Elastic net-based prediction of IFN-β treatment response of patients with multiple sclerosis using time series microarray gene expression profiles View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Arika Fukushima, Masahiro Sugimoto, Satoru Hiwa, Tomoyuki Hiroyasu

ABSTRACT

INF-β has been widely used to treat patients with multiple sclerosis (MS) in relapse. Accurate prediction of treatment response is important for effective personalization of treatment. Microarray data have been frequently used to discover new genes and to predict treatment responses. However, conventional analytical methods suffer from three difficulties: high-dimensionality of datasets; high degree of multi-collinearity; and achieving gene identification in time-course data. The use of Elastic net, a sparse modelling method, would decrease the first two issues; however, Elastic net is currently unable to solve these three issues simultaneously. Here, we improved Elastic net to accommodate time-course data analyses. Numerical experiments were conducted using two time-course microarray datasets derived from peripheral blood mononuclear cells collected from patients with MS. The proposed methods successfully identified genes showing a high predictive ability for INF-β treatment response. Bootstrap sampling resulted in an 81% and 78% accuracy for each dataset, which was significantly higher than the 71% and 73% accuracy obtained using conventional methods. Our methods selected genes showing consistent differentiation throughout all time-courses. These genes are expected to provide new predictive biomarkers that can influence INF-β treatment for MS patients. More... »

PAGES

1822

References to SciGraph publications

  • 2012-12. Sparse learning and stability selection for predicting MCI to AD conversion using baseline ADNI data in BMC NEUROLOGY
  • 2017-12. Matrix metalloproteinase activity stimulates N-cadherin shedding and the soluble N-cadherin ectodomain promotes classical microglial activation in JOURNAL OF NEUROINFLAMMATION
  • 2016-12. Weakly supervised learning of biomedical information extraction from curated data in BMC BIOINFORMATICS
  • 2002-04. New concepts in the immunopathogenesis of multiple sclerosis in NATURE REVIEWS NEUROSCIENCE
  • 2018-12. Feature selection for high-dimensional temporal data in BMC BIOINFORMATICS
  • 2012-08. Studying and modelling dynamic biological processes using time-series gene expression data in NATURE REVIEWS GENETICS
  • 2015-08. Predicting disease progression from short biomarker series using expert advice algorithm in SCIENTIFIC REPORTS
  • 2015-12. Discovering monotonic stemness marker genes from time-series stem cell microarray data in BMC GENOMICS
  • 2008-12. The prediction of interferon treatment effects based on time series microarray gene expression profiles in JOURNAL OF TRANSLATIONAL MEDICINE
  • 2012-04. Network analysis of transcriptional regulation in response to intramuscular interferon-β-1a multiple sclerosis treatment in THE PHARMACOGENOMICS JOURNAL
  • 2007-03. Significance analysis of microarray transcript levels in time series experiments in BMC BIOINFORMATICS
  • 2009-12. Recursive regularization for inferring gene networks from time-course gene expression profiles in BMC SYSTEMS BIOLOGY
  • 2012-12. Elevated type I interferon-like activity in a subset of multiple sclerosis patients: molecular basis and clinical relevance in JOURNAL OF NEUROINFLAMMATION
  • Journal

    TITLE

    Scientific Reports

    ISSUE

    1

    VOLUME

    9

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41598-018-38441-2

    DOI

    http://dx.doi.org/10.1038/s41598-018-38441-2

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1112066518

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30755676


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Statistics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Doshisha University", 
              "id": "https://www.grid.ac/institutes/grid.255178.c", 
              "name": [
                "Doshisha University, Graduate School of Life and Medical Sciences, Kyoto, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fukushima", 
            "givenName": "Arika", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Tsukuba", 
              "id": "https://www.grid.ac/institutes/grid.20515.33", 
              "name": [
                "Research and Development Center for Minimally Invasive Therapies Health Promotion and Preemptive Medicine, Tokyo Medical University, 160-8402, Shinjuku, Tokyo, Japan", 
                "Institute for Advanced Biosciences, Keio University, 997-0052, Tsuruoka, Yamagata, Japan", 
                "University of Tsukuba, Research and Development Center for Precision Medicine, 305-8550, Tukuba, Ibaraki, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sugimoto", 
            "givenName": "Masahiro", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Doshisha University", 
              "id": "https://www.grid.ac/institutes/grid.255178.c", 
              "name": [
                "Doshisha University, Graduate School of Life and Medical Sciences, Kyoto, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hiwa", 
            "givenName": "Satoru", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Doshisha University", 
              "id": "https://www.grid.ac/institutes/grid.255178.c", 
              "name": [
                "Doshisha University, Graduate School of Life and Medical Sciences, Kyoto, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hiroyasu", 
            "givenName": "Tomoyuki", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1111/j.1467-9868.2010.00740.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000696823"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1467-9868.2010.00740.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000696823"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1467-9868.2008.00674.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001770891"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep08953", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002209298", 
              "https://doi.org/10.1038/srep08953"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jns.2007.02.034", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006948186"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0082340", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007039535"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg3244", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009073159", 
              "https://doi.org/10.1038/nrg3244"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-16-s2-s2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010936894", 
              "https://doi.org/10.1186/1471-2164-16-s2-s2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1467-9868.2007.00627.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015719366"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1467-9868.2007.00627.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015719366"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/bti742", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016355321"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neurol.2015.10.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016577734"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1479-5876-6-44", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017653188", 
              "https://doi.org/10.1186/1479-5876-6-44"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12859-015-0844-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018189285", 
              "https://doi.org/10.1186/s12859-015-0844-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12859-015-0844-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018189285", 
              "https://doi.org/10.1186/s12859-015-0844-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1056/nejmoa0706383", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023809550"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pbio.0030166", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023855232"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jneuroim.2016.01.010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024895749"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0019262", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029242446"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/ana.20740", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031091871"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/ana.20740", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031091871"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkv229", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031503880"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-8-s1-s10", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032273383", 
              "https://doi.org/10.1186/1471-2105-8-s1-s10"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrn784", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035880526", 
              "https://doi.org/10.1038/nrn784"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrn784", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035880526", 
              "https://doi.org/10.1038/nrn784"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0023634", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040165365"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0029648", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041331925"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1752-0509-3-41", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043811318", 
              "https://doi.org/10.1186/1752-0509-3-41"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1467-9868.2005.00503.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043971564"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2377-12-46", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047921675", 
              "https://doi.org/10.1186/1471-2377-12-46"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2217/pgs.09.152", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048120590"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/tpj.2010.77", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051157512", 
              "https://doi.org/10.1038/tpj.2010.77"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1742-2094-9-140", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052495010", 
              "https://doi.org/10.1186/1742-2094-9-140"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/00401706.1970.10488634", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058284123"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/biostatistics/kxv037", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059424717"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1191/135248506ms1245oa", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064157548"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1191/135248506ms1245oa", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064157548"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1191/135248506ms1245oa", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064157548"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.18637/jss.v033.i01", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1068672496"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.18637/jss.v033.i01", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1068672496"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4049/jimmunol.1401093", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1079065690"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4049/jimmunol.1500174", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1079116835"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12974-017-0827-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084251532", 
              "https://doi.org/10.1186/s12974-017-0827-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12974-017-0827-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084251532", 
              "https://doi.org/10.1186/s12974-017-0827-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3389/fimmu.2017.00532", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085222479"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/bibe.2007.4375561", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095648603"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12859-018-2023-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100562629", 
              "https://doi.org/10.1186/s12859-018-2023-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.2517-6161.1996.tb02080.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1110458978"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.2517-6161.1996.tb02080.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1110458978"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-12", 
        "datePublishedReg": "2019-12-01", 
        "description": "INF-\u03b2 has been widely used to treat patients with multiple sclerosis (MS) in relapse. Accurate prediction of treatment response is important for effective personalization of treatment. Microarray data have been frequently used to discover new genes and to predict treatment responses. However, conventional analytical methods suffer from three difficulties: high-dimensionality of datasets; high degree of multi-collinearity; and achieving gene identification in time-course data. The use of Elastic net, a sparse modelling method, would decrease the first two issues; however, Elastic net is currently unable to solve these three issues simultaneously. Here, we improved Elastic net to accommodate time-course data analyses. Numerical experiments were conducted using two time-course microarray datasets derived from peripheral blood mononuclear cells collected from patients with MS. The proposed methods successfully identified genes showing a high predictive ability for INF-\u03b2 treatment response. Bootstrap sampling resulted in an 81% and 78% accuracy for each dataset, which was significantly higher than the 71% and 73% accuracy obtained using conventional methods. Our methods selected genes showing consistent differentiation throughout all time-courses. These genes are expected to provide new predictive biomarkers that can influence INF-\u03b2 treatment for MS patients.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/s41598-018-38441-2", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1045337", 
            "issn": [
              "2045-2322"
            ], 
            "name": "Scientific Reports", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "9"
          }
        ], 
        "name": "Elastic net-based prediction of IFN-\u03b2 treatment response of patients with multiple sclerosis using time series microarray gene expression profiles", 
        "pagination": "1822", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "5aeb25efe44cfd3db35a289505d2257fd14d80ccb20d8c3a0096cdc840905b17"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30755676"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101563288"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41598-018-38441-2"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1112066518"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41598-018-38441-2", 
          "https://app.dimensions.ai/details/publication/pub.1112066518"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T09:11", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000338_0000000338/records_47975_00000002.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://www.nature.com/articles/s41598-018-38441-2"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-38441-2'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-38441-2'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-38441-2'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-38441-2'


     

    This table displays all metadata directly associated to this object as RDF triples.

    220 TRIPLES      21 PREDICATES      68 URIs      21 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41598-018-38441-2 schema:about anzsrc-for:01
    2 anzsrc-for:0104
    3 schema:author N75fe534c4578443c9de0015922e004a6
    4 schema:citation sg:pub.10.1038/nrg3244
    5 sg:pub.10.1038/nrn784
    6 sg:pub.10.1038/srep08953
    7 sg:pub.10.1038/tpj.2010.77
    8 sg:pub.10.1186/1471-2105-8-s1-s10
    9 sg:pub.10.1186/1471-2164-16-s2-s2
    10 sg:pub.10.1186/1471-2377-12-46
    11 sg:pub.10.1186/1479-5876-6-44
    12 sg:pub.10.1186/1742-2094-9-140
    13 sg:pub.10.1186/1752-0509-3-41
    14 sg:pub.10.1186/s12859-015-0844-1
    15 sg:pub.10.1186/s12859-018-2023-7
    16 sg:pub.10.1186/s12974-017-0827-4
    17 https://doi.org/10.1002/ana.20740
    18 https://doi.org/10.1016/j.jneuroim.2016.01.010
    19 https://doi.org/10.1016/j.jns.2007.02.034
    20 https://doi.org/10.1016/j.neurol.2015.10.006
    21 https://doi.org/10.1056/nejmoa0706383
    22 https://doi.org/10.1080/00401706.1970.10488634
    23 https://doi.org/10.1093/bioinformatics/bti742
    24 https://doi.org/10.1093/biostatistics/kxv037
    25 https://doi.org/10.1093/nar/gkv229
    26 https://doi.org/10.1109/bibe.2007.4375561
    27 https://doi.org/10.1111/j.1467-9868.2005.00503.x
    28 https://doi.org/10.1111/j.1467-9868.2007.00627.x
    29 https://doi.org/10.1111/j.1467-9868.2008.00674.x
    30 https://doi.org/10.1111/j.1467-9868.2010.00740.x
    31 https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
    32 https://doi.org/10.1191/135248506ms1245oa
    33 https://doi.org/10.1371/journal.pbio.0030166
    34 https://doi.org/10.1371/journal.pone.0019262
    35 https://doi.org/10.1371/journal.pone.0023634
    36 https://doi.org/10.1371/journal.pone.0029648
    37 https://doi.org/10.1371/journal.pone.0082340
    38 https://doi.org/10.18637/jss.v033.i01
    39 https://doi.org/10.2217/pgs.09.152
    40 https://doi.org/10.3389/fimmu.2017.00532
    41 https://doi.org/10.4049/jimmunol.1401093
    42 https://doi.org/10.4049/jimmunol.1500174
    43 schema:datePublished 2019-12
    44 schema:datePublishedReg 2019-12-01
    45 schema:description INF-β has been widely used to treat patients with multiple sclerosis (MS) in relapse. Accurate prediction of treatment response is important for effective personalization of treatment. Microarray data have been frequently used to discover new genes and to predict treatment responses. However, conventional analytical methods suffer from three difficulties: high-dimensionality of datasets; high degree of multi-collinearity; and achieving gene identification in time-course data. The use of Elastic net, a sparse modelling method, would decrease the first two issues; however, Elastic net is currently unable to solve these three issues simultaneously. Here, we improved Elastic net to accommodate time-course data analyses. Numerical experiments were conducted using two time-course microarray datasets derived from peripheral blood mononuclear cells collected from patients with MS. The proposed methods successfully identified genes showing a high predictive ability for INF-β treatment response. Bootstrap sampling resulted in an 81% and 78% accuracy for each dataset, which was significantly higher than the 71% and 73% accuracy obtained using conventional methods. Our methods selected genes showing consistent differentiation throughout all time-courses. These genes are expected to provide new predictive biomarkers that can influence INF-β treatment for MS patients.
    46 schema:genre research_article
    47 schema:inLanguage en
    48 schema:isAccessibleForFree true
    49 schema:isPartOf N718549806e6e4038871027ed6a320a27
    50 N7b3e80127d31402687a2ddf7666ccd1d
    51 sg:journal.1045337
    52 schema:name Elastic net-based prediction of IFN-β treatment response of patients with multiple sclerosis using time series microarray gene expression profiles
    53 schema:pagination 1822
    54 schema:productId N2f3092e47d894d3396d4e2f738542470
    55 N516b3e260f404d14bcce42dc4226f428
    56 N9343ba9311a042aba1ec75486a9d152c
    57 Na92d3dad83764b21b7135ba3d03f6cf7
    58 Nb91e6d4ad0e74b08a5187918a5c56e96
    59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112066518
    60 https://doi.org/10.1038/s41598-018-38441-2
    61 schema:sdDatePublished 2019-04-11T09:11
    62 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    63 schema:sdPublisher N6fa3eb6c93944387850414dc167a292a
    64 schema:url https://www.nature.com/articles/s41598-018-38441-2
    65 sgo:license sg:explorer/license/
    66 sgo:sdDataset articles
    67 rdf:type schema:ScholarlyArticle
    68 N2f3092e47d894d3396d4e2f738542470 schema:name readcube_id
    69 schema:value 5aeb25efe44cfd3db35a289505d2257fd14d80ccb20d8c3a0096cdc840905b17
    70 rdf:type schema:PropertyValue
    71 N3404a58c13aa482b8328bbd7d17f772d rdf:first N40d80102e0e140bf8f00aec0165584d8
    72 rdf:rest N8954a3ae1b4d464d838151688362c74b
    73 N40d80102e0e140bf8f00aec0165584d8 schema:affiliation https://www.grid.ac/institutes/grid.255178.c
    74 schema:familyName Hiwa
    75 schema:givenName Satoru
    76 rdf:type schema:Person
    77 N46e9eeb30f8b4e00b5ca66e96864d937 schema:affiliation https://www.grid.ac/institutes/grid.255178.c
    78 schema:familyName Hiroyasu
    79 schema:givenName Tomoyuki
    80 rdf:type schema:Person
    81 N516b3e260f404d14bcce42dc4226f428 schema:name dimensions_id
    82 schema:value pub.1112066518
    83 rdf:type schema:PropertyValue
    84 N6fa3eb6c93944387850414dc167a292a schema:name Springer Nature - SN SciGraph project
    85 rdf:type schema:Organization
    86 N718549806e6e4038871027ed6a320a27 schema:issueNumber 1
    87 rdf:type schema:PublicationIssue
    88 N75fe534c4578443c9de0015922e004a6 rdf:first Nf67843541edd48b7b370640f3a9f6403
    89 rdf:rest Ndd9a1020c9d84a7b9b264297c90aec81
    90 N7b3e80127d31402687a2ddf7666ccd1d schema:volumeNumber 9
    91 rdf:type schema:PublicationVolume
    92 N8954a3ae1b4d464d838151688362c74b rdf:first N46e9eeb30f8b4e00b5ca66e96864d937
    93 rdf:rest rdf:nil
    94 N933a9ad64b6940279c8c14ab3cba1c7a schema:affiliation https://www.grid.ac/institutes/grid.20515.33
    95 schema:familyName Sugimoto
    96 schema:givenName Masahiro
    97 rdf:type schema:Person
    98 N9343ba9311a042aba1ec75486a9d152c schema:name pubmed_id
    99 schema:value 30755676
    100 rdf:type schema:PropertyValue
    101 Na92d3dad83764b21b7135ba3d03f6cf7 schema:name doi
    102 schema:value 10.1038/s41598-018-38441-2
    103 rdf:type schema:PropertyValue
    104 Nb91e6d4ad0e74b08a5187918a5c56e96 schema:name nlm_unique_id
    105 schema:value 101563288
    106 rdf:type schema:PropertyValue
    107 Ndd9a1020c9d84a7b9b264297c90aec81 rdf:first N933a9ad64b6940279c8c14ab3cba1c7a
    108 rdf:rest N3404a58c13aa482b8328bbd7d17f772d
    109 Nf67843541edd48b7b370640f3a9f6403 schema:affiliation https://www.grid.ac/institutes/grid.255178.c
    110 schema:familyName Fukushima
    111 schema:givenName Arika
    112 rdf:type schema:Person
    113 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    114 schema:name Mathematical Sciences
    115 rdf:type schema:DefinedTerm
    116 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
    117 schema:name Statistics
    118 rdf:type schema:DefinedTerm
    119 sg:journal.1045337 schema:issn 2045-2322
    120 schema:name Scientific Reports
    121 rdf:type schema:Periodical
    122 sg:pub.10.1038/nrg3244 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009073159
    123 https://doi.org/10.1038/nrg3244
    124 rdf:type schema:CreativeWork
    125 sg:pub.10.1038/nrn784 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035880526
    126 https://doi.org/10.1038/nrn784
    127 rdf:type schema:CreativeWork
    128 sg:pub.10.1038/srep08953 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002209298
    129 https://doi.org/10.1038/srep08953
    130 rdf:type schema:CreativeWork
    131 sg:pub.10.1038/tpj.2010.77 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051157512
    132 https://doi.org/10.1038/tpj.2010.77
    133 rdf:type schema:CreativeWork
    134 sg:pub.10.1186/1471-2105-8-s1-s10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032273383
    135 https://doi.org/10.1186/1471-2105-8-s1-s10
    136 rdf:type schema:CreativeWork
    137 sg:pub.10.1186/1471-2164-16-s2-s2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010936894
    138 https://doi.org/10.1186/1471-2164-16-s2-s2
    139 rdf:type schema:CreativeWork
    140 sg:pub.10.1186/1471-2377-12-46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047921675
    141 https://doi.org/10.1186/1471-2377-12-46
    142 rdf:type schema:CreativeWork
    143 sg:pub.10.1186/1479-5876-6-44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017653188
    144 https://doi.org/10.1186/1479-5876-6-44
    145 rdf:type schema:CreativeWork
    146 sg:pub.10.1186/1742-2094-9-140 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052495010
    147 https://doi.org/10.1186/1742-2094-9-140
    148 rdf:type schema:CreativeWork
    149 sg:pub.10.1186/1752-0509-3-41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043811318
    150 https://doi.org/10.1186/1752-0509-3-41
    151 rdf:type schema:CreativeWork
    152 sg:pub.10.1186/s12859-015-0844-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018189285
    153 https://doi.org/10.1186/s12859-015-0844-1
    154 rdf:type schema:CreativeWork
    155 sg:pub.10.1186/s12859-018-2023-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100562629
    156 https://doi.org/10.1186/s12859-018-2023-7
    157 rdf:type schema:CreativeWork
    158 sg:pub.10.1186/s12974-017-0827-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084251532
    159 https://doi.org/10.1186/s12974-017-0827-4
    160 rdf:type schema:CreativeWork
    161 https://doi.org/10.1002/ana.20740 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031091871
    162 rdf:type schema:CreativeWork
    163 https://doi.org/10.1016/j.jneuroim.2016.01.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024895749
    164 rdf:type schema:CreativeWork
    165 https://doi.org/10.1016/j.jns.2007.02.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006948186
    166 rdf:type schema:CreativeWork
    167 https://doi.org/10.1016/j.neurol.2015.10.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016577734
    168 rdf:type schema:CreativeWork
    169 https://doi.org/10.1056/nejmoa0706383 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023809550
    170 rdf:type schema:CreativeWork
    171 https://doi.org/10.1080/00401706.1970.10488634 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058284123
    172 rdf:type schema:CreativeWork
    173 https://doi.org/10.1093/bioinformatics/bti742 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016355321
    174 rdf:type schema:CreativeWork
    175 https://doi.org/10.1093/biostatistics/kxv037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059424717
    176 rdf:type schema:CreativeWork
    177 https://doi.org/10.1093/nar/gkv229 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031503880
    178 rdf:type schema:CreativeWork
    179 https://doi.org/10.1109/bibe.2007.4375561 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095648603
    180 rdf:type schema:CreativeWork
    181 https://doi.org/10.1111/j.1467-9868.2005.00503.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1043971564
    182 rdf:type schema:CreativeWork
    183 https://doi.org/10.1111/j.1467-9868.2007.00627.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1015719366
    184 rdf:type schema:CreativeWork
    185 https://doi.org/10.1111/j.1467-9868.2008.00674.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1001770891
    186 rdf:type schema:CreativeWork
    187 https://doi.org/10.1111/j.1467-9868.2010.00740.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1000696823
    188 rdf:type schema:CreativeWork
    189 https://doi.org/10.1111/j.2517-6161.1996.tb02080.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1110458978
    190 rdf:type schema:CreativeWork
    191 https://doi.org/10.1191/135248506ms1245oa schema:sameAs https://app.dimensions.ai/details/publication/pub.1064157548
    192 rdf:type schema:CreativeWork
    193 https://doi.org/10.1371/journal.pbio.0030166 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023855232
    194 rdf:type schema:CreativeWork
    195 https://doi.org/10.1371/journal.pone.0019262 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029242446
    196 rdf:type schema:CreativeWork
    197 https://doi.org/10.1371/journal.pone.0023634 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040165365
    198 rdf:type schema:CreativeWork
    199 https://doi.org/10.1371/journal.pone.0029648 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041331925
    200 rdf:type schema:CreativeWork
    201 https://doi.org/10.1371/journal.pone.0082340 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007039535
    202 rdf:type schema:CreativeWork
    203 https://doi.org/10.18637/jss.v033.i01 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068672496
    204 rdf:type schema:CreativeWork
    205 https://doi.org/10.2217/pgs.09.152 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048120590
    206 rdf:type schema:CreativeWork
    207 https://doi.org/10.3389/fimmu.2017.00532 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085222479
    208 rdf:type schema:CreativeWork
    209 https://doi.org/10.4049/jimmunol.1401093 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079065690
    210 rdf:type schema:CreativeWork
    211 https://doi.org/10.4049/jimmunol.1500174 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079116835
    212 rdf:type schema:CreativeWork
    213 https://www.grid.ac/institutes/grid.20515.33 schema:alternateName University of Tsukuba
    214 schema:name Institute for Advanced Biosciences, Keio University, 997-0052, Tsuruoka, Yamagata, Japan
    215 Research and Development Center for Minimally Invasive Therapies Health Promotion and Preemptive Medicine, Tokyo Medical University, 160-8402, Shinjuku, Tokyo, Japan
    216 University of Tsukuba, Research and Development Center for Precision Medicine, 305-8550, Tukuba, Ibaraki, Japan
    217 rdf:type schema:Organization
    218 https://www.grid.ac/institutes/grid.255178.c schema:alternateName Doshisha University
    219 schema:name Doshisha University, Graduate School of Life and Medical Sciences, Kyoto, Japan
    220 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...