New mechanism of plasmons specific for spin-polarized nanoparticles View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Hari L. Bhatta, Ali E. Aliev, Vladimir P. Drachev

ABSTRACT

Here it is experimentally shown that Co nanoparticles with a single-domain crystal structure support a plasmon resonance at approximately 280 nm with better quality than gold nanoparticle resonance in the visible. Magnetic nature of the nanoparticles suggests a new type of these plasmons. The exchange interaction of electrons splits the energy bands between spin-up electrons and spin-down electrons. It makes it possible for coexistence of two independent channels of conductivity as well as two independent plasmons in the same nanoparticle with very different electron relaxation. Indeed, the density of empty states in a partially populated d-band is high, resulting in a large relaxation rate of the spin-down conduction electrons and consequently in low quality of the plasmon resonance. In contrast, the majority electrons with a completely filled d-band do not provide final states for the scattering processes of the conduction spin-up electrons, therefore supporting a high quality plasmon resonance. The scattering without spin flip is required to keep these two plasmons independent. More... »

PAGES

2019

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-019-38657-w

DOI

http://dx.doi.org/10.1038/s41598-019-38657-w

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112136684

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30765813


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of North Texas", 
          "id": "https://www.grid.ac/institutes/grid.266869.5", 
          "name": [
            "Department of Physics and Advanced Materials and Mechanical Processing Institute, University of North Texas, 76203, Denton, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bhatta", 
        "givenName": "Hari L.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The University of Texas at Dallas", 
          "id": "https://www.grid.ac/institutes/grid.267323.1", 
          "name": [
            "A. G. MacDiarmid NanoTech Institute, University of Texas at Dallas, 75083, Richardson, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Aliev", 
        "givenName": "Ali E.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Skolkovo Institute of Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.454320.4", 
          "name": [
            "Department of Physics and Advanced Materials and Mechanical Processing Institute, University of North Texas, 76203, Denton, TX, USA", 
            "Skolkovo Institute of Science and Technology, 121205, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Drachev", 
        "givenName": "Vladimir P.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nmat2024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002220407", 
          "https://doi.org/10.1038/nmat2024"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/1.1613006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016565697", 
          "https://doi.org/10.1134/1.1613006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00018736400101041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022273798"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00018736400101041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022273798"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1027780347", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-09109-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027780347", 
          "https://doi.org/10.1007/978-3-662-09109-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-09109-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027780347", 
          "https://doi.org/10.1007/978-3-662-09109-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0081-1947(01)80019-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033674640"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.39.4828", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036933778"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.39.4828", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036933778"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rspa.1936.0154", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046560977"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4942216", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050848501"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.61.2472", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052840638"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.61.2472", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052840638"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.370357", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058004722"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.52.6513", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060578515"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.52.6513", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060578515"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.9.5056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060644082"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.9.5056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060644082"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.21.1190", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060771461"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.21.1190", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060771461"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "Here it is experimentally shown that Co nanoparticles with a single-domain crystal structure support a plasmon resonance at approximately 280\u2009nm with better quality than gold nanoparticle resonance in the visible. Magnetic nature of the nanoparticles suggests a new type of these plasmons. The exchange interaction of electrons splits the energy bands between spin-up electrons and spin-down electrons. It makes it possible for coexistence of two independent channels of conductivity as well as two independent plasmons in the same nanoparticle with very different electron relaxation. Indeed, the density of empty states in a partially populated d-band is high, resulting in a large relaxation rate of the spin-down conduction electrons and consequently in low quality of the plasmon resonance. In contrast, the majority electrons with a completely filled d-band do not provide final states for the scattering processes of the conduction spin-up electrons, therefore supporting a high quality plasmon resonance. The scattering without spin flip is required to keep these two plasmons independent.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-019-38657-w", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "New mechanism of plasmons specific for spin-polarized nanoparticles", 
    "pagination": "2019", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b1f3d111de5df1e1af42a0496dc6c41a58aab9a4ae151f856cdaf068b95a84cb"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30765813"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-019-38657-w"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112136684"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-019-38657-w", 
      "https://app.dimensions.ai/details/publication/pub.1112136684"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:12", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000338_0000000338/records_47985_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-019-38657-w"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-38657-w'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-38657-w'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-38657-w'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-38657-w'


 

This table displays all metadata directly associated to this object as RDF triples.

130 TRIPLES      21 PREDICATES      43 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-019-38657-w schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author N7c9401f902dd45acb3b60f96bd0745f0
4 schema:citation sg:pub.10.1007/978-3-662-09109-8
5 sg:pub.10.1038/nmat2024
6 sg:pub.10.1134/1.1613006
7 https://app.dimensions.ai/details/publication/pub.1027780347
8 https://doi.org/10.1016/s0081-1947(01)80019-9
9 https://doi.org/10.1063/1.370357
10 https://doi.org/10.1063/1.4942216
11 https://doi.org/10.1080/00018736400101041
12 https://doi.org/10.1098/rspa.1936.0154
13 https://doi.org/10.1103/physrevb.39.4828
14 https://doi.org/10.1103/physrevb.52.6513
15 https://doi.org/10.1103/physrevb.9.5056
16 https://doi.org/10.1103/physrevlett.21.1190
17 https://doi.org/10.1103/physrevlett.61.2472
18 schema:datePublished 2019-12
19 schema:datePublishedReg 2019-12-01
20 schema:description Here it is experimentally shown that Co nanoparticles with a single-domain crystal structure support a plasmon resonance at approximately 280 nm with better quality than gold nanoparticle resonance in the visible. Magnetic nature of the nanoparticles suggests a new type of these plasmons. The exchange interaction of electrons splits the energy bands between spin-up electrons and spin-down electrons. It makes it possible for coexistence of two independent channels of conductivity as well as two independent plasmons in the same nanoparticle with very different electron relaxation. Indeed, the density of empty states in a partially populated d-band is high, resulting in a large relaxation rate of the spin-down conduction electrons and consequently in low quality of the plasmon resonance. In contrast, the majority electrons with a completely filled d-band do not provide final states for the scattering processes of the conduction spin-up electrons, therefore supporting a high quality plasmon resonance. The scattering without spin flip is required to keep these two plasmons independent.
21 schema:genre research_article
22 schema:inLanguage en
23 schema:isAccessibleForFree true
24 schema:isPartOf N744a39102a9248b6b8d0d1708d2d65da
25 Nd10f021668c940859f475f9ee783fab6
26 sg:journal.1045337
27 schema:name New mechanism of plasmons specific for spin-polarized nanoparticles
28 schema:pagination 2019
29 schema:productId N3e5d1bf198e64e6386c02a7f258a4300
30 N3ffd118557f54f3db3576c85227f9472
31 N4596610ea31b4725bf2d07e2ba6a79d1
32 Nb21dc2cb5d0e49d39152d3158b358ef5
33 Nfe64938369f2403ebd08dfa093e58af5
34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112136684
35 https://doi.org/10.1038/s41598-019-38657-w
36 schema:sdDatePublished 2019-04-11T09:12
37 schema:sdLicense https://scigraph.springernature.com/explorer/license/
38 schema:sdPublisher N2d47a1586dfd49b79a9440a41acfe48b
39 schema:url https://www.nature.com/articles/s41598-019-38657-w
40 sgo:license sg:explorer/license/
41 sgo:sdDataset articles
42 rdf:type schema:ScholarlyArticle
43 N1da8d463e7cf4768a172acdd62dbb410 rdf:first Nac16e6ca358040fdb4779f19a7106dfa
44 rdf:rest N6e07ed23baee4d1d8c4bd329e8383eae
45 N2d47a1586dfd49b79a9440a41acfe48b schema:name Springer Nature - SN SciGraph project
46 rdf:type schema:Organization
47 N3a7c2e03108f41b68ed9a107b2cafa65 schema:affiliation https://www.grid.ac/institutes/grid.266869.5
48 schema:familyName Bhatta
49 schema:givenName Hari L.
50 rdf:type schema:Person
51 N3e5d1bf198e64e6386c02a7f258a4300 schema:name readcube_id
52 schema:value b1f3d111de5df1e1af42a0496dc6c41a58aab9a4ae151f856cdaf068b95a84cb
53 rdf:type schema:PropertyValue
54 N3ffd118557f54f3db3576c85227f9472 schema:name pubmed_id
55 schema:value 30765813
56 rdf:type schema:PropertyValue
57 N4596610ea31b4725bf2d07e2ba6a79d1 schema:name dimensions_id
58 schema:value pub.1112136684
59 rdf:type schema:PropertyValue
60 N4b60a0eec9f54b848afed3d04a7069b2 schema:affiliation https://www.grid.ac/institutes/grid.454320.4
61 schema:familyName Drachev
62 schema:givenName Vladimir P.
63 rdf:type schema:Person
64 N6e07ed23baee4d1d8c4bd329e8383eae rdf:first N4b60a0eec9f54b848afed3d04a7069b2
65 rdf:rest rdf:nil
66 N744a39102a9248b6b8d0d1708d2d65da schema:issueNumber 1
67 rdf:type schema:PublicationIssue
68 N7c9401f902dd45acb3b60f96bd0745f0 rdf:first N3a7c2e03108f41b68ed9a107b2cafa65
69 rdf:rest N1da8d463e7cf4768a172acdd62dbb410
70 Nac16e6ca358040fdb4779f19a7106dfa schema:affiliation https://www.grid.ac/institutes/grid.267323.1
71 schema:familyName Aliev
72 schema:givenName Ali E.
73 rdf:type schema:Person
74 Nb21dc2cb5d0e49d39152d3158b358ef5 schema:name doi
75 schema:value 10.1038/s41598-019-38657-w
76 rdf:type schema:PropertyValue
77 Nd10f021668c940859f475f9ee783fab6 schema:volumeNumber 9
78 rdf:type schema:PublicationVolume
79 Nfe64938369f2403ebd08dfa093e58af5 schema:name nlm_unique_id
80 schema:value 101563288
81 rdf:type schema:PropertyValue
82 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
83 schema:name Chemical Sciences
84 rdf:type schema:DefinedTerm
85 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
86 schema:name Physical Chemistry (incl. Structural)
87 rdf:type schema:DefinedTerm
88 sg:journal.1045337 schema:issn 2045-2322
89 schema:name Scientific Reports
90 rdf:type schema:Periodical
91 sg:pub.10.1007/978-3-662-09109-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027780347
92 https://doi.org/10.1007/978-3-662-09109-8
93 rdf:type schema:CreativeWork
94 sg:pub.10.1038/nmat2024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002220407
95 https://doi.org/10.1038/nmat2024
96 rdf:type schema:CreativeWork
97 sg:pub.10.1134/1.1613006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016565697
98 https://doi.org/10.1134/1.1613006
99 rdf:type schema:CreativeWork
100 https://app.dimensions.ai/details/publication/pub.1027780347 schema:CreativeWork
101 https://doi.org/10.1016/s0081-1947(01)80019-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033674640
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1063/1.370357 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058004722
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1063/1.4942216 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050848501
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1080/00018736400101041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022273798
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1098/rspa.1936.0154 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046560977
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1103/physrevb.39.4828 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036933778
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1103/physrevb.52.6513 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060578515
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1103/physrevb.9.5056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060644082
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1103/physrevlett.21.1190 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060771461
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1103/physrevlett.61.2472 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052840638
120 rdf:type schema:CreativeWork
121 https://www.grid.ac/institutes/grid.266869.5 schema:alternateName University of North Texas
122 schema:name Department of Physics and Advanced Materials and Mechanical Processing Institute, University of North Texas, 76203, Denton, TX, USA
123 rdf:type schema:Organization
124 https://www.grid.ac/institutes/grid.267323.1 schema:alternateName The University of Texas at Dallas
125 schema:name A. G. MacDiarmid NanoTech Institute, University of Texas at Dallas, 75083, Richardson, TX, USA
126 rdf:type schema:Organization
127 https://www.grid.ac/institutes/grid.454320.4 schema:alternateName Skolkovo Institute of Science and Technology
128 schema:name Department of Physics and Advanced Materials and Mechanical Processing Institute, University of North Texas, 76203, Denton, TX, USA
129 Skolkovo Institute of Science and Technology, 121205, Moscow, Russia
130 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...