Both cold and sub-zero acclimation induce cell wall modification and changes in the extracellular proteome in Arabidopsis thaliana View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-02-19

AUTHORS

Daisuke Takahashi, Michal Gorka, Alexander Erban, Alexander Graf, Joachim Kopka, Ellen Zuther, Dirk K. Hincha

ABSTRACT

Cold acclimation (CA) leads to increased plant freezing tolerance during exposure to low, non-freezing temperatures as a result of many physiological, biochemical and molecular changes that have been extensively investigated. In addition, many plant species, such as Arabidopsis thaliana, respond to a subsequent exposure to mild, non-damaging freezing temperatures with an additional increase in freezing tolerance referred to as sub-zero acclimation (SZA). There is comparatively little information available about the molecular basis of SZA. However, previous transcriptomic studies indicated that cell wall modification may play an important role during SZA. Here we show that CA and SZA are accompanied by extensive changes in cell wall amount, composition and structure. While CA leads to a significant increase in cell wall amount, the relative proportions of pectin, hemicellulose and cellulose remained unaltered during both CA and SZA. However, both treatments resulted in more subtle changes in structure as determined by infrared spectroscopy and monosaccharide composition as determined by gas chromatography-mass spectrometry. These differences could be related through a proteomic approach to the accumulation of cell wall modifying enzymes such as pectin methylesterases, pectin methylesterase inhibitors and xyloglucan endotransglucosylases/hydrolases in the extracellular matrix. More... »

PAGES

2289

References to SciGraph publications

  • 2017-04-26. The plant cell-wall enzyme AtXTH3 catalyses covalent cross-linking between cellulose and cello-oligosaccharide in SCIENTIFIC REPORTS
  • 2014-05-08. Measuring Freezing Tolerance: Electrolyte Leakage and Chlorophyll Fluorescence Assays in PLANT COLD ACCLIMATION
  • 2010-04-09. Ice recrystallization inhibition proteins of perennial ryegrass enhance freezing tolerance in PLANTA
  • 2017-09-16. Rapid transcriptional and metabolic regulation of the deacclimation process in cold acclimated Arabidopsis thaliana in BMC GENOMICS
  • 2009-03-13. Pectin, a versatile polysaccharide present in plant cell walls in STRUCTURAL CHEMISTRY
  • 2014-10-14. Global changes in gene expression, assayed by microarray hybridization and quantitative RT-PCR, during acclimation of three Arabidopsis thaliana accessions to sub-zero temperatures after cold acclimation in PLANT MOLECULAR BIOLOGY
  • 2014-03-10. ProteomeXchange provides globally coordinated proteomics data submission and dissemination in NATURE BIOTECHNOLOGY
  • 2001-09. Pectin: cell biology and prospects for functional analysis in PLANT MOLECULAR BIOLOGY
  • 2012-08-02. Determining the polysaccharide composition of plant cell walls in NATURE PROTOCOLS
  • 1985-02. Lipid polymers accumulate in the epidermis and mestome sheath cell walls during low temperature development of winter rye leaves in PROTOPLASMA
  • 1985-03. Wheat tissues freeze-etched during exposure to extracellular freezing: distribution of ice in PLANTA
  • 2015-07-14. Tuning of pectin methylesterification: consequences for cell wall biomechanics and development in PLANTA
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41598-019-38688-3

    DOI

    http://dx.doi.org/10.1038/s41598-019-38688-3

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1112225754

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30783145


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biochemistry and Cell Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0607", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Plant Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Acclimatization", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Arabidopsis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Arabidopsis Proteins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cell Wall", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cellulose", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cold Temperature", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Freezing", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Expression Regulation, Plant", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Pectins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Polysaccharides", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Proteome", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Max-Planck-Institut f\u00fcr Molekulare Pflanzenphysiologie, Am M\u00fchlenberg 1, D-14476, Potsdam, Germany", 
              "id": "http://www.grid.ac/institutes/grid.418390.7", 
              "name": [
                "Max-Planck-Institut f\u00fcr Molekulare Pflanzenphysiologie, Am M\u00fchlenberg 1, D-14476, Potsdam, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Takahashi", 
            "givenName": "Daisuke", 
            "id": "sg:person.010614570205.30", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010614570205.30"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Max-Planck-Institut f\u00fcr Molekulare Pflanzenphysiologie, Am M\u00fchlenberg 1, D-14476, Potsdam, Germany", 
              "id": "http://www.grid.ac/institutes/grid.418390.7", 
              "name": [
                "Max-Planck-Institut f\u00fcr Molekulare Pflanzenphysiologie, Am M\u00fchlenberg 1, D-14476, Potsdam, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gorka", 
            "givenName": "Michal", 
            "id": "sg:person.01245005537.56", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01245005537.56"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Max-Planck-Institut f\u00fcr Molekulare Pflanzenphysiologie, Am M\u00fchlenberg 1, D-14476, Potsdam, Germany", 
              "id": "http://www.grid.ac/institutes/grid.418390.7", 
              "name": [
                "Max-Planck-Institut f\u00fcr Molekulare Pflanzenphysiologie, Am M\u00fchlenberg 1, D-14476, Potsdam, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Erban", 
            "givenName": "Alexander", 
            "id": "sg:person.01353252733.38", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01353252733.38"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Max-Planck-Institut f\u00fcr Molekulare Pflanzenphysiologie, Am M\u00fchlenberg 1, D-14476, Potsdam, Germany", 
              "id": "http://www.grid.ac/institutes/grid.418390.7", 
              "name": [
                "Max-Planck-Institut f\u00fcr Molekulare Pflanzenphysiologie, Am M\u00fchlenberg 1, D-14476, Potsdam, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Graf", 
            "givenName": "Alexander", 
            "id": "sg:person.015050570567.98", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015050570567.98"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Max-Planck-Institut f\u00fcr Molekulare Pflanzenphysiologie, Am M\u00fchlenberg 1, D-14476, Potsdam, Germany", 
              "id": "http://www.grid.ac/institutes/grid.418390.7", 
              "name": [
                "Max-Planck-Institut f\u00fcr Molekulare Pflanzenphysiologie, Am M\u00fchlenberg 1, D-14476, Potsdam, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kopka", 
            "givenName": "Joachim", 
            "id": "sg:person.0633132075.84", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0633132075.84"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Max-Planck-Institut f\u00fcr Molekulare Pflanzenphysiologie, Am M\u00fchlenberg 1, D-14476, Potsdam, Germany", 
              "id": "http://www.grid.ac/institutes/grid.418390.7", 
              "name": [
                "Max-Planck-Institut f\u00fcr Molekulare Pflanzenphysiologie, Am M\u00fchlenberg 1, D-14476, Potsdam, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zuther", 
            "givenName": "Ellen", 
            "id": "sg:person.0627062115.49", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0627062115.49"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Max-Planck-Institut f\u00fcr Molekulare Pflanzenphysiologie, Am M\u00fchlenberg 1, D-14476, Potsdam, Germany", 
              "id": "http://www.grid.ac/institutes/grid.418390.7", 
              "name": [
                "Max-Planck-Institut f\u00fcr Molekulare Pflanzenphysiologie, Am M\u00fchlenberg 1, D-14476, Potsdam, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hincha", 
            "givenName": "Dirk K.", 
            "id": "sg:person.0636364224.44", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0636364224.44"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1186/s12864-017-4126-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091810258", 
              "https://doi.org/10.1186/s12864-017-4126-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11103-014-0256-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047273529", 
              "https://doi.org/10.1007/s11103-014-0256-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00425-010-1163-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010576621", 
              "https://doi.org/10.1007/s00425-010-1163-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11224-009-9442-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032312126", 
              "https://doi.org/10.1007/s11224-009-9442-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.2839", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027597437", 
              "https://doi.org/10.1038/nbt.2839"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00425-015-2358-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026451722", 
              "https://doi.org/10.1007/s00425-015-2358-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4939-0844-8_3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011954319", 
              "https://doi.org/10.1007/978-1-4939-0844-8_3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep46099", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084955219", 
              "https://doi.org/10.1038/srep46099"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1010662911148", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049203358", 
              "https://doi.org/10.1023/a:1010662911148"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00395139", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024387131", 
              "https://doi.org/10.1007/bf00395139"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01297350", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040925698", 
              "https://doi.org/10.1007/bf01297350"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nprot.2012.081", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053541881", 
              "https://doi.org/10.1038/nprot.2012.081"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-02-19", 
        "datePublishedReg": "2019-02-19", 
        "description": "Cold acclimation (CA) leads to increased plant freezing tolerance during exposure to low, non-freezing temperatures as a result of many physiological, biochemical and molecular changes that have been extensively investigated. In addition, many plant species, such as Arabidopsis thaliana, respond to a subsequent exposure to mild, non-damaging freezing temperatures with an additional increase in freezing tolerance referred to as sub-zero acclimation (SZA). There is comparatively little information available about the molecular basis of SZA. However, previous transcriptomic studies indicated that cell wall modification may play an important role during SZA. Here we show that CA and SZA are accompanied by extensive changes in cell wall amount, composition and structure. While CA leads to a significant increase in cell wall amount, the relative proportions of pectin, hemicellulose and cellulose remained unaltered during both CA and SZA. However, both treatments resulted in more subtle changes in structure as determined by infrared spectroscopy and monosaccharide composition as determined by gas chromatography-mass spectrometry. These differences could be related through a proteomic approach to the accumulation of cell wall modifying enzymes such as pectin methylesterases, pectin methylesterase inhibitors and xyloglucan endotransglucosylases/hydrolases in the extracellular matrix.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/s41598-019-38688-3", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1045337", 
            "issn": [
              "2045-2322"
            ], 
            "name": "Scientific Reports", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "9"
          }
        ], 
        "keywords": [
          "cell wall modification", 
          "cold acclimation", 
          "Arabidopsis thaliana", 
          "wall modification", 
          "xyloglucan endotransglucosylases/hydrolases", 
          "non-freezing temperatures", 
          "previous transcriptomic studies", 
          "gas chromatography-mass spectrometry", 
          "extracellular proteome", 
          "methylesterase inhibitor", 
          "pectin methylesterases", 
          "plant species", 
          "proteomic approach", 
          "transcriptomic studies", 
          "chromatography-mass spectrometry", 
          "molecular basis", 
          "cell wall", 
          "extracellular matrix", 
          "thaliana", 
          "molecular changes", 
          "acclimation", 
          "more subtle changes", 
          "extensive changes", 
          "monosaccharide composition", 
          "methylesterases", 
          "important role", 
          "relative proportions", 
          "proteome", 
          "tolerance", 
          "little information", 
          "hydrolases", 
          "subtle changes", 
          "species", 
          "plants", 
          "spectroscopy", 
          "enzyme", 
          "spectrometry", 
          "structure", 
          "modification", 
          "composition", 
          "accumulation", 
          "inhibitors", 
          "freezing temperature", 
          "temperature", 
          "cellulose", 
          "subsequent exposure", 
          "pectin", 
          "changes", 
          "role", 
          "amount", 
          "exposure", 
          "additional increase", 
          "SZA", 
          "significant increase", 
          "matrix", 
          "increase", 
          "basis", 
          "addition", 
          "proportion", 
          "wall", 
          "study", 
          "differences", 
          "information", 
          "results", 
          "treatment", 
          "approach"
        ], 
        "name": "Both cold and sub-zero acclimation induce cell wall modification and changes in the extracellular proteome in Arabidopsis thaliana", 
        "pagination": "2289", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1112225754"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41598-019-38688-3"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30783145"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41598-019-38688-3", 
          "https://app.dimensions.ai/details/publication/pub.1112225754"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-06-01T22:20", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_824.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/s41598-019-38688-3"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-38688-3'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-38688-3'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-38688-3'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-38688-3'


     

    This table displays all metadata directly associated to this object as RDF triples.

    265 TRIPLES      22 PREDICATES      116 URIs      95 LITERALS      18 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41598-019-38688-3 schema:about N020a4fb7eb6d42a1a7f8eceaef4603dc
    2 N16185e792b2c4278a5ee1b97093c9f6c
    3 N1a489b117150414ebd2ddfc77919648b
    4 N284808b5f03d41a5aa054cbadfc70983
    5 N57a000a05c00487f80884b66bb4063f9
    6 N57f3b249101e472e8e8c01502fd171cf
    7 N8d7f30f8b0e74a00b1ef200ca285787c
    8 Nb8c34512d8ef43639697ddcb35a8f3e6
    9 Nba54264f07b6451e9547f6e2e8b5b09d
    10 Nc05f2ce0c29b45ae86d47171bcfe05d3
    11 Nf85a860c68924beabe9e74230462a31c
    12 anzsrc-for:06
    13 anzsrc-for:0601
    14 anzsrc-for:0607
    15 schema:author N5e705c14e0694014aa3f7d156c6ccea4
    16 schema:citation sg:pub.10.1007/978-1-4939-0844-8_3
    17 sg:pub.10.1007/bf00395139
    18 sg:pub.10.1007/bf01297350
    19 sg:pub.10.1007/s00425-010-1163-4
    20 sg:pub.10.1007/s00425-015-2358-5
    21 sg:pub.10.1007/s11103-014-0256-z
    22 sg:pub.10.1007/s11224-009-9442-z
    23 sg:pub.10.1023/a:1010662911148
    24 sg:pub.10.1038/nbt.2839
    25 sg:pub.10.1038/nprot.2012.081
    26 sg:pub.10.1038/srep46099
    27 sg:pub.10.1186/s12864-017-4126-3
    28 schema:datePublished 2019-02-19
    29 schema:datePublishedReg 2019-02-19
    30 schema:description Cold acclimation (CA) leads to increased plant freezing tolerance during exposure to low, non-freezing temperatures as a result of many physiological, biochemical and molecular changes that have been extensively investigated. In addition, many plant species, such as Arabidopsis thaliana, respond to a subsequent exposure to mild, non-damaging freezing temperatures with an additional increase in freezing tolerance referred to as sub-zero acclimation (SZA). There is comparatively little information available about the molecular basis of SZA. However, previous transcriptomic studies indicated that cell wall modification may play an important role during SZA. Here we show that CA and SZA are accompanied by extensive changes in cell wall amount, composition and structure. While CA leads to a significant increase in cell wall amount, the relative proportions of pectin, hemicellulose and cellulose remained unaltered during both CA and SZA. However, both treatments resulted in more subtle changes in structure as determined by infrared spectroscopy and monosaccharide composition as determined by gas chromatography-mass spectrometry. These differences could be related through a proteomic approach to the accumulation of cell wall modifying enzymes such as pectin methylesterases, pectin methylesterase inhibitors and xyloglucan endotransglucosylases/hydrolases in the extracellular matrix.
    31 schema:genre article
    32 schema:inLanguage en
    33 schema:isAccessibleForFree true
    34 schema:isPartOf N78a49e59b9f34e7ba14a61e4d9c9910a
    35 Ne87a4b8c527546b4939411c3829c4307
    36 sg:journal.1045337
    37 schema:keywords Arabidopsis thaliana
    38 SZA
    39 acclimation
    40 accumulation
    41 addition
    42 additional increase
    43 amount
    44 approach
    45 basis
    46 cell wall
    47 cell wall modification
    48 cellulose
    49 changes
    50 chromatography-mass spectrometry
    51 cold acclimation
    52 composition
    53 differences
    54 enzyme
    55 exposure
    56 extensive changes
    57 extracellular matrix
    58 extracellular proteome
    59 freezing temperature
    60 gas chromatography-mass spectrometry
    61 hydrolases
    62 important role
    63 increase
    64 information
    65 inhibitors
    66 little information
    67 matrix
    68 methylesterase inhibitor
    69 methylesterases
    70 modification
    71 molecular basis
    72 molecular changes
    73 monosaccharide composition
    74 more subtle changes
    75 non-freezing temperatures
    76 pectin
    77 pectin methylesterases
    78 plant species
    79 plants
    80 previous transcriptomic studies
    81 proportion
    82 proteome
    83 proteomic approach
    84 relative proportions
    85 results
    86 role
    87 significant increase
    88 species
    89 spectrometry
    90 spectroscopy
    91 structure
    92 study
    93 subsequent exposure
    94 subtle changes
    95 temperature
    96 thaliana
    97 tolerance
    98 transcriptomic studies
    99 treatment
    100 wall
    101 wall modification
    102 xyloglucan endotransglucosylases/hydrolases
    103 schema:name Both cold and sub-zero acclimation induce cell wall modification and changes in the extracellular proteome in Arabidopsis thaliana
    104 schema:pagination 2289
    105 schema:productId N0f7036428ffa4548bfbee01b811b007d
    106 N379b08b6b54549979463e844ba00d7ce
    107 Ndb137301a3d0493e95e26545afa12ff8
    108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112225754
    109 https://doi.org/10.1038/s41598-019-38688-3
    110 schema:sdDatePublished 2022-06-01T22:20
    111 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    112 schema:sdPublisher N7961330be7634fff98d7d3553bfa1d89
    113 schema:url https://doi.org/10.1038/s41598-019-38688-3
    114 sgo:license sg:explorer/license/
    115 sgo:sdDataset articles
    116 rdf:type schema:ScholarlyArticle
    117 N020a4fb7eb6d42a1a7f8eceaef4603dc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    118 schema:name Acclimatization
    119 rdf:type schema:DefinedTerm
    120 N0f7036428ffa4548bfbee01b811b007d schema:name doi
    121 schema:value 10.1038/s41598-019-38688-3
    122 rdf:type schema:PropertyValue
    123 N16185e792b2c4278a5ee1b97093c9f6c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    124 schema:name Pectins
    125 rdf:type schema:DefinedTerm
    126 N1a489b117150414ebd2ddfc77919648b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    127 schema:name Arabidopsis Proteins
    128 rdf:type schema:DefinedTerm
    129 N284808b5f03d41a5aa054cbadfc70983 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    130 schema:name Freezing
    131 rdf:type schema:DefinedTerm
    132 N379b08b6b54549979463e844ba00d7ce schema:name dimensions_id
    133 schema:value pub.1112225754
    134 rdf:type schema:PropertyValue
    135 N57a000a05c00487f80884b66bb4063f9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    136 schema:name Proteome
    137 rdf:type schema:DefinedTerm
    138 N57f3b249101e472e8e8c01502fd171cf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    139 schema:name Gene Expression Regulation, Plant
    140 rdf:type schema:DefinedTerm
    141 N5e705c14e0694014aa3f7d156c6ccea4 rdf:first sg:person.010614570205.30
    142 rdf:rest N7629e0b8806e4986ba7c0b10aa903d3c
    143 N7629e0b8806e4986ba7c0b10aa903d3c rdf:first sg:person.01245005537.56
    144 rdf:rest Ne483d04ebcb6403395373b16de54ad0b
    145 N78a49e59b9f34e7ba14a61e4d9c9910a schema:issueNumber 1
    146 rdf:type schema:PublicationIssue
    147 N7961330be7634fff98d7d3553bfa1d89 schema:name Springer Nature - SN SciGraph project
    148 rdf:type schema:Organization
    149 N8d7f30f8b0e74a00b1ef200ca285787c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    150 schema:name Cellulose
    151 rdf:type schema:DefinedTerm
    152 N8e1b1e5659b3476cbfa9f49a8051df85 rdf:first sg:person.0633132075.84
    153 rdf:rest Ne3091033df934575bb9901b1a6ee4cdd
    154 Nb8c34512d8ef43639697ddcb35a8f3e6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    155 schema:name Polysaccharides
    156 rdf:type schema:DefinedTerm
    157 Nba54264f07b6451e9547f6e2e8b5b09d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    158 schema:name Cold Temperature
    159 rdf:type schema:DefinedTerm
    160 Nc05f2ce0c29b45ae86d47171bcfe05d3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    161 schema:name Arabidopsis
    162 rdf:type schema:DefinedTerm
    163 Ncbe00d3747eb4a7992c1ad8ee874737a rdf:first sg:person.015050570567.98
    164 rdf:rest N8e1b1e5659b3476cbfa9f49a8051df85
    165 Nd87c6af6cb4a498283c47733261ae9ba rdf:first sg:person.0636364224.44
    166 rdf:rest rdf:nil
    167 Ndb137301a3d0493e95e26545afa12ff8 schema:name pubmed_id
    168 schema:value 30783145
    169 rdf:type schema:PropertyValue
    170 Ne3091033df934575bb9901b1a6ee4cdd rdf:first sg:person.0627062115.49
    171 rdf:rest Nd87c6af6cb4a498283c47733261ae9ba
    172 Ne483d04ebcb6403395373b16de54ad0b rdf:first sg:person.01353252733.38
    173 rdf:rest Ncbe00d3747eb4a7992c1ad8ee874737a
    174 Ne87a4b8c527546b4939411c3829c4307 schema:volumeNumber 9
    175 rdf:type schema:PublicationVolume
    176 Nf85a860c68924beabe9e74230462a31c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    177 schema:name Cell Wall
    178 rdf:type schema:DefinedTerm
    179 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    180 schema:name Biological Sciences
    181 rdf:type schema:DefinedTerm
    182 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
    183 schema:name Biochemistry and Cell Biology
    184 rdf:type schema:DefinedTerm
    185 anzsrc-for:0607 schema:inDefinedTermSet anzsrc-for:
    186 schema:name Plant Biology
    187 rdf:type schema:DefinedTerm
    188 sg:journal.1045337 schema:issn 2045-2322
    189 schema:name Scientific Reports
    190 schema:publisher Springer Nature
    191 rdf:type schema:Periodical
    192 sg:person.010614570205.30 schema:affiliation grid-institutes:grid.418390.7
    193 schema:familyName Takahashi
    194 schema:givenName Daisuke
    195 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010614570205.30
    196 rdf:type schema:Person
    197 sg:person.01245005537.56 schema:affiliation grid-institutes:grid.418390.7
    198 schema:familyName Gorka
    199 schema:givenName Michal
    200 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01245005537.56
    201 rdf:type schema:Person
    202 sg:person.01353252733.38 schema:affiliation grid-institutes:grid.418390.7
    203 schema:familyName Erban
    204 schema:givenName Alexander
    205 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01353252733.38
    206 rdf:type schema:Person
    207 sg:person.015050570567.98 schema:affiliation grid-institutes:grid.418390.7
    208 schema:familyName Graf
    209 schema:givenName Alexander
    210 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015050570567.98
    211 rdf:type schema:Person
    212 sg:person.0627062115.49 schema:affiliation grid-institutes:grid.418390.7
    213 schema:familyName Zuther
    214 schema:givenName Ellen
    215 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0627062115.49
    216 rdf:type schema:Person
    217 sg:person.0633132075.84 schema:affiliation grid-institutes:grid.418390.7
    218 schema:familyName Kopka
    219 schema:givenName Joachim
    220 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0633132075.84
    221 rdf:type schema:Person
    222 sg:person.0636364224.44 schema:affiliation grid-institutes:grid.418390.7
    223 schema:familyName Hincha
    224 schema:givenName Dirk K.
    225 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0636364224.44
    226 rdf:type schema:Person
    227 sg:pub.10.1007/978-1-4939-0844-8_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011954319
    228 https://doi.org/10.1007/978-1-4939-0844-8_3
    229 rdf:type schema:CreativeWork
    230 sg:pub.10.1007/bf00395139 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024387131
    231 https://doi.org/10.1007/bf00395139
    232 rdf:type schema:CreativeWork
    233 sg:pub.10.1007/bf01297350 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040925698
    234 https://doi.org/10.1007/bf01297350
    235 rdf:type schema:CreativeWork
    236 sg:pub.10.1007/s00425-010-1163-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010576621
    237 https://doi.org/10.1007/s00425-010-1163-4
    238 rdf:type schema:CreativeWork
    239 sg:pub.10.1007/s00425-015-2358-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026451722
    240 https://doi.org/10.1007/s00425-015-2358-5
    241 rdf:type schema:CreativeWork
    242 sg:pub.10.1007/s11103-014-0256-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1047273529
    243 https://doi.org/10.1007/s11103-014-0256-z
    244 rdf:type schema:CreativeWork
    245 sg:pub.10.1007/s11224-009-9442-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1032312126
    246 https://doi.org/10.1007/s11224-009-9442-z
    247 rdf:type schema:CreativeWork
    248 sg:pub.10.1023/a:1010662911148 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049203358
    249 https://doi.org/10.1023/a:1010662911148
    250 rdf:type schema:CreativeWork
    251 sg:pub.10.1038/nbt.2839 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027597437
    252 https://doi.org/10.1038/nbt.2839
    253 rdf:type schema:CreativeWork
    254 sg:pub.10.1038/nprot.2012.081 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053541881
    255 https://doi.org/10.1038/nprot.2012.081
    256 rdf:type schema:CreativeWork
    257 sg:pub.10.1038/srep46099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084955219
    258 https://doi.org/10.1038/srep46099
    259 rdf:type schema:CreativeWork
    260 sg:pub.10.1186/s12864-017-4126-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091810258
    261 https://doi.org/10.1186/s12864-017-4126-3
    262 rdf:type schema:CreativeWork
    263 grid-institutes:grid.418390.7 schema:alternateName Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam, Germany
    264 schema:name Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam, Germany
    265 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...