutes/grid.257022.0
103 schema:familyName Saeki
104 schema:givenName Noboru
105 rdf:type schema:Person
106 Na6b5d363d957439085e8cfcf1c1554f4 schema:name Springer Nature - SN SciGraph project
107 rdf:type schema:Organization
108 Na7a1f1e17b3c42cc8d5e14f13e62dfcd rdf:first Neeac2bf1f036450baec9ed6b49d4becc
109 rdf:rest N68c6e67511724170a2ba60799ff54e1c
110 Nbf2e51f5b58e4dc6bd3b87b069722717 schema:affiliation https://www.grid.ac/institutes/grid.257022.0
111 schema:familyName Nakamura
112 schema:givenName Ryuji
113 rdf:type schema:Person
114 Nd2497b232ce04dcab4fff69b5cb551c2 schema:affiliation https://www.grid.ac/institutes/grid.257022.0
115 schema:familyName Kawamoto
116 schema:givenName Masashi
117 rdf:type schema:Person
118 Nda742d8ca13d4a709b640d5ac431c92a rdf:first Nbf2e51f5b58e4dc6bd3b87b069722717
119 rdf:rest Na058ce2ba74a4ffcac8adb523e61f899
120 Ne4c2b761f1874b959d9a297bde977764 rdf:first Nd2497b232ce04dcab4fff69b5cb551c2
121 rdf:rest N63560f24ac01434e9743fbc253d10414
122 Ne5f530ebec654336ae96a560c508f0d6 schema:name doi
123 schema:value 10.1038/s41598-019-38776-4
124 rdf:type schema:PropertyValue
125 Ned623eaa1965475d896677793a8d9e25 schema:affiliation https://www.grid.ac/institutes/grid.257022.0
126 schema:familyName Mito
127 schema:givenName Akihisa
128 rdf:type schema:Person
129 Neeac2bf1f036450baec9ed6b49d4becc schema:affiliation https://www.grid.ac/institutes/grid.257022.0
130 schema:familyName Tanaka
131 schema:givenName Hiroshi
132 rdf:type schema:Person
133 Nfce3bb034d7248fd841457dbf8f84c2d schema:name readcube_id
134 schema:value 500e5a8a80934b0ec186e02dcab06e099db94f93c059a23ffe4e32838160e64f
135 rdf:type schema:PropertyValue
136 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
137 schema:name Medical and Health Sciences
138 rdf:type schema:DefinedTerm
139 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
140 schema:name Cardiorespiratory Medicine and Haematology
141 rdf:type schema:DefinedTerm
142 sg:journal.1045337 schema:issn 2045-2322
143 schema:name Scientific Reports
144 rdf:type schema:Periodical
145 sg:pub.10.1007/bf02446804 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001213973
146 https://doi.org/10.1007/bf02446804
147 rdf:type schema:CreativeWork
148 sg:pub.10.1007/s00421-014-3058-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026080487
149 https://doi.org/10.1007/s00421-014-3058-8
150 rdf:type schema:CreativeWork
151 sg:pub.10.1007/s10067-009-1118-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1031731948
152 https://doi.org/10.1007/s10067-009-1118-y
153 rdf:type schema:CreativeWork
154 sg:pub.10.1007/s11517-012-0955-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1023093171
155 https://doi.org/10.1007/s11517-012-0955-z
156 rdf:type schema:CreativeWork
157 sg:pub.10.1007/s40292-013-0001-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050414680
158 https://doi.org/10.1007/s40292-013-0001-8
159 rdf:type schema:CreativeWork
160 sg:pub.10.1186/1475-925x-11-56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025491177
161 https://doi.org/10.1186/1475-925x-11-56
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/0021-9290(70)90036-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026285492
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/0021-9290(80)90191-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049710523
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/0140-6736(92)93147-f schema:sameAs https://app.dimensions.ai/details/publication/pub.1018847241
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/j.amjmed.2013.04.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028562481
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/j.jjcc.2014.01.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027624474
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1056/nejm199007053230105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046925494
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1088/0031-9155/55/12/019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059028202
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1109/embc.2013.6610069 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078796773
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1109/smc.2013.640 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093744306
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1111/j.1752-8062.2008.00050.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1031766383
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1161/01.cir.90.5.2285 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032929086
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1161/hypertensionaha.116.07650 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063345142
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1161/jaha.116.004385 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063345317
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1177/1358863x12450095 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018289849
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1253/circj.cj-08-0789 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051766950
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1253/circj.cj-08-1102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036564915
194 rdf:type schema:CreativeWork
195 https://doi.org/10.2170/jjphysiol.22.103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043468490
196 rdf:type schema:CreativeWork
197 https://doi.org/10.2337/dc14-s081 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009852107
198 rdf:type schema:CreativeWork
199 https://doi.org/10.3324/haematol.2011.055202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016389634
200 rdf:type schema:CreativeWork
201 https://doi.org/10.9746/sicetr.49.1029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042073201
202 rdf:type schema:CreativeWork
203 https://www.grid.ac/institutes/grid.257022.0 schema:alternateName Hiroshima University
204 schema:name Department of Anesthesiology and Critical Care, Graduate School of Biomedical and Health Sciences, Hiroshima University, 734-8553, Hiroshima, Japan
205 Department of Cardiovascular Physiology and Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 734-8553, Hiroshima, Japan
206 Department of System Cybernetics, Faculty of Engineering, Hiroshima University, 739-8527, Higashi-Hiroshima, Japan
207 Department of System Cybernetics, Graduate School of Engineering, Hiroshima University, 739-8527, Higashi-Hiroshima, Japan
208 rdf:type schema:Organization
209 https://www.grid.ac/institutes/grid.263536.7 schema:alternateName Shizuoka University
210 schema:name Academic Institute, College of Engineering, Shizuoka University, 432-8561, Hamamatsu, Japan
211 rdf:type schema:Organization
212 https://www.grid.ac/institutes/grid.470097.d schema:alternateName Hiroshima University Hospital
213 schema:name Department of Regeneration and Medicine, Research Center for Radiation Genome Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, 734-8553, Hiroshima, Japan
214 Division of Regeneration and Medicine, Hiroshima University Hospital, 734-8551, Hiroshima, Japan
215 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...