On the mechanism behind the inverse melting in systems with competing interactions View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-02-14

AUTHORS

Alejandro Mendoza-Coto, Lucas Nicolao, Rogelio Díaz-Méndez

ABSTRACT

The competition between a short range attractive interaction and a nonlocal repulsive interaction promote the appearance of modulated phases. In this work we present the microscopic mechanisms leading to the emergence of inverse transitions in such systems by considering a thorough mean-field analysis of a variety of minimal models with different competing interactions. We identify the specific connections between the characteristic energy of the homogeneous and modulated phases and the observed reentrant behaviors in the phase diagram. In particular, we find that reentrance is appreciable when the characteristic energy cost of the homogeneous and modulated phases are comparable to each other, and for systems in which the local order parameter is limited. In the asymptotic limit of high energy cost of the homogeneous phase we observe that the degree of reentrance decreases exponentially with the ratio of the characteristic energy cost of homogeneous and modulated phases. These mean-field results are confronted with Langevin simulations of an effective coarse grained model, confirming the expected extension of the reentrance in the phase diagram. These results shed new light on many systems undergoing inverse melting transitions by qualitatively improving the understanding of the interplay of entropy and energy around the inverse melting points. More... »

PAGES

2020

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-018-38465-8

DOI

http://dx.doi.org/10.1038/s41598-018-38465-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112133362

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30765837


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Departamento de F\u00edsica, Universidade Federal de Santa Catarina, 88040-900 Florian\u00f3polis, Brazil", 
          "id": "http://www.grid.ac/institutes/grid.411237.2", 
          "name": [
            "Departamento de F\u00edsica, Universidade Federal de Santa Catarina, 88040-900 Florian\u00f3polis, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mendoza-Coto", 
        "givenName": "Alejandro", 
        "id": "sg:person.0714066520.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0714066520.68"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Departamento de F\u00edsica, Universidade Federal de Santa Catarina, 88040-900 Florian\u00f3polis, Brazil", 
          "id": "http://www.grid.ac/institutes/grid.411237.2", 
          "name": [
            "Departamento de F\u00edsica, Universidade Federal de Santa Catarina, 88040-900 Florian\u00f3polis, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nicolao", 
        "givenName": "Lucas", 
        "id": "sg:person.0750056112.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0750056112.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Theoretical Physics, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden", 
          "id": "http://www.grid.ac/institutes/grid.5037.1", 
          "name": [
            "Department of Theoretical Physics, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "D\u00edaz-M\u00e9ndez", 
        "givenName": "Rogelio", 
        "id": "sg:person.0744260253.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0744260253.41"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1140/epjb/e2011-20185-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006591982", 
          "https://doi.org/10.1140/epjb/e2011-20185-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat3314", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015858342", 
          "https://doi.org/10.1038/nmat3314"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat4109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036168449", 
          "https://doi.org/10.1038/nmat4109"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms13611", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045726763", 
          "https://doi.org/10.1038/ncomms13611"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007575116", 
          "https://doi.org/10.1038/nature03109"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01538", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011549246", 
          "https://doi.org/10.1038/nature01538"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms7832", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044427956", 
          "https://doi.org/10.1038/ncomms7832"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35004689", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047022056", 
          "https://doi.org/10.1038/35004689"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-02-14", 
    "datePublishedReg": "2019-02-14", 
    "description": "The competition between a short range attractive interaction and a nonlocal repulsive interaction promote the appearance of modulated phases. In this work we present the microscopic mechanisms leading to the emergence of inverse transitions in such systems by considering a thorough mean-field analysis of a variety of minimal models with different competing interactions. We identify the specific connections between the characteristic energy of the homogeneous and modulated phases and the observed reentrant behaviors in the phase diagram. In particular, we find that reentrance is appreciable when the characteristic energy cost of the homogeneous and modulated phases are comparable to each other, and for systems in which the local order parameter is limited. In the asymptotic limit of high energy cost of the homogeneous phase we observe that the degree of reentrance decreases exponentially with the ratio of the characteristic energy cost of homogeneous and modulated phases. These mean-field results are confronted with Langevin simulations of an effective coarse grained model, confirming the expected extension of the reentrance in the phase diagram. These results shed new light on many systems undergoing inverse melting transitions by qualitatively improving the understanding of the interplay of entropy and energy around the inverse melting points.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/s41598-018-38465-8", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "keywords": [
      "mean-field results", 
      "mean-field analysis", 
      "local order parameter", 
      "phase diagram", 
      "reentrant behavior", 
      "order parameter", 
      "asymptotic limit", 
      "short-range attractive interactions", 
      "Langevin simulations", 
      "minimal model", 
      "inverse melting", 
      "inverse transition", 
      "reentrance", 
      "such systems", 
      "attractive interactions", 
      "repulsive interactions", 
      "characteristic energy", 
      "microscopic mechanism", 
      "diagram", 
      "energy cost", 
      "inverse", 
      "homogeneous phase", 
      "model", 
      "system", 
      "transition", 
      "simulations", 
      "energy", 
      "extension", 
      "parameters", 
      "cost", 
      "point", 
      "effective coarse", 
      "phase", 
      "limit", 
      "results", 
      "connection", 
      "interaction", 
      "coarse", 
      "interplay", 
      "new light", 
      "behavior", 
      "work", 
      "specific connections", 
      "analysis", 
      "degree", 
      "variety", 
      "melting point", 
      "high energy costs", 
      "ratio", 
      "emergence", 
      "melting", 
      "appearance", 
      "light", 
      "understanding", 
      "mechanism", 
      "competition", 
      "decrease", 
      "range attractive interaction", 
      "nonlocal repulsive interaction", 
      "thorough mean-field analysis", 
      "observed reentrant behaviors", 
      "characteristic energy cost", 
      "reentrance decreases", 
      "inverse melting points"
    ], 
    "name": "On the mechanism behind the inverse melting in systems with competing interactions", 
    "pagination": "2020", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112133362"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-018-38465-8"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30765837"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-018-38465-8", 
      "https://app.dimensions.ai/details/publication/pub.1112133362"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:45", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_820.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/s41598-018-38465-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-38465-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-38465-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-38465-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-38465-8'


 

This table displays all metadata directly associated to this object as RDF triples.

174 TRIPLES      22 PREDICATES      98 URIs      82 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-018-38465-8 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N236a39aa56a94558b009842d2db64e2b
4 schema:citation sg:pub.10.1038/35004689
5 sg:pub.10.1038/nature01538
6 sg:pub.10.1038/nature03109
7 sg:pub.10.1038/ncomms13611
8 sg:pub.10.1038/ncomms7832
9 sg:pub.10.1038/nmat3314
10 sg:pub.10.1038/nmat4109
11 sg:pub.10.1140/epjb/e2011-20185-y
12 schema:datePublished 2019-02-14
13 schema:datePublishedReg 2019-02-14
14 schema:description The competition between a short range attractive interaction and a nonlocal repulsive interaction promote the appearance of modulated phases. In this work we present the microscopic mechanisms leading to the emergence of inverse transitions in such systems by considering a thorough mean-field analysis of a variety of minimal models with different competing interactions. We identify the specific connections between the characteristic energy of the homogeneous and modulated phases and the observed reentrant behaviors in the phase diagram. In particular, we find that reentrance is appreciable when the characteristic energy cost of the homogeneous and modulated phases are comparable to each other, and for systems in which the local order parameter is limited. In the asymptotic limit of high energy cost of the homogeneous phase we observe that the degree of reentrance decreases exponentially with the ratio of the characteristic energy cost of homogeneous and modulated phases. These mean-field results are confronted with Langevin simulations of an effective coarse grained model, confirming the expected extension of the reentrance in the phase diagram. These results shed new light on many systems undergoing inverse melting transitions by qualitatively improving the understanding of the interplay of entropy and energy around the inverse melting points.
15 schema:genre article
16 schema:inLanguage en
17 schema:isAccessibleForFree true
18 schema:isPartOf N2b3077dcdca94dd2a8c31fb529dacd91
19 N9535ae3b0d4344baa2e338483352f560
20 sg:journal.1045337
21 schema:keywords Langevin simulations
22 analysis
23 appearance
24 asymptotic limit
25 attractive interactions
26 behavior
27 characteristic energy
28 characteristic energy cost
29 coarse
30 competition
31 connection
32 cost
33 decrease
34 degree
35 diagram
36 effective coarse
37 emergence
38 energy
39 energy cost
40 extension
41 high energy costs
42 homogeneous phase
43 interaction
44 interplay
45 inverse
46 inverse melting
47 inverse melting points
48 inverse transition
49 light
50 limit
51 local order parameter
52 mean-field analysis
53 mean-field results
54 mechanism
55 melting
56 melting point
57 microscopic mechanism
58 minimal model
59 model
60 new light
61 nonlocal repulsive interaction
62 observed reentrant behaviors
63 order parameter
64 parameters
65 phase
66 phase diagram
67 point
68 range attractive interaction
69 ratio
70 reentrance
71 reentrance decreases
72 reentrant behavior
73 repulsive interactions
74 results
75 short-range attractive interactions
76 simulations
77 specific connections
78 such systems
79 system
80 thorough mean-field analysis
81 transition
82 understanding
83 variety
84 work
85 schema:name On the mechanism behind the inverse melting in systems with competing interactions
86 schema:pagination 2020
87 schema:productId N3a1c06dad95245de8895d72823f14f1e
88 N9b8367aa9c814b11b1124c72f5c1e439
89 Ne8a2d011b7d3464587e434ce0ab7f3e3
90 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112133362
91 https://doi.org/10.1038/s41598-018-38465-8
92 schema:sdDatePublished 2021-12-01T19:45
93 schema:sdLicense https://scigraph.springernature.com/explorer/license/
94 schema:sdPublisher Nd9d2e42889e348148c974e0dc7cc5c75
95 schema:url https://doi.org/10.1038/s41598-018-38465-8
96 sgo:license sg:explorer/license/
97 sgo:sdDataset articles
98 rdf:type schema:ScholarlyArticle
99 N236a39aa56a94558b009842d2db64e2b rdf:first sg:person.0714066520.68
100 rdf:rest N5bfe3578982b49fcae67d4799267097a
101 N2b3077dcdca94dd2a8c31fb529dacd91 schema:volumeNumber 9
102 rdf:type schema:PublicationVolume
103 N3a1c06dad95245de8895d72823f14f1e schema:name pubmed_id
104 schema:value 30765837
105 rdf:type schema:PropertyValue
106 N5bfe3578982b49fcae67d4799267097a rdf:first sg:person.0750056112.51
107 rdf:rest Nc52db8794ea1462585a6f0f670a6631c
108 N9535ae3b0d4344baa2e338483352f560 schema:issueNumber 1
109 rdf:type schema:PublicationIssue
110 N9b8367aa9c814b11b1124c72f5c1e439 schema:name dimensions_id
111 schema:value pub.1112133362
112 rdf:type schema:PropertyValue
113 Nc52db8794ea1462585a6f0f670a6631c rdf:first sg:person.0744260253.41
114 rdf:rest rdf:nil
115 Nd9d2e42889e348148c974e0dc7cc5c75 schema:name Springer Nature - SN SciGraph project
116 rdf:type schema:Organization
117 Ne8a2d011b7d3464587e434ce0ab7f3e3 schema:name doi
118 schema:value 10.1038/s41598-018-38465-8
119 rdf:type schema:PropertyValue
120 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
121 schema:name Engineering
122 rdf:type schema:DefinedTerm
123 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
124 schema:name Materials Engineering
125 rdf:type schema:DefinedTerm
126 sg:journal.1045337 schema:issn 2045-2322
127 schema:name Scientific Reports
128 schema:publisher Springer Nature
129 rdf:type schema:Periodical
130 sg:person.0714066520.68 schema:affiliation grid-institutes:grid.411237.2
131 schema:familyName Mendoza-Coto
132 schema:givenName Alejandro
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0714066520.68
134 rdf:type schema:Person
135 sg:person.0744260253.41 schema:affiliation grid-institutes:grid.5037.1
136 schema:familyName Díaz-Méndez
137 schema:givenName Rogelio
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0744260253.41
139 rdf:type schema:Person
140 sg:person.0750056112.51 schema:affiliation grid-institutes:grid.411237.2
141 schema:familyName Nicolao
142 schema:givenName Lucas
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0750056112.51
144 rdf:type schema:Person
145 sg:pub.10.1038/35004689 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047022056
146 https://doi.org/10.1038/35004689
147 rdf:type schema:CreativeWork
148 sg:pub.10.1038/nature01538 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011549246
149 https://doi.org/10.1038/nature01538
150 rdf:type schema:CreativeWork
151 sg:pub.10.1038/nature03109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007575116
152 https://doi.org/10.1038/nature03109
153 rdf:type schema:CreativeWork
154 sg:pub.10.1038/ncomms13611 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045726763
155 https://doi.org/10.1038/ncomms13611
156 rdf:type schema:CreativeWork
157 sg:pub.10.1038/ncomms7832 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044427956
158 https://doi.org/10.1038/ncomms7832
159 rdf:type schema:CreativeWork
160 sg:pub.10.1038/nmat3314 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015858342
161 https://doi.org/10.1038/nmat3314
162 rdf:type schema:CreativeWork
163 sg:pub.10.1038/nmat4109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036168449
164 https://doi.org/10.1038/nmat4109
165 rdf:type schema:CreativeWork
166 sg:pub.10.1140/epjb/e2011-20185-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1006591982
167 https://doi.org/10.1140/epjb/e2011-20185-y
168 rdf:type schema:CreativeWork
169 grid-institutes:grid.411237.2 schema:alternateName Departamento de Física, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, Brazil
170 schema:name Departamento de Física, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, Brazil
171 rdf:type schema:Organization
172 grid-institutes:grid.5037.1 schema:alternateName Department of Theoretical Physics, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
173 schema:name Department of Theoretical Physics, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
174 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...