Ontology type: schema:ScholarlyArticle Open Access: True
2019-02-19
AUTHORSDaisuke Takahashi, Michal Gorka, Alexander Erban, Alexander Graf, Joachim Kopka, Ellen Zuther, Dirk K. Hincha
ABSTRACTCold acclimation (CA) leads to increased plant freezing tolerance during exposure to low, non-freezing temperatures as a result of many physiological, biochemical and molecular changes that have been extensively investigated. In addition, many plant species, such as Arabidopsis thaliana, respond to a subsequent exposure to mild, non-damaging freezing temperatures with an additional increase in freezing tolerance referred to as sub-zero acclimation (SZA). There is comparatively little information available about the molecular basis of SZA. However, previous transcriptomic studies indicated that cell wall modification may play an important role during SZA. Here we show that CA and SZA are accompanied by extensive changes in cell wall amount, composition and structure. While CA leads to a significant increase in cell wall amount, the relative proportions of pectin, hemicellulose and cellulose remained unaltered during both CA and SZA. However, both treatments resulted in more subtle changes in structure as determined by infrared spectroscopy and monosaccharide composition as determined by gas chromatography-mass spectrometry. These differences could be related through a proteomic approach to the accumulation of cell wall modifying enzymes such as pectin methylesterases, pectin methylesterase inhibitors and xyloglucan endotransglucosylases/hydrolases in the extracellular matrix. More... »
PAGES2289
http://scigraph.springernature.com/pub.10.1038/s41598-019-38688-3
DOIhttp://dx.doi.org/10.1038/s41598-019-38688-3
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1112225754
PUBMEDhttps://www.ncbi.nlm.nih.gov/pubmed/30783145
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Biological Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Biochemistry and Cell Biology",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0607",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Plant Biology",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Acclimatization",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Arabidopsis",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Arabidopsis Proteins",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Cell Wall",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Cellulose",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Cold Temperature",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Freezing",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Gene Expression Regulation, Plant",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Pectins",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Polysaccharides",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Proteome",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Max-Planck-Institut f\u00fcr Molekulare Pflanzenphysiologie, Am M\u00fchlenberg 1, D-14476, Potsdam, Germany",
"id": "http://www.grid.ac/institutes/grid.418390.7",
"name": [
"Max-Planck-Institut f\u00fcr Molekulare Pflanzenphysiologie, Am M\u00fchlenberg 1, D-14476, Potsdam, Germany"
],
"type": "Organization"
},
"familyName": "Takahashi",
"givenName": "Daisuke",
"id": "sg:person.010614570205.30",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010614570205.30"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Max-Planck-Institut f\u00fcr Molekulare Pflanzenphysiologie, Am M\u00fchlenberg 1, D-14476, Potsdam, Germany",
"id": "http://www.grid.ac/institutes/grid.418390.7",
"name": [
"Max-Planck-Institut f\u00fcr Molekulare Pflanzenphysiologie, Am M\u00fchlenberg 1, D-14476, Potsdam, Germany"
],
"type": "Organization"
},
"familyName": "Gorka",
"givenName": "Michal",
"id": "sg:person.01245005537.56",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01245005537.56"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Max-Planck-Institut f\u00fcr Molekulare Pflanzenphysiologie, Am M\u00fchlenberg 1, D-14476, Potsdam, Germany",
"id": "http://www.grid.ac/institutes/grid.418390.7",
"name": [
"Max-Planck-Institut f\u00fcr Molekulare Pflanzenphysiologie, Am M\u00fchlenberg 1, D-14476, Potsdam, Germany"
],
"type": "Organization"
},
"familyName": "Erban",
"givenName": "Alexander",
"id": "sg:person.01353252733.38",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01353252733.38"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Max-Planck-Institut f\u00fcr Molekulare Pflanzenphysiologie, Am M\u00fchlenberg 1, D-14476, Potsdam, Germany",
"id": "http://www.grid.ac/institutes/grid.418390.7",
"name": [
"Max-Planck-Institut f\u00fcr Molekulare Pflanzenphysiologie, Am M\u00fchlenberg 1, D-14476, Potsdam, Germany"
],
"type": "Organization"
},
"familyName": "Graf",
"givenName": "Alexander",
"id": "sg:person.015050570567.98",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015050570567.98"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Max-Planck-Institut f\u00fcr Molekulare Pflanzenphysiologie, Am M\u00fchlenberg 1, D-14476, Potsdam, Germany",
"id": "http://www.grid.ac/institutes/grid.418390.7",
"name": [
"Max-Planck-Institut f\u00fcr Molekulare Pflanzenphysiologie, Am M\u00fchlenberg 1, D-14476, Potsdam, Germany"
],
"type": "Organization"
},
"familyName": "Kopka",
"givenName": "Joachim",
"id": "sg:person.0633132075.84",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0633132075.84"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Max-Planck-Institut f\u00fcr Molekulare Pflanzenphysiologie, Am M\u00fchlenberg 1, D-14476, Potsdam, Germany",
"id": "http://www.grid.ac/institutes/grid.418390.7",
"name": [
"Max-Planck-Institut f\u00fcr Molekulare Pflanzenphysiologie, Am M\u00fchlenberg 1, D-14476, Potsdam, Germany"
],
"type": "Organization"
},
"familyName": "Zuther",
"givenName": "Ellen",
"id": "sg:person.0627062115.49",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0627062115.49"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Max-Planck-Institut f\u00fcr Molekulare Pflanzenphysiologie, Am M\u00fchlenberg 1, D-14476, Potsdam, Germany",
"id": "http://www.grid.ac/institutes/grid.418390.7",
"name": [
"Max-Planck-Institut f\u00fcr Molekulare Pflanzenphysiologie, Am M\u00fchlenberg 1, D-14476, Potsdam, Germany"
],
"type": "Organization"
},
"familyName": "Hincha",
"givenName": "Dirk K.",
"id": "sg:person.0636364224.44",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0636364224.44"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1186/s12864-017-4126-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1091810258",
"https://doi.org/10.1186/s12864-017-4126-3"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11103-014-0256-z",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1047273529",
"https://doi.org/10.1007/s11103-014-0256-z"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00425-010-1163-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1010576621",
"https://doi.org/10.1007/s00425-010-1163-4"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11224-009-9442-z",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1032312126",
"https://doi.org/10.1007/s11224-009-9442-z"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nbt.2839",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1027597437",
"https://doi.org/10.1038/nbt.2839"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00425-015-2358-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1026451722",
"https://doi.org/10.1007/s00425-015-2358-5"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4939-0844-8_3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1011954319",
"https://doi.org/10.1007/978-1-4939-0844-8_3"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/srep46099",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1084955219",
"https://doi.org/10.1038/srep46099"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1023/a:1010662911148",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1049203358",
"https://doi.org/10.1023/a:1010662911148"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00395139",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1024387131",
"https://doi.org/10.1007/bf00395139"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01297350",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1040925698",
"https://doi.org/10.1007/bf01297350"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nprot.2012.081",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1053541881",
"https://doi.org/10.1038/nprot.2012.081"
],
"type": "CreativeWork"
}
],
"datePublished": "2019-02-19",
"datePublishedReg": "2019-02-19",
"description": "Cold acclimation (CA) leads to increased plant freezing tolerance during exposure to low, non-freezing temperatures as a result of many physiological, biochemical and molecular changes that have been extensively investigated. In addition, many plant species, such as Arabidopsis thaliana, respond to a subsequent exposure to mild, non-damaging freezing temperatures with an additional increase in freezing tolerance referred to as sub-zero acclimation (SZA). There is comparatively little information available about the molecular basis of SZA. However, previous transcriptomic studies indicated that cell wall modification may play an important role during SZA. Here we show that CA and SZA are accompanied by extensive changes in cell wall amount, composition and structure. While CA leads to a significant increase in cell wall amount, the relative proportions of pectin, hemicellulose and cellulose remained unaltered during both CA and SZA. However, both treatments resulted in more subtle changes in structure as determined by infrared spectroscopy and monosaccharide composition as determined by gas chromatography-mass spectrometry. These differences could be related through a proteomic approach to the accumulation of cell wall modifying enzymes such as pectin methylesterases, pectin methylesterase inhibitors and xyloglucan endotransglucosylases/hydrolases in the extracellular matrix.",
"genre": "article",
"id": "sg:pub.10.1038/s41598-019-38688-3",
"inLanguage": "en",
"isAccessibleForFree": true,
"isPartOf": [
{
"id": "sg:journal.1045337",
"issn": [
"2045-2322"
],
"name": "Scientific Reports",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "1",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "9"
}
],
"keywords": [
"cell wall modification",
"cold acclimation",
"Arabidopsis thaliana",
"wall modification",
"xyloglucan endotransglucosylases/hydrolases",
"non-freezing temperatures",
"previous transcriptomic studies",
"gas chromatography-mass spectrometry",
"extracellular proteome",
"methylesterase inhibitor",
"pectin methylesterases",
"plant species",
"proteomic approach",
"transcriptomic studies",
"chromatography-mass spectrometry",
"molecular basis",
"cell wall",
"extracellular matrix",
"thaliana",
"molecular changes",
"acclimation",
"more subtle changes",
"extensive changes",
"monosaccharide composition",
"methylesterases",
"important role",
"relative proportions",
"proteome",
"tolerance",
"little information",
"hydrolases",
"subtle changes",
"species",
"plants",
"spectroscopy",
"enzyme",
"spectrometry",
"structure",
"modification",
"composition",
"accumulation",
"inhibitors",
"freezing temperature",
"temperature",
"cellulose",
"subsequent exposure",
"pectin",
"changes",
"role",
"amount",
"exposure",
"additional increase",
"SZA",
"significant increase",
"matrix",
"increase",
"basis",
"addition",
"proportion",
"wall",
"study",
"differences",
"information",
"results",
"treatment",
"approach"
],
"name": "Both cold and sub-zero acclimation induce cell wall modification and changes in the extracellular proteome in Arabidopsis thaliana",
"pagination": "2289",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1112225754"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1038/s41598-019-38688-3"
]
},
{
"name": "pubmed_id",
"type": "PropertyValue",
"value": [
"30783145"
]
}
],
"sameAs": [
"https://doi.org/10.1038/s41598-019-38688-3",
"https://app.dimensions.ai/details/publication/pub.1112225754"
],
"sdDataset": "articles",
"sdDatePublished": "2022-06-01T22:20",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_824.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1038/s41598-019-38688-3"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-38688-3'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-38688-3'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-38688-3'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-38688-3'
This table displays all metadata directly associated to this object as RDF triples.
265 TRIPLES
22 PREDICATES
116 URIs
95 LITERALS
18 BLANK NODES