Objective risk stratification of prostate cancer using machine learning and radiomics applied to multiparametric magnetic resonance images View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Bino Varghese, Frank Chen, Darryl Hwang, Suzanne L Palmer, Andre Luis De Castro Abreu, Osamu Ukimura, Monish Aron, Manju Aron, Inderbir Gill, Vinay Duddalwar, Gaurav Pandey

ABSTRACT

Multiparametric magnetic resonance imaging (mpMRI) has become increasingly important for the clinical assessment of prostate cancer (PCa), but its interpretation is generally variable due to its relatively subjective nature. Radiomics and classification methods have shown potential for improving the accuracy and objectivity of mpMRI-based PCa assessment. However, these studies are limited to a small number of classification methods, evaluation using the AUC score only, and a non-rigorous assessment of all possible combinations of radiomics and classification methods. This paper presents a systematic and rigorous framework comprised of classification, cross-validation and statistical analyses that was developed to identify the best performing classifier for PCa risk stratification based on mpMRI-derived radiomic features derived from a sizeable cohort. This classifier performed well in an independent validation set, including performing better than PI-RADS v2 in some aspects, indicating the value of objectively interpreting mpMRI images using radiomics and classification methods for PCa risk assessment. More... »

PAGES

1570

References to SciGraph publications

  • 2018-12. Effect of tube current on computed tomography radiomic features in SCIENTIFIC REPORTS
  • 2016-12. An expanded evaluation of protein function prediction methods shows an improvement in accuracy in GENOME BIOLOGY
  • 2018-12. A Nasal Brush-based Classifier of Asthma Identified by Machine Learning Analysis of Nasal RNA Sequence Data in SCIENTIFIC REPORTS
  • 2015-10. Machine Learning methods for Quantitative Radiomic Biomarkers in SCIENTIFIC REPORTS
  • 2016-08. Points of Significance: Classification evaluation in NATURE METHODS
  • 2013. Linear Discriminant Analysis in MODERN MULTIVARIATE STATISTICAL TECHNIQUES
  • 1998-06. A Tutorial on Support Vector Machines for Pattern Recognition in DATA MINING AND KNOWLEDGE DISCOVERY
  • 2018-06-20. Radiomics and radiogenomics of prostate cancer in ABDOMINAL RADIOLOGY
  • 2018-12. Artificial intelligence in medical imaging: threat or opportunity? Radiologists again at the forefront of innovation in medicine in EUROPEAN RADIOLOGY EXPERIMENTAL
  • 2013-03. A large-scale evaluation of computational protein function prediction in NATURE METHODS
  • 2012-02. Prostate MRI: diffusion-weighted imaging at 1.5T correlates better with prostatectomy Gleason grades than TRUS-guided biopsies in peripheral zone tumours in EUROPEAN RADIOLOGY
  • 2014-06. High-risk prostate cancer—classification and therapy in NATURE REVIEWS CLINICAL ONCOLOGY
  • 2018-08. Robustness versus disease differentiation when varying parameter settings in radiomics features: application to nasopharyngeal PET/CT in EUROPEAN RADIOLOGY
  • 2017-10. Machine learning-based analysis of MR radiomics can help to improve the diagnostic performance of PI-RADS v2 in clinically relevant prostate cancer in EUROPEAN RADIOLOGY
  • 2018-05. Can CT-based radiomics signature predict KRAS/NRAS/BRAF mutations in colorectal cancer? in EUROPEAN RADIOLOGY
  • 2015. Machine Learning in Medicine - a Complete Overview in NONE
  • 2018-12. A Decision-Support Tool for Renal Mass Classification in JOURNAL OF DIGITAL IMAGING
  • 2014-12. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach in NATURE COMMUNICATIONS
  • 2015-10. Haralick texture analysis of prostate MRI: utility for differentiating non-cancerous prostate from prostate cancer and differentiating prostate cancers with different Gleason scores in EUROPEAN RADIOLOGY
  • 2001-10. Random Forests in MACHINE LEARNING
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41598-018-38381-x

    DOI

    http://dx.doi.org/10.1038/s41598-018-38381-x

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1111977761

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30733585


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Public Health and Health Services", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Southern California", 
              "id": "https://www.grid.ac/institutes/grid.42505.36", 
              "name": [
                "Department of Radiology, University of Southern California, Los Angeles, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Varghese", 
            "givenName": "Bino", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Southern California", 
              "id": "https://www.grid.ac/institutes/grid.42505.36", 
              "name": [
                "Department of Radiology, University of Southern California, Los Angeles, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chen", 
            "givenName": "Frank", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Southern California", 
              "id": "https://www.grid.ac/institutes/grid.42505.36", 
              "name": [
                "Department of Radiology, University of Southern California, Los Angeles, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hwang", 
            "givenName": "Darryl", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Southern California", 
              "id": "https://www.grid.ac/institutes/grid.42505.36", 
              "name": [
                "Department of Radiology, University of Southern California, Los Angeles, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Palmer", 
            "givenName": "Suzanne L", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Southern California", 
              "id": "https://www.grid.ac/institutes/grid.42505.36", 
              "name": [
                "USC Institute of Urology, Los Angeles, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "De Castro Abreu", 
            "givenName": "Andre Luis", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Southern California", 
              "id": "https://www.grid.ac/institutes/grid.42505.36", 
              "name": [
                "USC Institute of Urology, Los Angeles, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ukimura", 
            "givenName": "Osamu", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Southern California", 
              "id": "https://www.grid.ac/institutes/grid.42505.36", 
              "name": [
                "USC Institute of Urology, Los Angeles, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Aron", 
            "givenName": "Monish", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Southern California", 
              "id": "https://www.grid.ac/institutes/grid.42505.36", 
              "name": [
                "Department of Pathology, University of Southern California, Los Angeles, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Aron", 
            "givenName": "Manju", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Southern California", 
              "id": "https://www.grid.ac/institutes/grid.42505.36", 
              "name": [
                "USC Institute of Urology, Los Angeles, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gill", 
            "givenName": "Inderbir", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Southern California", 
              "id": "https://www.grid.ac/institutes/grid.42505.36", 
              "name": [
                "Department of Radiology, University of Southern California, Los Angeles, CA, USA", 
                "USC Institute of Urology, Los Angeles, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Duddalwar", 
            "givenName": "Vinay", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Icahn School of Medicine at Mount Sinai", 
              "id": "https://www.grid.ac/institutes/grid.59734.3c", 
              "name": [
                "Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pandey", 
            "givenName": "Gaurav", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1117/12.2007927", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000138699"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3389/fonc.2015.00272", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000390901"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1148/radiol.10091343", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003159243"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.media.2012.10.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004440475"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.radonc.2015.02.015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004503812"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.radonc.2015.02.015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004503812"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ymeth.2015.08.016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005675488"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ymeth.2015.08.016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005675488"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4137/becb.s34255", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005982300"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijrobp.2014.07.020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006288152"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1148/radiol.13130973", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008646232"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btm344", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009424564"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms5006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009469125", 
              "https://doi.org/10.1038/ncomms5006"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1118/1.3081408", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010836116"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0118432", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012273932"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1118/1.3521470", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014598066"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13059-016-1037-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014881435", 
              "https://doi.org/10.1186/s13059-016-1037-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13059-016-1037-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014881435", 
              "https://doi.org/10.1186/s13059-016-1037-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1148/radiol.13130029", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017221178"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00330-011-2269-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017953410", 
              "https://doi.org/10.1007/s00330-011-2269-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.mri.2003.09.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018018059"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-0-387-78189-1_8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020733783", 
              "https://doi.org/10.1007/978-0-387-78189-1_8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0028210", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020997827"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00330-015-3701-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022449857", 
              "https://doi.org/10.1007/s00330-015-3701-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/rli.0000000000000180", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023605847"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/rli.0000000000000180", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023605847"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/rli.0000000000000180", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023605847"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1148/radiol.2015151169", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023809829"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1148/radiol.14140184", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024351681"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1010933404324", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024739340", 
              "https://doi.org/10.1023/a:1010933404324"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.3945", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025129304", 
              "https://doi.org/10.1038/nmeth.3945"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrclinonc.2014.68", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027133404", 
              "https://doi.org/10.1038/nrclinonc.2014.68"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1032640480", 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-15195-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032640480", 
              "https://doi.org/10.1007/978-3-319-15195-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-15195-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032640480", 
              "https://doi.org/10.1007/978-3-319-15195-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1158/1078-0432.ccr-14-0044", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034345537"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/jmri.21819", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035020143"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/jmri.21819", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035020143"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1466-8238.2007.00358.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036408795"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep13087", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036587522", 
              "https://doi.org/10.1038/srep13087"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.1505935112", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036814570"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/jmri.25372", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039185803"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.juro.2015.10.140", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041055388"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1009715923555", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042048349", 
              "https://doi.org/10.1023/a:1009715923555"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.2340", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046100259", 
              "https://doi.org/10.1038/nmeth.2340"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1118/1.4918318", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046844312"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/507338.507355", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046992474"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1553-2712.2011.01185.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047014333"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.eururo.2015.01.013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049128446"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.compbiomed.2010.03.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050979075"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.urolonc.2015.05.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052379385"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0031-9155/57/12/3833", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059029248"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/mci.2014.2326099", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061392458"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tip.2013.2295759", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061643820"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tmi.2005.859208", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061694790"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tsmc.1973.4309314", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061792707"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1214/09-ss054", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064391087"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1259/bjr.20160665", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064566189"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.21037/tcr.2016.06.20", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1068834616"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.21037/tcr.2016.07.11", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1068834644"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1148/radiol.2016152542", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1079252037"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00330-017-4800-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084510751", 
              "https://doi.org/10.1007/s00330-017-4800-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00330-017-4800-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084510751", 
              "https://doi.org/10.1007/s00330-017-4800-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.acra.2017.03.019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085464043"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0178524", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091890638"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00330-017-5146-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100405761", 
              "https://doi.org/10.1007/s00330-017-5146-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41598-018-20713-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100726951", 
              "https://doi.org/10.1038/s41598-018-20713-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/jmri.25983", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101164876"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00330-018-5343-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101386895", 
              "https://doi.org/10.1007/s00330-018-5343-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00330-018-5343-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101386895", 
              "https://doi.org/10.1007/s00330-018-5343-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00330-018-5343-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101386895", 
              "https://doi.org/10.1007/s00330-018-5343-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00330-018-5343-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101386895", 
              "https://doi.org/10.1007/s00330-018-5343-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41598-018-27189-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1104412647", 
              "https://doi.org/10.1038/s41598-018-27189-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00261-018-1660-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105006047", 
              "https://doi.org/10.1007/s00261-018-1660-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10278-018-0100-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105338530", 
              "https://doi.org/10.1007/s10278-018-0100-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2214/ajr.18.19551", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107123007"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s41747-018-0061-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107320443", 
              "https://doi.org/10.1186/s41747-018-0061-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijrobp.2018.08.022", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107683885"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-12", 
        "datePublishedReg": "2019-12-01", 
        "description": "Multiparametric magnetic resonance imaging (mpMRI) has become increasingly important for the clinical assessment of prostate cancer (PCa), but its interpretation is generally variable due to its relatively subjective nature. Radiomics and classification methods have shown potential for improving the accuracy and objectivity of mpMRI-based PCa assessment. However, these studies are limited to a small number of classification methods, evaluation using the AUC score only, and a non-rigorous assessment of all possible combinations of radiomics and classification methods. This paper presents a systematic and rigorous framework comprised of classification, cross-validation and statistical analyses that was developed to identify the best performing classifier for PCa risk stratification based on mpMRI-derived radiomic features derived from a sizeable cohort. This classifier performed well in an independent validation set, including performing better than PI-RADS v2 in some aspects, indicating the value of objectively interpreting mpMRI images using radiomics and classification methods for PCa risk assessment.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/s41598-018-38381-x", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.4454708", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.3935877", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1045337", 
            "issn": [
              "2045-2322"
            ], 
            "name": "Scientific Reports", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "9"
          }
        ], 
        "name": "Objective risk stratification of prostate cancer using machine learning and radiomics applied to multiparametric magnetic resonance images", 
        "pagination": "1570", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "44df64023ce8f1eb3241878005dfae72ffee8e2bfd01f72270fda2baa5cef8ee"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30733585"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101563288"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41598-018-38381-x"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1111977761"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41598-018-38381-x", 
          "https://app.dimensions.ai/details/publication/pub.1111977761"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T09:04", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000334_0000000334/records_127816_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://www.nature.com/articles/s41598-018-38381-x"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-38381-x'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-38381-x'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-38381-x'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-38381-x'


     

    This table displays all metadata directly associated to this object as RDF triples.

    356 TRIPLES      21 PREDICATES      96 URIs      21 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41598-018-38381-x schema:about anzsrc-for:11
    2 anzsrc-for:1117
    3 schema:author N4f9077ccab6d48a0aec454afe3bff934
    4 schema:citation sg:pub.10.1007/978-0-387-78189-1_8
    5 sg:pub.10.1007/978-3-319-15195-3
    6 sg:pub.10.1007/s00261-018-1660-7
    7 sg:pub.10.1007/s00330-011-2269-1
    8 sg:pub.10.1007/s00330-015-3701-8
    9 sg:pub.10.1007/s00330-017-4800-5
    10 sg:pub.10.1007/s00330-017-5146-8
    11 sg:pub.10.1007/s00330-018-5343-0
    12 sg:pub.10.1007/s10278-018-0100-0
    13 sg:pub.10.1023/a:1009715923555
    14 sg:pub.10.1023/a:1010933404324
    15 sg:pub.10.1038/ncomms5006
    16 sg:pub.10.1038/nmeth.2340
    17 sg:pub.10.1038/nmeth.3945
    18 sg:pub.10.1038/nrclinonc.2014.68
    19 sg:pub.10.1038/s41598-018-20713-6
    20 sg:pub.10.1038/s41598-018-27189-4
    21 sg:pub.10.1038/srep13087
    22 sg:pub.10.1186/s13059-016-1037-6
    23 sg:pub.10.1186/s41747-018-0061-6
    24 https://app.dimensions.ai/details/publication/pub.1032640480
    25 https://doi.org/10.1002/jmri.21819
    26 https://doi.org/10.1002/jmri.25372
    27 https://doi.org/10.1002/jmri.25983
    28 https://doi.org/10.1016/j.acra.2017.03.019
    29 https://doi.org/10.1016/j.compbiomed.2010.03.005
    30 https://doi.org/10.1016/j.eururo.2015.01.013
    31 https://doi.org/10.1016/j.ijrobp.2014.07.020
    32 https://doi.org/10.1016/j.ijrobp.2018.08.022
    33 https://doi.org/10.1016/j.juro.2015.10.140
    34 https://doi.org/10.1016/j.media.2012.10.004
    35 https://doi.org/10.1016/j.mri.2003.09.001
    36 https://doi.org/10.1016/j.radonc.2015.02.015
    37 https://doi.org/10.1016/j.urolonc.2015.05.005
    38 https://doi.org/10.1016/j.ymeth.2015.08.016
    39 https://doi.org/10.1073/pnas.1505935112
    40 https://doi.org/10.1088/0031-9155/57/12/3833
    41 https://doi.org/10.1093/bioinformatics/btm344
    42 https://doi.org/10.1097/rli.0000000000000180
    43 https://doi.org/10.1109/mci.2014.2326099
    44 https://doi.org/10.1109/tip.2013.2295759
    45 https://doi.org/10.1109/tmi.2005.859208
    46 https://doi.org/10.1109/tsmc.1973.4309314
    47 https://doi.org/10.1111/j.1466-8238.2007.00358.x
    48 https://doi.org/10.1111/j.1553-2712.2011.01185.x
    49 https://doi.org/10.1117/12.2007927
    50 https://doi.org/10.1118/1.3081408
    51 https://doi.org/10.1118/1.3521470
    52 https://doi.org/10.1118/1.4918318
    53 https://doi.org/10.1145/507338.507355
    54 https://doi.org/10.1148/radiol.10091343
    55 https://doi.org/10.1148/radiol.13130029
    56 https://doi.org/10.1148/radiol.13130973
    57 https://doi.org/10.1148/radiol.14140184
    58 https://doi.org/10.1148/radiol.2015151169
    59 https://doi.org/10.1148/radiol.2016152542
    60 https://doi.org/10.1158/1078-0432.ccr-14-0044
    61 https://doi.org/10.1214/09-ss054
    62 https://doi.org/10.1259/bjr.20160665
    63 https://doi.org/10.1371/journal.pone.0028210
    64 https://doi.org/10.1371/journal.pone.0118432
    65 https://doi.org/10.1371/journal.pone.0178524
    66 https://doi.org/10.21037/tcr.2016.06.20
    67 https://doi.org/10.21037/tcr.2016.07.11
    68 https://doi.org/10.2214/ajr.18.19551
    69 https://doi.org/10.3389/fonc.2015.00272
    70 https://doi.org/10.4137/becb.s34255
    71 schema:datePublished 2019-12
    72 schema:datePublishedReg 2019-12-01
    73 schema:description Multiparametric magnetic resonance imaging (mpMRI) has become increasingly important for the clinical assessment of prostate cancer (PCa), but its interpretation is generally variable due to its relatively subjective nature. Radiomics and classification methods have shown potential for improving the accuracy and objectivity of mpMRI-based PCa assessment. However, these studies are limited to a small number of classification methods, evaluation using the AUC score only, and a non-rigorous assessment of all possible combinations of radiomics and classification methods. This paper presents a systematic and rigorous framework comprised of classification, cross-validation and statistical analyses that was developed to identify the best performing classifier for PCa risk stratification based on mpMRI-derived radiomic features derived from a sizeable cohort. This classifier performed well in an independent validation set, including performing better than PI-RADS v2 in some aspects, indicating the value of objectively interpreting mpMRI images using radiomics and classification methods for PCa risk assessment.
    74 schema:genre research_article
    75 schema:inLanguage en
    76 schema:isAccessibleForFree true
    77 schema:isPartOf N527121c850504f4aa95478fcd1f3bf73
    78 Nc0b87f05d0e54d3995136c273faeff35
    79 sg:journal.1045337
    80 schema:name Objective risk stratification of prostate cancer using machine learning and radiomics applied to multiparametric magnetic resonance images
    81 schema:pagination 1570
    82 schema:productId N498eef4b1f1d411c9eb25cc10d4e34be
    83 N5e68577eed1142ba811928f65e529cfb
    84 N6fa95cfae63e4b96b9d63a794e269413
    85 N91cd86534a4a4b3581b10e9223061d3f
    86 Nef04d55550694b10b89f002e0130ddfc
    87 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111977761
    88 https://doi.org/10.1038/s41598-018-38381-x
    89 schema:sdDatePublished 2019-04-11T09:04
    90 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    91 schema:sdPublisher N50d408f98d3e4980b74c22f22188ac72
    92 schema:url https://www.nature.com/articles/s41598-018-38381-x
    93 sgo:license sg:explorer/license/
    94 sgo:sdDataset articles
    95 rdf:type schema:ScholarlyArticle
    96 N06987c7895474d5fa5c61beebe8b3f04 schema:affiliation https://www.grid.ac/institutes/grid.42505.36
    97 schema:familyName Hwang
    98 schema:givenName Darryl
    99 rdf:type schema:Person
    100 N09da3a177cba4eb6a94d3e9e9e9ab802 schema:affiliation https://www.grid.ac/institutes/grid.42505.36
    101 schema:familyName Ukimura
    102 schema:givenName Osamu
    103 rdf:type schema:Person
    104 N13f36a2bfe42406aa28da52feb06a5d1 schema:affiliation https://www.grid.ac/institutes/grid.42505.36
    105 schema:familyName Gill
    106 schema:givenName Inderbir
    107 rdf:type schema:Person
    108 N1b9d741db12246618bc6b778d90e1b24 schema:affiliation https://www.grid.ac/institutes/grid.42505.36
    109 schema:familyName Aron
    110 schema:givenName Monish
    111 rdf:type schema:Person
    112 N1df1fe197ce947ec890b368139151b1e schema:affiliation https://www.grid.ac/institutes/grid.42505.36
    113 schema:familyName Aron
    114 schema:givenName Manju
    115 rdf:type schema:Person
    116 N1fefd9c9409d49deb03cb61e32b0e45d rdf:first N95f43a00710747128c1971347a791709
    117 rdf:rest rdf:nil
    118 N21237d38e71a4897911a772f83ea5646 schema:affiliation https://www.grid.ac/institutes/grid.42505.36
    119 schema:familyName De Castro Abreu
    120 schema:givenName Andre Luis
    121 rdf:type schema:Person
    122 N2e802058c8014bc797d963bae30fed38 rdf:first Nf3c68bb4cedf4431afdd98c99f689ac2
    123 rdf:rest Ncf03f2aaa21341faa11b9887b602f82f
    124 N384260414aac4a06a45d72a95b6a4ee7 rdf:first N06987c7895474d5fa5c61beebe8b3f04
    125 rdf:rest N2e802058c8014bc797d963bae30fed38
    126 N4286bb93ae094b0ebdddbdad2b3d93ea schema:affiliation https://www.grid.ac/institutes/grid.42505.36
    127 schema:familyName Chen
    128 schema:givenName Frank
    129 rdf:type schema:Person
    130 N498eef4b1f1d411c9eb25cc10d4e34be schema:name nlm_unique_id
    131 schema:value 101563288
    132 rdf:type schema:PropertyValue
    133 N4f9077ccab6d48a0aec454afe3bff934 rdf:first Nd8c7634c8b774fcd9e829d7fc5d71ff6
    134 rdf:rest N6aabe92f2e114cbe9435556107d881c1
    135 N50d408f98d3e4980b74c22f22188ac72 schema:name Springer Nature - SN SciGraph project
    136 rdf:type schema:Organization
    137 N527121c850504f4aa95478fcd1f3bf73 schema:volumeNumber 9
    138 rdf:type schema:PublicationVolume
    139 N5e68577eed1142ba811928f65e529cfb schema:name dimensions_id
    140 schema:value pub.1111977761
    141 rdf:type schema:PropertyValue
    142 N6aabe92f2e114cbe9435556107d881c1 rdf:first N4286bb93ae094b0ebdddbdad2b3d93ea
    143 rdf:rest N384260414aac4a06a45d72a95b6a4ee7
    144 N6fa95cfae63e4b96b9d63a794e269413 schema:name readcube_id
    145 schema:value 44df64023ce8f1eb3241878005dfae72ffee8e2bfd01f72270fda2baa5cef8ee
    146 rdf:type schema:PropertyValue
    147 N7026a40ceca144f1a6668972c4d3ef2f schema:affiliation https://www.grid.ac/institutes/grid.42505.36
    148 schema:familyName Duddalwar
    149 schema:givenName Vinay
    150 rdf:type schema:Person
    151 N8691d4ab85a24be9bb4e2597500c2669 rdf:first N09da3a177cba4eb6a94d3e9e9e9ab802
    152 rdf:rest Ne9626ecd1ccd4c8999707be90f7afa10
    153 N86fa5e98b0fd43c89baa11f4626fa08c rdf:first N13f36a2bfe42406aa28da52feb06a5d1
    154 rdf:rest Nd06a64cd8aa04af8862bf1377f5c4a70
    155 N91cd86534a4a4b3581b10e9223061d3f schema:name pubmed_id
    156 schema:value 30733585
    157 rdf:type schema:PropertyValue
    158 N95f43a00710747128c1971347a791709 schema:affiliation https://www.grid.ac/institutes/grid.59734.3c
    159 schema:familyName Pandey
    160 schema:givenName Gaurav
    161 rdf:type schema:Person
    162 Nc0b87f05d0e54d3995136c273faeff35 schema:issueNumber 1
    163 rdf:type schema:PublicationIssue
    164 Ncf03f2aaa21341faa11b9887b602f82f rdf:first N21237d38e71a4897911a772f83ea5646
    165 rdf:rest N8691d4ab85a24be9bb4e2597500c2669
    166 Nd06a64cd8aa04af8862bf1377f5c4a70 rdf:first N7026a40ceca144f1a6668972c4d3ef2f
    167 rdf:rest N1fefd9c9409d49deb03cb61e32b0e45d
    168 Nd8c7634c8b774fcd9e829d7fc5d71ff6 schema:affiliation https://www.grid.ac/institutes/grid.42505.36
    169 schema:familyName Varghese
    170 schema:givenName Bino
    171 rdf:type schema:Person
    172 Ne9626ecd1ccd4c8999707be90f7afa10 rdf:first N1b9d741db12246618bc6b778d90e1b24
    173 rdf:rest Nf526eaf2b15345b2838f841ccca1e3ab
    174 Nef04d55550694b10b89f002e0130ddfc schema:name doi
    175 schema:value 10.1038/s41598-018-38381-x
    176 rdf:type schema:PropertyValue
    177 Nf3c68bb4cedf4431afdd98c99f689ac2 schema:affiliation https://www.grid.ac/institutes/grid.42505.36
    178 schema:familyName Palmer
    179 schema:givenName Suzanne L
    180 rdf:type schema:Person
    181 Nf526eaf2b15345b2838f841ccca1e3ab rdf:first N1df1fe197ce947ec890b368139151b1e
    182 rdf:rest N86fa5e98b0fd43c89baa11f4626fa08c
    183 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    184 schema:name Medical and Health Sciences
    185 rdf:type schema:DefinedTerm
    186 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
    187 schema:name Public Health and Health Services
    188 rdf:type schema:DefinedTerm
    189 sg:grant.3935877 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-018-38381-x
    190 rdf:type schema:MonetaryGrant
    191 sg:grant.4454708 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-018-38381-x
    192 rdf:type schema:MonetaryGrant
    193 sg:journal.1045337 schema:issn 2045-2322
    194 schema:name Scientific Reports
    195 rdf:type schema:Periodical
    196 sg:pub.10.1007/978-0-387-78189-1_8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020733783
    197 https://doi.org/10.1007/978-0-387-78189-1_8
    198 rdf:type schema:CreativeWork
    199 sg:pub.10.1007/978-3-319-15195-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032640480
    200 https://doi.org/10.1007/978-3-319-15195-3
    201 rdf:type schema:CreativeWork
    202 sg:pub.10.1007/s00261-018-1660-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105006047
    203 https://doi.org/10.1007/s00261-018-1660-7
    204 rdf:type schema:CreativeWork
    205 sg:pub.10.1007/s00330-011-2269-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017953410
    206 https://doi.org/10.1007/s00330-011-2269-1
    207 rdf:type schema:CreativeWork
    208 sg:pub.10.1007/s00330-015-3701-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022449857
    209 https://doi.org/10.1007/s00330-015-3701-8
    210 rdf:type schema:CreativeWork
    211 sg:pub.10.1007/s00330-017-4800-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084510751
    212 https://doi.org/10.1007/s00330-017-4800-5
    213 rdf:type schema:CreativeWork
    214 sg:pub.10.1007/s00330-017-5146-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100405761
    215 https://doi.org/10.1007/s00330-017-5146-8
    216 rdf:type schema:CreativeWork
    217 sg:pub.10.1007/s00330-018-5343-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101386895
    218 https://doi.org/10.1007/s00330-018-5343-0
    219 rdf:type schema:CreativeWork
    220 sg:pub.10.1007/s10278-018-0100-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105338530
    221 https://doi.org/10.1007/s10278-018-0100-0
    222 rdf:type schema:CreativeWork
    223 sg:pub.10.1023/a:1009715923555 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042048349
    224 https://doi.org/10.1023/a:1009715923555
    225 rdf:type schema:CreativeWork
    226 sg:pub.10.1023/a:1010933404324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024739340
    227 https://doi.org/10.1023/a:1010933404324
    228 rdf:type schema:CreativeWork
    229 sg:pub.10.1038/ncomms5006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009469125
    230 https://doi.org/10.1038/ncomms5006
    231 rdf:type schema:CreativeWork
    232 sg:pub.10.1038/nmeth.2340 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046100259
    233 https://doi.org/10.1038/nmeth.2340
    234 rdf:type schema:CreativeWork
    235 sg:pub.10.1038/nmeth.3945 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025129304
    236 https://doi.org/10.1038/nmeth.3945
    237 rdf:type schema:CreativeWork
    238 sg:pub.10.1038/nrclinonc.2014.68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027133404
    239 https://doi.org/10.1038/nrclinonc.2014.68
    240 rdf:type schema:CreativeWork
    241 sg:pub.10.1038/s41598-018-20713-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100726951
    242 https://doi.org/10.1038/s41598-018-20713-6
    243 rdf:type schema:CreativeWork
    244 sg:pub.10.1038/s41598-018-27189-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104412647
    245 https://doi.org/10.1038/s41598-018-27189-4
    246 rdf:type schema:CreativeWork
    247 sg:pub.10.1038/srep13087 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036587522
    248 https://doi.org/10.1038/srep13087
    249 rdf:type schema:CreativeWork
    250 sg:pub.10.1186/s13059-016-1037-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014881435
    251 https://doi.org/10.1186/s13059-016-1037-6
    252 rdf:type schema:CreativeWork
    253 sg:pub.10.1186/s41747-018-0061-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107320443
    254 https://doi.org/10.1186/s41747-018-0061-6
    255 rdf:type schema:CreativeWork
    256 https://app.dimensions.ai/details/publication/pub.1032640480 schema:CreativeWork
    257 https://doi.org/10.1002/jmri.21819 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035020143
    258 rdf:type schema:CreativeWork
    259 https://doi.org/10.1002/jmri.25372 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039185803
    260 rdf:type schema:CreativeWork
    261 https://doi.org/10.1002/jmri.25983 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101164876
    262 rdf:type schema:CreativeWork
    263 https://doi.org/10.1016/j.acra.2017.03.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085464043
    264 rdf:type schema:CreativeWork
    265 https://doi.org/10.1016/j.compbiomed.2010.03.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050979075
    266 rdf:type schema:CreativeWork
    267 https://doi.org/10.1016/j.eururo.2015.01.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049128446
    268 rdf:type schema:CreativeWork
    269 https://doi.org/10.1016/j.ijrobp.2014.07.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006288152
    270 rdf:type schema:CreativeWork
    271 https://doi.org/10.1016/j.ijrobp.2018.08.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107683885
    272 rdf:type schema:CreativeWork
    273 https://doi.org/10.1016/j.juro.2015.10.140 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041055388
    274 rdf:type schema:CreativeWork
    275 https://doi.org/10.1016/j.media.2012.10.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004440475
    276 rdf:type schema:CreativeWork
    277 https://doi.org/10.1016/j.mri.2003.09.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018018059
    278 rdf:type schema:CreativeWork
    279 https://doi.org/10.1016/j.radonc.2015.02.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004503812
    280 rdf:type schema:CreativeWork
    281 https://doi.org/10.1016/j.urolonc.2015.05.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052379385
    282 rdf:type schema:CreativeWork
    283 https://doi.org/10.1016/j.ymeth.2015.08.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005675488
    284 rdf:type schema:CreativeWork
    285 https://doi.org/10.1073/pnas.1505935112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036814570
    286 rdf:type schema:CreativeWork
    287 https://doi.org/10.1088/0031-9155/57/12/3833 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059029248
    288 rdf:type schema:CreativeWork
    289 https://doi.org/10.1093/bioinformatics/btm344 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009424564
    290 rdf:type schema:CreativeWork
    291 https://doi.org/10.1097/rli.0000000000000180 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023605847
    292 rdf:type schema:CreativeWork
    293 https://doi.org/10.1109/mci.2014.2326099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061392458
    294 rdf:type schema:CreativeWork
    295 https://doi.org/10.1109/tip.2013.2295759 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061643820
    296 rdf:type schema:CreativeWork
    297 https://doi.org/10.1109/tmi.2005.859208 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061694790
    298 rdf:type schema:CreativeWork
    299 https://doi.org/10.1109/tsmc.1973.4309314 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061792707
    300 rdf:type schema:CreativeWork
    301 https://doi.org/10.1111/j.1466-8238.2007.00358.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1036408795
    302 rdf:type schema:CreativeWork
    303 https://doi.org/10.1111/j.1553-2712.2011.01185.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1047014333
    304 rdf:type schema:CreativeWork
    305 https://doi.org/10.1117/12.2007927 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000138699
    306 rdf:type schema:CreativeWork
    307 https://doi.org/10.1118/1.3081408 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010836116
    308 rdf:type schema:CreativeWork
    309 https://doi.org/10.1118/1.3521470 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014598066
    310 rdf:type schema:CreativeWork
    311 https://doi.org/10.1118/1.4918318 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046844312
    312 rdf:type schema:CreativeWork
    313 https://doi.org/10.1145/507338.507355 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046992474
    314 rdf:type schema:CreativeWork
    315 https://doi.org/10.1148/radiol.10091343 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003159243
    316 rdf:type schema:CreativeWork
    317 https://doi.org/10.1148/radiol.13130029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017221178
    318 rdf:type schema:CreativeWork
    319 https://doi.org/10.1148/radiol.13130973 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008646232
    320 rdf:type schema:CreativeWork
    321 https://doi.org/10.1148/radiol.14140184 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024351681
    322 rdf:type schema:CreativeWork
    323 https://doi.org/10.1148/radiol.2015151169 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023809829
    324 rdf:type schema:CreativeWork
    325 https://doi.org/10.1148/radiol.2016152542 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079252037
    326 rdf:type schema:CreativeWork
    327 https://doi.org/10.1158/1078-0432.ccr-14-0044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034345537
    328 rdf:type schema:CreativeWork
    329 https://doi.org/10.1214/09-ss054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064391087
    330 rdf:type schema:CreativeWork
    331 https://doi.org/10.1259/bjr.20160665 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064566189
    332 rdf:type schema:CreativeWork
    333 https://doi.org/10.1371/journal.pone.0028210 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020997827
    334 rdf:type schema:CreativeWork
    335 https://doi.org/10.1371/journal.pone.0118432 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012273932
    336 rdf:type schema:CreativeWork
    337 https://doi.org/10.1371/journal.pone.0178524 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091890638
    338 rdf:type schema:CreativeWork
    339 https://doi.org/10.21037/tcr.2016.06.20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068834616
    340 rdf:type schema:CreativeWork
    341 https://doi.org/10.21037/tcr.2016.07.11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068834644
    342 rdf:type schema:CreativeWork
    343 https://doi.org/10.2214/ajr.18.19551 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107123007
    344 rdf:type schema:CreativeWork
    345 https://doi.org/10.3389/fonc.2015.00272 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000390901
    346 rdf:type schema:CreativeWork
    347 https://doi.org/10.4137/becb.s34255 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005982300
    348 rdf:type schema:CreativeWork
    349 https://www.grid.ac/institutes/grid.42505.36 schema:alternateName University of Southern California
    350 schema:name Department of Pathology, University of Southern California, Los Angeles, CA, USA
    351 Department of Radiology, University of Southern California, Los Angeles, CA, USA
    352 USC Institute of Urology, Los Angeles, CA, USA
    353 rdf:type schema:Organization
    354 https://www.grid.ac/institutes/grid.59734.3c schema:alternateName Icahn School of Medicine at Mount Sinai
    355 schema:name Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
    356 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...