New mechanism of plasmons specific for spin-polarized nanoparticles View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Hari L. Bhatta, Ali E. Aliev, Vladimir P. Drachev

ABSTRACT

Here it is experimentally shown that Co nanoparticles with a single-domain crystal structure support a plasmon resonance at approximately 280 nm with better quality than gold nanoparticle resonance in the visible. Magnetic nature of the nanoparticles suggests a new type of these plasmons. The exchange interaction of electrons splits the energy bands between spin-up electrons and spin-down electrons. It makes it possible for coexistence of two independent channels of conductivity as well as two independent plasmons in the same nanoparticle with very different electron relaxation. Indeed, the density of empty states in a partially populated d-band is high, resulting in a large relaxation rate of the spin-down conduction electrons and consequently in low quality of the plasmon resonance. In contrast, the majority electrons with a completely filled d-band do not provide final states for the scattering processes of the conduction spin-up electrons, therefore supporting a high quality plasmon resonance. The scattering without spin flip is required to keep these two plasmons independent. More... »

PAGES

2019

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-019-38657-w

DOI

http://dx.doi.org/10.1038/s41598-019-38657-w

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112136684

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30765813


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of North Texas", 
          "id": "https://www.grid.ac/institutes/grid.266869.5", 
          "name": [
            "Department of Physics and Advanced Materials and Mechanical Processing Institute, University of North Texas, 76203, Denton, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bhatta", 
        "givenName": "Hari L.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The University of Texas at Dallas", 
          "id": "https://www.grid.ac/institutes/grid.267323.1", 
          "name": [
            "A. G. MacDiarmid NanoTech Institute, University of Texas at Dallas, 75083, Richardson, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Aliev", 
        "givenName": "Ali E.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Skolkovo Institute of Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.454320.4", 
          "name": [
            "Department of Physics and Advanced Materials and Mechanical Processing Institute, University of North Texas, 76203, Denton, TX, USA", 
            "Skolkovo Institute of Science and Technology, 121205, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Drachev", 
        "givenName": "Vladimir P.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nmat2024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002220407", 
          "https://doi.org/10.1038/nmat2024"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/1.1613006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016565697", 
          "https://doi.org/10.1134/1.1613006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00018736400101041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022273798"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00018736400101041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022273798"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1027780347", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-09109-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027780347", 
          "https://doi.org/10.1007/978-3-662-09109-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-09109-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027780347", 
          "https://doi.org/10.1007/978-3-662-09109-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0081-1947(01)80019-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033674640"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.39.4828", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036933778"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.39.4828", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036933778"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rspa.1936.0154", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046560977"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4942216", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050848501"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.61.2472", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052840638"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.61.2472", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052840638"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.370357", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058004722"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.52.6513", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060578515"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.52.6513", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060578515"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.9.5056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060644082"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.9.5056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060644082"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.21.1190", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060771461"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.21.1190", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060771461"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "Here it is experimentally shown that Co nanoparticles with a single-domain crystal structure support a plasmon resonance at approximately 280\u2009nm with better quality than gold nanoparticle resonance in the visible. Magnetic nature of the nanoparticles suggests a new type of these plasmons. The exchange interaction of electrons splits the energy bands between spin-up electrons and spin-down electrons. It makes it possible for coexistence of two independent channels of conductivity as well as two independent plasmons in the same nanoparticle with very different electron relaxation. Indeed, the density of empty states in a partially populated d-band is high, resulting in a large relaxation rate of the spin-down conduction electrons and consequently in low quality of the plasmon resonance. In contrast, the majority electrons with a completely filled d-band do not provide final states for the scattering processes of the conduction spin-up electrons, therefore supporting a high quality plasmon resonance. The scattering without spin flip is required to keep these two plasmons independent.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-019-38657-w", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "New mechanism of plasmons specific for spin-polarized nanoparticles", 
    "pagination": "2019", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b1f3d111de5df1e1af42a0496dc6c41a58aab9a4ae151f856cdaf068b95a84cb"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30765813"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-019-38657-w"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112136684"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-019-38657-w", 
      "https://app.dimensions.ai/details/publication/pub.1112136684"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:12", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000338_0000000338/records_47985_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-019-38657-w"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-38657-w'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-38657-w'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-38657-w'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-019-38657-w'


 

This table displays all metadata directly associated to this object as RDF triples.

130 TRIPLES      21 PREDICATES      43 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-019-38657-w schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author N2dde8b3266ca4386a68646b8ef451d09
4 schema:citation sg:pub.10.1007/978-3-662-09109-8
5 sg:pub.10.1038/nmat2024
6 sg:pub.10.1134/1.1613006
7 https://app.dimensions.ai/details/publication/pub.1027780347
8 https://doi.org/10.1016/s0081-1947(01)80019-9
9 https://doi.org/10.1063/1.370357
10 https://doi.org/10.1063/1.4942216
11 https://doi.org/10.1080/00018736400101041
12 https://doi.org/10.1098/rspa.1936.0154
13 https://doi.org/10.1103/physrevb.39.4828
14 https://doi.org/10.1103/physrevb.52.6513
15 https://doi.org/10.1103/physrevb.9.5056
16 https://doi.org/10.1103/physrevlett.21.1190
17 https://doi.org/10.1103/physrevlett.61.2472
18 schema:datePublished 2019-12
19 schema:datePublishedReg 2019-12-01
20 schema:description Here it is experimentally shown that Co nanoparticles with a single-domain crystal structure support a plasmon resonance at approximately 280 nm with better quality than gold nanoparticle resonance in the visible. Magnetic nature of the nanoparticles suggests a new type of these plasmons. The exchange interaction of electrons splits the energy bands between spin-up electrons and spin-down electrons. It makes it possible for coexistence of two independent channels of conductivity as well as two independent plasmons in the same nanoparticle with very different electron relaxation. Indeed, the density of empty states in a partially populated d-band is high, resulting in a large relaxation rate of the spin-down conduction electrons and consequently in low quality of the plasmon resonance. In contrast, the majority electrons with a completely filled d-band do not provide final states for the scattering processes of the conduction spin-up electrons, therefore supporting a high quality plasmon resonance. The scattering without spin flip is required to keep these two plasmons independent.
21 schema:genre research_article
22 schema:inLanguage en
23 schema:isAccessibleForFree true
24 schema:isPartOf N2845952b67594531816cfb49a208d8a4
25 N45cfb300f7f3472bb49c45446de41ba9
26 sg:journal.1045337
27 schema:name New mechanism of plasmons specific for spin-polarized nanoparticles
28 schema:pagination 2019
29 schema:productId N3047b1cecd884d34ac2dc9b892cf61b5
30 N93e6dbc6c68e459cb8076378b39bd644
31 N95f92e55ddfd46658492af542a46363e
32 Ne073c6c88aa94f578a5a5631874bd658
33 Nf71909b0841e4a54b9d31fc28d1d4780
34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112136684
35 https://doi.org/10.1038/s41598-019-38657-w
36 schema:sdDatePublished 2019-04-11T09:12
37 schema:sdLicense https://scigraph.springernature.com/explorer/license/
38 schema:sdPublisher N622574c7d78b435586cc80274c6ed957
39 schema:url https://www.nature.com/articles/s41598-019-38657-w
40 sgo:license sg:explorer/license/
41 sgo:sdDataset articles
42 rdf:type schema:ScholarlyArticle
43 N11903670bab0473490d84f24000130b9 schema:affiliation https://www.grid.ac/institutes/grid.266869.5
44 schema:familyName Bhatta
45 schema:givenName Hari L.
46 rdf:type schema:Person
47 N2845952b67594531816cfb49a208d8a4 schema:issueNumber 1
48 rdf:type schema:PublicationIssue
49 N2dde8b3266ca4386a68646b8ef451d09 rdf:first N11903670bab0473490d84f24000130b9
50 rdf:rest Nfa50139c25464a5fabbf2b31f0e612b0
51 N3047b1cecd884d34ac2dc9b892cf61b5 schema:name dimensions_id
52 schema:value pub.1112136684
53 rdf:type schema:PropertyValue
54 N45cfb300f7f3472bb49c45446de41ba9 schema:volumeNumber 9
55 rdf:type schema:PublicationVolume
56 N622574c7d78b435586cc80274c6ed957 schema:name Springer Nature - SN SciGraph project
57 rdf:type schema:Organization
58 N871210b96fe744e98b8d7342611076d0 rdf:first Naa8cb53ca5d349beb4475ac328af77f0
59 rdf:rest rdf:nil
60 N93e6dbc6c68e459cb8076378b39bd644 schema:name doi
61 schema:value 10.1038/s41598-019-38657-w
62 rdf:type schema:PropertyValue
63 N95f92e55ddfd46658492af542a46363e schema:name readcube_id
64 schema:value b1f3d111de5df1e1af42a0496dc6c41a58aab9a4ae151f856cdaf068b95a84cb
65 rdf:type schema:PropertyValue
66 Naa8cb53ca5d349beb4475ac328af77f0 schema:affiliation https://www.grid.ac/institutes/grid.454320.4
67 schema:familyName Drachev
68 schema:givenName Vladimir P.
69 rdf:type schema:Person
70 Nd43e6b325a6d4765993344b9fd6cf86b schema:affiliation https://www.grid.ac/institutes/grid.267323.1
71 schema:familyName Aliev
72 schema:givenName Ali E.
73 rdf:type schema:Person
74 Ne073c6c88aa94f578a5a5631874bd658 schema:name pubmed_id
75 schema:value 30765813
76 rdf:type schema:PropertyValue
77 Nf71909b0841e4a54b9d31fc28d1d4780 schema:name nlm_unique_id
78 schema:value 101563288
79 rdf:type schema:PropertyValue
80 Nfa50139c25464a5fabbf2b31f0e612b0 rdf:first Nd43e6b325a6d4765993344b9fd6cf86b
81 rdf:rest N871210b96fe744e98b8d7342611076d0
82 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
83 schema:name Chemical Sciences
84 rdf:type schema:DefinedTerm
85 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
86 schema:name Physical Chemistry (incl. Structural)
87 rdf:type schema:DefinedTerm
88 sg:journal.1045337 schema:issn 2045-2322
89 schema:name Scientific Reports
90 rdf:type schema:Periodical
91 sg:pub.10.1007/978-3-662-09109-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027780347
92 https://doi.org/10.1007/978-3-662-09109-8
93 rdf:type schema:CreativeWork
94 sg:pub.10.1038/nmat2024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002220407
95 https://doi.org/10.1038/nmat2024
96 rdf:type schema:CreativeWork
97 sg:pub.10.1134/1.1613006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016565697
98 https://doi.org/10.1134/1.1613006
99 rdf:type schema:CreativeWork
100 https://app.dimensions.ai/details/publication/pub.1027780347 schema:CreativeWork
101 https://doi.org/10.1016/s0081-1947(01)80019-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033674640
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1063/1.370357 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058004722
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1063/1.4942216 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050848501
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1080/00018736400101041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022273798
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1098/rspa.1936.0154 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046560977
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1103/physrevb.39.4828 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036933778
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1103/physrevb.52.6513 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060578515
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1103/physrevb.9.5056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060644082
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1103/physrevlett.21.1190 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060771461
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1103/physrevlett.61.2472 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052840638
120 rdf:type schema:CreativeWork
121 https://www.grid.ac/institutes/grid.266869.5 schema:alternateName University of North Texas
122 schema:name Department of Physics and Advanced Materials and Mechanical Processing Institute, University of North Texas, 76203, Denton, TX, USA
123 rdf:type schema:Organization
124 https://www.grid.ac/institutes/grid.267323.1 schema:alternateName The University of Texas at Dallas
125 schema:name A. G. MacDiarmid NanoTech Institute, University of Texas at Dallas, 75083, Richardson, TX, USA
126 rdf:type schema:Organization
127 https://www.grid.ac/institutes/grid.454320.4 schema:alternateName Skolkovo Institute of Science and Technology
128 schema:name Department of Physics and Advanced Materials and Mechanical Processing Institute, University of North Texas, 76203, Denton, TX, USA
129 Skolkovo Institute of Science and Technology, 121205, Moscow, Russia
130 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...