Both cold and sub-zero acclimation induce cell wall modification and changes in the extracellular proteome in Arabidopsis thaliana View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-02-19

AUTHORS

Daisuke Takahashi, Michal Gorka, Alexander Erban, Alexander Graf, Joachim Kopka, Ellen Zuther, Dirk K. Hincha

ABSTRACT

Cold acclimation (CA) leads to increased plant freezing tolerance during exposure to low, non-freezing temperatures as a result of many physiological, biochemical and molecular changes that have been extensively investigated. In addition, many plant species, such as Arabidopsis thaliana, respond to a subsequent exposure to mild, non-damaging freezing temperatures with an additional increase in freezing tolerance referred to as sub-zero acclimation (SZA). There is comparatively little information available about the molecular basis of SZA. However, previous transcriptomic studies indicated that cell wall modification may play an important role during SZA. Here we show that CA and SZA are accompanied by extensive changes in cell wall amount, composition and structure. While CA leads to a significant increase in cell wall amount, the relative proportions of pectin, hemicellulose and cellulose remained unaltered during both CA and SZA. However, both treatments resulted in more subtle changes in structure as determined by infrared spectroscopy and monosaccharide composition as determined by gas chromatography-mass spectrometry. These differences could be related through a proteomic approach to the accumulation of cell wall modifying enzymes such as pectin methylesterases, pectin methylesterase inhibitors and xyloglucan endotransglucosylases/hydrolases in the extracellular matrix. More... »

PAGES

2289

References to SciGraph publications

  • 2017-04-26. The plant cell-wall enzyme AtXTH3 catalyses covalent cross-linking between cellulose and cello-oligosaccharide in SCIENTIFIC REPORTS
  • 2014-05-08. Measuring Freezing Tolerance: Electrolyte Leakage and Chlorophyll Fluorescence Assays in PLANT COLD ACCLIMATION
  • 2010-04-09. Ice recrystallization inhibition proteins of perennial ryegrass enhance freezing tolerance in PLANTA
  • 2017-09-16. Rapid transcriptional and metabolic regulation of the deacclimation process in cold acclimated Arabidopsis thaliana in BMC GENOMICS
  • 2009-03-13. Pectin, a versatile polysaccharide present in plant cell walls in STRUCTURAL CHEMISTRY
  • 2014-10-14. Global changes in gene expression, assayed by microarray hybridization and quantitative RT-PCR, during acclimation of three Arabidopsis thaliana accessions to sub-zero temperatures after cold acclimation in PLANT MOLECULAR BIOLOGY
  • 2014-03-10. ProteomeXchange provides globally coordinated proteomics data submission and dissemination in NATURE BIOTECHNOLOGY
  • 2001-09. Pectin: cell biology and prospects for functional analysis in PLANT MOLECULAR BIOLOGY
  • 2012-08-02. Determining the polysaccharide composition of plant cell walls in NATURE PROTOCOLS
  • 1985-02. Lipid polymers accumulate in the epidermis and mestome sheath cell walls during low temperature development of winter rye leaves in PROTOPLASMA
  • 1985-03. Wheat tissues freeze-etched during exposure to extracellular freezing: distribution of ice in PLANTA
  • 2015-07-14. Tuning of pectin methylesterification: consequences for cell wall biomechanics and development in PLANTA
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41598-019-38688-3

    DOI

    http://dx.doi.org/10.1038/s41598-019-38688-3

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1112225754

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30783145


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biochemistry and Cell Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0607", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Plant Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Acclimatization", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Arabidopsis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Arabidopsis Proteins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cell Wall", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cellulose", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cold Temperature", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Freezing", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Expression Regulation, Plant", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Pectins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Polysaccharides", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Proteome", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Max-Planck-Institut f\u00fcr Molekulare Pflanzenphysiologie, Am M\u00fchlenberg 1, D-14476, Potsdam, Germany", 
              "id": "http://www.grid.ac/institutes/grid.418390.7", 
              "name": [
                "Max-Planck-Institut f\u00fcr Molekulare Pflanzenphysiologie, Am M\u00fchlenberg 1, D-14476, Potsdam, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Takahashi", 
            "givenName": "Daisuke", 
            "id": "sg:person.010614570205.30", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010614570205.30"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Max-Planck-Institut f\u00fcr Molekulare Pflanzenphysiologie, Am M\u00fchlenberg 1, D-14476, Potsdam, Germany", 
              "id": "http://www.grid.ac/institutes/grid.418390.7", 
              "name": [
                "Max-Planck-Institut f\u00fcr Molekulare Pflanzenphysiologie, Am M\u00fchlenberg 1, D-14476, Potsdam, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gorka", 
            "givenName": "Michal", 
            "id": "sg:person.01245005537.56", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01245005537.56"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Max-Planck-Institut f\u00fcr Molekulare Pflanzenphysiologie, Am M\u00fchlenberg 1, D-14476, Potsdam, Germany", 
              "id": "http://www.grid.ac/institutes/grid.418390.7", 
              "name": [
                "Max-Planck-Institut f\u00fcr Molekulare Pflanzenphysiologie, Am M\u00fchlenberg 1, D-14476, Potsdam, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Erban", 
            "givenName": "Alexander", 
            "id": "sg:person.01353252733.38", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01353252733.38"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Max-Planck-Institut f\u00fcr Molekulare Pflanzenphysiologie, Am M\u00fchlenberg 1, D-14476, Potsdam, Germany", 
              "id": "http://www.grid.ac/institutes/grid.418390.7", 
              "name": [
                "Max-Planck-Institut f\u00fcr Molekulare Pflanzenphysiologie, Am M\u00fchlenberg 1, D-14476, Potsdam, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Graf", 
            "givenName": "Alexander", 
            "id": "sg:person.015050570567.98", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015050570567.98"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Max-Planck-Institut f\u00fcr Molekulare Pflanzenphysiologie, Am M\u00fchlenberg 1, D-14476, Potsdam, Germany", 
              "id": "http://www.grid.ac/institutes/grid.418390.7", 
              "name": [
                "Max-Planck-Institut f\u00fcr Molekulare Pflanzenphysiologie, Am M\u00fchlenberg 1, D-14476, Potsdam, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kopka", 
            "givenName": "Joachim", 
            "id": "sg:person.0633132075.84", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0633132075.84"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Max-Planck-Institut f\u00fcr Molekulare Pflanzenphysiologie, Am M\u00fchlenberg 1, D-14476, Potsdam, Germany", 
              "id": "http://www.grid.ac/institutes/grid.418390.7", 
              "name": [
                "Max-Planck-Institut f\u00fcr Molekulare Pflanzenphysiologie, Am M\u00fchlenberg 1, D-14476, Potsdam, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zuther", 
            "givenName": "Ellen", 
            "id": "sg:person.0627062115.49", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0627062115.49"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Max-Planck-Institut f\u00fcr Molekulare Pflanzenphysiologie, Am M\u00fchlenberg 1, D-14476, Potsdam, Germany", 
              "id": "http://www.grid.ac/institutes/grid.418390.7", 
              "name": [
                "Max-Planck-Institut f\u00fcr Molekulare Pflanzenphysiologie, Am M\u00fchlenberg 1, D-14476, Potsdam, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hincha", 
            "givenName": "Dirk K.", 
            "id": "sg:person.0636364224.44", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0636364224.44"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s11103-014-0256-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047273529", 
              "https://doi.org/10.1007/s11103-014-0256-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4939-0844-8_3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011954319", 
              "https://doi.org/10.1007/978-1-4939-0844-8_3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1010662911148", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049203358", 
              "https://doi.org/10.1023/a:1010662911148"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00425-015-2358-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026451722", 
              "https://doi.org/10.1007/s00425-015-2358-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11224-009-9442-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032312126", 
              "https://doi.org/10.1007/s11224-009-9442-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.2839", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027597437", 
              "https://doi.org/10.1038/nbt.2839"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep46099", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084955219", 
              "https://doi.org/10.1038/srep46099"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nprot.2012.081", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053541881", 
              "https://doi.org/10.1038/nprot.2012.081"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01297350", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040925698", 
              "https://doi.org/10.1007/bf01297350"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12864-017-4126-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091810258", 
              "https://doi.org/10.1186/s12864-017-4126-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00425-010-1163-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010576621", 
              "https://doi.org/10.1007/s00425-010-1163-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00395139", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024387131", 
              "https://doi.org/10.1007/bf00395139"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-02-19", 
        "datePublishedReg": "2019-02-19", 
        "description": "Cold acclimation (CA) leads to increased plant freezing tolerance during exposure to low, non-freezing temperatures as a result of many physiological, biochemical and molecular changes that have been extensively investigated. In addition, many plant species, such as Arabidopsis thaliana, respond to a subsequent exposure to mild, non-damaging freezing temperatures with an additional increase in freezing tolerance referred to as sub-zero acclimation (SZA). There is comparatively little information available about the molecular basis of SZA. However, previous transcriptomic studies indicated that cell wall modification may play an important role during SZA. Here we show that CA and SZA are accompanied by extensive changes in cell wall amount, composition and structure. While CA leads to a significant increase in cell wall amount, the relative proportions of pectin, hemicellulose and cellulose remained unaltered during both CA and SZA. However, both treatments resulted in more subtle changes in structure as determined by infrared spectroscopy and monosaccharide composition as determined by gas chromatography-mass spectrometry. These differences could be related through a proteomic approach to the accumulation of cell wall modifying enzymes such as pectin methylesterases, pectin methylesterase inhibitors and xyloglucan endotransglucosylases/hydrolases in the extracellular matrix.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/s41598-019-38688-3", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1045337", 
            "issn": [
              "2045-2322"
            ], 
            "name": "Scientific Reports", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "9"
          }
        ], 
        "keywords": [
          "cell wall modification", 
          "cold acclimation", 
          "Arabidopsis thaliana", 
          "wall modification", 
          "xyloglucan endotransglucosylases/hydrolases", 
          "non-freezing temperatures", 
          "previous transcriptomic studies", 
          "gas chromatography-mass spectrometry", 
          "extracellular proteome", 
          "methylesterase inhibitor", 
          "pectin methylesterases", 
          "plant species", 
          "proteomic approach", 
          "transcriptomic studies", 
          "chromatography-mass spectrometry", 
          "molecular basis", 
          "cell wall", 
          "extracellular matrix", 
          "thaliana", 
          "molecular changes", 
          "acclimation", 
          "more subtle changes", 
          "extensive changes", 
          "monosaccharide composition", 
          "methylesterases", 
          "important role", 
          "relative proportions", 
          "proteome", 
          "tolerance", 
          "little information", 
          "hydrolases", 
          "subtle changes", 
          "species", 
          "plants", 
          "spectroscopy", 
          "enzyme", 
          "spectrometry", 
          "structure", 
          "modification", 
          "composition", 
          "accumulation", 
          "inhibitors", 
          "freezing temperature", 
          "temperature", 
          "cellulose", 
          "subsequent exposure", 
          "pectin", 
          "changes", 
          "role", 
          "amount", 
          "exposure", 
          "additional increase", 
          "SZA", 
          "significant increase", 
          "matrix", 
          "increase", 
          "basis", 
          "addition", 
          "proportion", 
          "wall", 
          "study", 
          "differences", 
          "information", 
          "results", 
          "treatment", 
          "approach"
        ], 
        "name": "Both cold and sub-zero acclimation induce cell wall modification and changes in the extracellular proteome in Arabidopsis thaliana", 
        "pagination": "2289", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1112225754"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41598-019-38688-3"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30783145"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41598-019-38688-3", 
          "https://app.dimensions.ai/details/publication/pub.1112225754"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-05-20T07:36", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_827.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/s41598-019-38688-3"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-38688-3'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-38688-3'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-38688-3'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-38688-3'


     

    This table displays all metadata directly associated to this object as RDF triples.

    265 TRIPLES      22 PREDICATES      116 URIs      95 LITERALS      18 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41598-019-38688-3 schema:about N261deb91d48649fca2c313b35ba39425
    2 N27fbed610b864f46878c4a880d013821
    3 N32acda77f9c449b98e6e9d370ad882d7
    4 N6385a78940cd4ba69c36b988a81bcd98
    5 N655d424a06994d9e8e7a4b5558e1d527
    6 N8658f9d638294cdc815c5f86d0772a72
    7 N8e3915cb799c4824a7f0321427c57a26
    8 Na453695ebb984fdba838a3d769ce09f0
    9 Nb823a1bb51634edd97252252f8936ef7
    10 Nca1d5fc25d304ef891caee6519b2a521
    11 Nd2e0f0d2f08f4c5ea26f01d867bf8d5d
    12 anzsrc-for:06
    13 anzsrc-for:0601
    14 anzsrc-for:0607
    15 schema:author Nf7176413b6524297b9b5f96b1c95bd37
    16 schema:citation sg:pub.10.1007/978-1-4939-0844-8_3
    17 sg:pub.10.1007/bf00395139
    18 sg:pub.10.1007/bf01297350
    19 sg:pub.10.1007/s00425-010-1163-4
    20 sg:pub.10.1007/s00425-015-2358-5
    21 sg:pub.10.1007/s11103-014-0256-z
    22 sg:pub.10.1007/s11224-009-9442-z
    23 sg:pub.10.1023/a:1010662911148
    24 sg:pub.10.1038/nbt.2839
    25 sg:pub.10.1038/nprot.2012.081
    26 sg:pub.10.1038/srep46099
    27 sg:pub.10.1186/s12864-017-4126-3
    28 schema:datePublished 2019-02-19
    29 schema:datePublishedReg 2019-02-19
    30 schema:description Cold acclimation (CA) leads to increased plant freezing tolerance during exposure to low, non-freezing temperatures as a result of many physiological, biochemical and molecular changes that have been extensively investigated. In addition, many plant species, such as Arabidopsis thaliana, respond to a subsequent exposure to mild, non-damaging freezing temperatures with an additional increase in freezing tolerance referred to as sub-zero acclimation (SZA). There is comparatively little information available about the molecular basis of SZA. However, previous transcriptomic studies indicated that cell wall modification may play an important role during SZA. Here we show that CA and SZA are accompanied by extensive changes in cell wall amount, composition and structure. While CA leads to a significant increase in cell wall amount, the relative proportions of pectin, hemicellulose and cellulose remained unaltered during both CA and SZA. However, both treatments resulted in more subtle changes in structure as determined by infrared spectroscopy and monosaccharide composition as determined by gas chromatography-mass spectrometry. These differences could be related through a proteomic approach to the accumulation of cell wall modifying enzymes such as pectin methylesterases, pectin methylesterase inhibitors and xyloglucan endotransglucosylases/hydrolases in the extracellular matrix.
    31 schema:genre article
    32 schema:inLanguage en
    33 schema:isAccessibleForFree true
    34 schema:isPartOf N761b9c9aa874478d968164cedb1eb1d5
    35 N7a952f58eac04f7fba38427ca97440a8
    36 sg:journal.1045337
    37 schema:keywords Arabidopsis thaliana
    38 SZA
    39 acclimation
    40 accumulation
    41 addition
    42 additional increase
    43 amount
    44 approach
    45 basis
    46 cell wall
    47 cell wall modification
    48 cellulose
    49 changes
    50 chromatography-mass spectrometry
    51 cold acclimation
    52 composition
    53 differences
    54 enzyme
    55 exposure
    56 extensive changes
    57 extracellular matrix
    58 extracellular proteome
    59 freezing temperature
    60 gas chromatography-mass spectrometry
    61 hydrolases
    62 important role
    63 increase
    64 information
    65 inhibitors
    66 little information
    67 matrix
    68 methylesterase inhibitor
    69 methylesterases
    70 modification
    71 molecular basis
    72 molecular changes
    73 monosaccharide composition
    74 more subtle changes
    75 non-freezing temperatures
    76 pectin
    77 pectin methylesterases
    78 plant species
    79 plants
    80 previous transcriptomic studies
    81 proportion
    82 proteome
    83 proteomic approach
    84 relative proportions
    85 results
    86 role
    87 significant increase
    88 species
    89 spectrometry
    90 spectroscopy
    91 structure
    92 study
    93 subsequent exposure
    94 subtle changes
    95 temperature
    96 thaliana
    97 tolerance
    98 transcriptomic studies
    99 treatment
    100 wall
    101 wall modification
    102 xyloglucan endotransglucosylases/hydrolases
    103 schema:name Both cold and sub-zero acclimation induce cell wall modification and changes in the extracellular proteome in Arabidopsis thaliana
    104 schema:pagination 2289
    105 schema:productId N1b5f2b48efde4935be684136f6396698
    106 N8ccf63942ebd43d0afa4c5279dfd2043
    107 Nb7d27521242e4dd896851f6d9a930b7f
    108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112225754
    109 https://doi.org/10.1038/s41598-019-38688-3
    110 schema:sdDatePublished 2022-05-20T07:36
    111 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    112 schema:sdPublisher Nab21d94354d745b983613b8fe00cbaee
    113 schema:url https://doi.org/10.1038/s41598-019-38688-3
    114 sgo:license sg:explorer/license/
    115 sgo:sdDataset articles
    116 rdf:type schema:ScholarlyArticle
    117 N1b5f2b48efde4935be684136f6396698 schema:name doi
    118 schema:value 10.1038/s41598-019-38688-3
    119 rdf:type schema:PropertyValue
    120 N261deb91d48649fca2c313b35ba39425 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    121 schema:name Cellulose
    122 rdf:type schema:DefinedTerm
    123 N27fbed610b864f46878c4a880d013821 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    124 schema:name Freezing
    125 rdf:type schema:DefinedTerm
    126 N32acda77f9c449b98e6e9d370ad882d7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    127 schema:name Proteome
    128 rdf:type schema:DefinedTerm
    129 N6385a78940cd4ba69c36b988a81bcd98 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    130 schema:name Cold Temperature
    131 rdf:type schema:DefinedTerm
    132 N655d424a06994d9e8e7a4b5558e1d527 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    133 schema:name Arabidopsis Proteins
    134 rdf:type schema:DefinedTerm
    135 N7406bd9c03ae4c75ac6f761fec1e4d4b rdf:first sg:person.01245005537.56
    136 rdf:rest Nb9c90917788243db9618d4aa83007072
    137 N761b9c9aa874478d968164cedb1eb1d5 schema:issueNumber 1
    138 rdf:type schema:PublicationIssue
    139 N7a952f58eac04f7fba38427ca97440a8 schema:volumeNumber 9
    140 rdf:type schema:PublicationVolume
    141 N8658f9d638294cdc815c5f86d0772a72 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    142 schema:name Gene Expression Regulation, Plant
    143 rdf:type schema:DefinedTerm
    144 N8ccf63942ebd43d0afa4c5279dfd2043 schema:name pubmed_id
    145 schema:value 30783145
    146 rdf:type schema:PropertyValue
    147 N8e3915cb799c4824a7f0321427c57a26 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    148 schema:name Cell Wall
    149 rdf:type schema:DefinedTerm
    150 Na453695ebb984fdba838a3d769ce09f0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    151 schema:name Arabidopsis
    152 rdf:type schema:DefinedTerm
    153 Nab21d94354d745b983613b8fe00cbaee schema:name Springer Nature - SN SciGraph project
    154 rdf:type schema:Organization
    155 Nb7d27521242e4dd896851f6d9a930b7f schema:name dimensions_id
    156 schema:value pub.1112225754
    157 rdf:type schema:PropertyValue
    158 Nb823a1bb51634edd97252252f8936ef7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    159 schema:name Acclimatization
    160 rdf:type schema:DefinedTerm
    161 Nb9c90917788243db9618d4aa83007072 rdf:first sg:person.01353252733.38
    162 rdf:rest Nf9253f395e9b4758a219111dd1032bb8
    163 Nbca6990aef99488992d766d170bcf0ee rdf:first sg:person.0636364224.44
    164 rdf:rest rdf:nil
    165 Nca1d5fc25d304ef891caee6519b2a521 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    166 schema:name Polysaccharides
    167 rdf:type schema:DefinedTerm
    168 Nd2e0f0d2f08f4c5ea26f01d867bf8d5d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    169 schema:name Pectins
    170 rdf:type schema:DefinedTerm
    171 Ndf26e1cef7294a209b1bc5fcd6872934 rdf:first sg:person.0627062115.49
    172 rdf:rest Nbca6990aef99488992d766d170bcf0ee
    173 Ne412c9bd40524896a3bf767cb695abab rdf:first sg:person.0633132075.84
    174 rdf:rest Ndf26e1cef7294a209b1bc5fcd6872934
    175 Nf7176413b6524297b9b5f96b1c95bd37 rdf:first sg:person.010614570205.30
    176 rdf:rest N7406bd9c03ae4c75ac6f761fec1e4d4b
    177 Nf9253f395e9b4758a219111dd1032bb8 rdf:first sg:person.015050570567.98
    178 rdf:rest Ne412c9bd40524896a3bf767cb695abab
    179 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    180 schema:name Biological Sciences
    181 rdf:type schema:DefinedTerm
    182 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
    183 schema:name Biochemistry and Cell Biology
    184 rdf:type schema:DefinedTerm
    185 anzsrc-for:0607 schema:inDefinedTermSet anzsrc-for:
    186 schema:name Plant Biology
    187 rdf:type schema:DefinedTerm
    188 sg:journal.1045337 schema:issn 2045-2322
    189 schema:name Scientific Reports
    190 schema:publisher Springer Nature
    191 rdf:type schema:Periodical
    192 sg:person.010614570205.30 schema:affiliation grid-institutes:grid.418390.7
    193 schema:familyName Takahashi
    194 schema:givenName Daisuke
    195 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010614570205.30
    196 rdf:type schema:Person
    197 sg:person.01245005537.56 schema:affiliation grid-institutes:grid.418390.7
    198 schema:familyName Gorka
    199 schema:givenName Michal
    200 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01245005537.56
    201 rdf:type schema:Person
    202 sg:person.01353252733.38 schema:affiliation grid-institutes:grid.418390.7
    203 schema:familyName Erban
    204 schema:givenName Alexander
    205 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01353252733.38
    206 rdf:type schema:Person
    207 sg:person.015050570567.98 schema:affiliation grid-institutes:grid.418390.7
    208 schema:familyName Graf
    209 schema:givenName Alexander
    210 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015050570567.98
    211 rdf:type schema:Person
    212 sg:person.0627062115.49 schema:affiliation grid-institutes:grid.418390.7
    213 schema:familyName Zuther
    214 schema:givenName Ellen
    215 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0627062115.49
    216 rdf:type schema:Person
    217 sg:person.0633132075.84 schema:affiliation grid-institutes:grid.418390.7
    218 schema:familyName Kopka
    219 schema:givenName Joachim
    220 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0633132075.84
    221 rdf:type schema:Person
    222 sg:person.0636364224.44 schema:affiliation grid-institutes:grid.418390.7
    223 schema:familyName Hincha
    224 schema:givenName Dirk K.
    225 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0636364224.44
    226 rdf:type schema:Person
    227 sg:pub.10.1007/978-1-4939-0844-8_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011954319
    228 https://doi.org/10.1007/978-1-4939-0844-8_3
    229 rdf:type schema:CreativeWork
    230 sg:pub.10.1007/bf00395139 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024387131
    231 https://doi.org/10.1007/bf00395139
    232 rdf:type schema:CreativeWork
    233 sg:pub.10.1007/bf01297350 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040925698
    234 https://doi.org/10.1007/bf01297350
    235 rdf:type schema:CreativeWork
    236 sg:pub.10.1007/s00425-010-1163-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010576621
    237 https://doi.org/10.1007/s00425-010-1163-4
    238 rdf:type schema:CreativeWork
    239 sg:pub.10.1007/s00425-015-2358-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026451722
    240 https://doi.org/10.1007/s00425-015-2358-5
    241 rdf:type schema:CreativeWork
    242 sg:pub.10.1007/s11103-014-0256-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1047273529
    243 https://doi.org/10.1007/s11103-014-0256-z
    244 rdf:type schema:CreativeWork
    245 sg:pub.10.1007/s11224-009-9442-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1032312126
    246 https://doi.org/10.1007/s11224-009-9442-z
    247 rdf:type schema:CreativeWork
    248 sg:pub.10.1023/a:1010662911148 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049203358
    249 https://doi.org/10.1023/a:1010662911148
    250 rdf:type schema:CreativeWork
    251 sg:pub.10.1038/nbt.2839 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027597437
    252 https://doi.org/10.1038/nbt.2839
    253 rdf:type schema:CreativeWork
    254 sg:pub.10.1038/nprot.2012.081 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053541881
    255 https://doi.org/10.1038/nprot.2012.081
    256 rdf:type schema:CreativeWork
    257 sg:pub.10.1038/srep46099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084955219
    258 https://doi.org/10.1038/srep46099
    259 rdf:type schema:CreativeWork
    260 sg:pub.10.1186/s12864-017-4126-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091810258
    261 https://doi.org/10.1186/s12864-017-4126-3
    262 rdf:type schema:CreativeWork
    263 grid-institutes:grid.418390.7 schema:alternateName Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam, Germany
    264 schema:name Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam, Germany
    265 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...