Ontology type: schema:ScholarlyArticle Open Access: True
2019-12
AUTHORSBino Varghese, Frank Chen, Darryl Hwang, Suzanne L Palmer, Andre Luis De Castro Abreu, Osamu Ukimura, Monish Aron, Manju Aron, Inderbir Gill, Vinay Duddalwar, Gaurav Pandey
ABSTRACTMultiparametric magnetic resonance imaging (mpMRI) has become increasingly important for the clinical assessment of prostate cancer (PCa), but its interpretation is generally variable due to its relatively subjective nature. Radiomics and classification methods have shown potential for improving the accuracy and objectivity of mpMRI-based PCa assessment. However, these studies are limited to a small number of classification methods, evaluation using the AUC score only, and a non-rigorous assessment of all possible combinations of radiomics and classification methods. This paper presents a systematic and rigorous framework comprised of classification, cross-validation and statistical analyses that was developed to identify the best performing classifier for PCa risk stratification based on mpMRI-derived radiomic features derived from a sizeable cohort. This classifier performed well in an independent validation set, including performing better than PI-RADS v2 in some aspects, indicating the value of objectively interpreting mpMRI images using radiomics and classification methods for PCa risk assessment. More... »
PAGES1570
http://scigraph.springernature.com/pub.10.1038/s41598-018-38381-x
DOIhttp://dx.doi.org/10.1038/s41598-018-38381-x
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1111977761
PUBMEDhttps://www.ncbi.nlm.nih.gov/pubmed/30733585
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Public Health and Health Services",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Medical and Health Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "University of Southern California",
"id": "https://www.grid.ac/institutes/grid.42505.36",
"name": [
"Department of Radiology, University of Southern California, Los Angeles, CA, USA"
],
"type": "Organization"
},
"familyName": "Varghese",
"givenName": "Bino",
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of Southern California",
"id": "https://www.grid.ac/institutes/grid.42505.36",
"name": [
"Department of Radiology, University of Southern California, Los Angeles, CA, USA"
],
"type": "Organization"
},
"familyName": "Chen",
"givenName": "Frank",
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of Southern California",
"id": "https://www.grid.ac/institutes/grid.42505.36",
"name": [
"Department of Radiology, University of Southern California, Los Angeles, CA, USA"
],
"type": "Organization"
},
"familyName": "Hwang",
"givenName": "Darryl",
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of Southern California",
"id": "https://www.grid.ac/institutes/grid.42505.36",
"name": [
"Department of Radiology, University of Southern California, Los Angeles, CA, USA"
],
"type": "Organization"
},
"familyName": "Palmer",
"givenName": "Suzanne L",
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of Southern California",
"id": "https://www.grid.ac/institutes/grid.42505.36",
"name": [
"USC Institute of Urology, Los Angeles, CA, USA"
],
"type": "Organization"
},
"familyName": "De Castro Abreu",
"givenName": "Andre Luis",
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of Southern California",
"id": "https://www.grid.ac/institutes/grid.42505.36",
"name": [
"USC Institute of Urology, Los Angeles, CA, USA"
],
"type": "Organization"
},
"familyName": "Ukimura",
"givenName": "Osamu",
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of Southern California",
"id": "https://www.grid.ac/institutes/grid.42505.36",
"name": [
"USC Institute of Urology, Los Angeles, CA, USA"
],
"type": "Organization"
},
"familyName": "Aron",
"givenName": "Monish",
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of Southern California",
"id": "https://www.grid.ac/institutes/grid.42505.36",
"name": [
"Department of Pathology, University of Southern California, Los Angeles, CA, USA"
],
"type": "Organization"
},
"familyName": "Aron",
"givenName": "Manju",
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of Southern California",
"id": "https://www.grid.ac/institutes/grid.42505.36",
"name": [
"USC Institute of Urology, Los Angeles, CA, USA"
],
"type": "Organization"
},
"familyName": "Gill",
"givenName": "Inderbir",
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of Southern California",
"id": "https://www.grid.ac/institutes/grid.42505.36",
"name": [
"Department of Radiology, University of Southern California, Los Angeles, CA, USA",
"USC Institute of Urology, Los Angeles, CA, USA"
],
"type": "Organization"
},
"familyName": "Duddalwar",
"givenName": "Vinay",
"type": "Person"
},
{
"affiliation": {
"alternateName": "Icahn School of Medicine at Mount Sinai",
"id": "https://www.grid.ac/institutes/grid.59734.3c",
"name": [
"Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA"
],
"type": "Organization"
},
"familyName": "Pandey",
"givenName": "Gaurav",
"type": "Person"
}
],
"citation": [
{
"id": "https://doi.org/10.1117/12.2007927",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1000138699"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.3389/fonc.2015.00272",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1000390901"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1148/radiol.10091343",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1003159243"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.media.2012.10.004",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1004440475"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.radonc.2015.02.015",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1004503812"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.radonc.2015.02.015",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1004503812"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.ymeth.2015.08.016",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1005675488"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.ymeth.2015.08.016",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1005675488"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.4137/becb.s34255",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1005982300"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.ijrobp.2014.07.020",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1006288152"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1148/radiol.13130973",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1008646232"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1093/bioinformatics/btm344",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1009424564"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/ncomms5006",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1009469125",
"https://doi.org/10.1038/ncomms5006"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1118/1.3081408",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1010836116"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1371/journal.pone.0118432",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1012273932"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1118/1.3521470",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1014598066"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/s13059-016-1037-6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1014881435",
"https://doi.org/10.1186/s13059-016-1037-6"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/s13059-016-1037-6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1014881435",
"https://doi.org/10.1186/s13059-016-1037-6"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1148/radiol.13130029",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1017221178"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00330-011-2269-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1017953410",
"https://doi.org/10.1007/s00330-011-2269-1"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.mri.2003.09.001",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1018018059"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-0-387-78189-1_8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1020733783",
"https://doi.org/10.1007/978-0-387-78189-1_8"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1371/journal.pone.0028210",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1020997827"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00330-015-3701-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1022449857",
"https://doi.org/10.1007/s00330-015-3701-8"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1097/rli.0000000000000180",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1023605847"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1097/rli.0000000000000180",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1023605847"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1097/rli.0000000000000180",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1023605847"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1148/radiol.2015151169",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1023809829"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1148/radiol.14140184",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1024351681"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1023/a:1010933404324",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1024739340",
"https://doi.org/10.1023/a:1010933404324"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nmeth.3945",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1025129304",
"https://doi.org/10.1038/nmeth.3945"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nrclinonc.2014.68",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1027133404",
"https://doi.org/10.1038/nrclinonc.2014.68"
],
"type": "CreativeWork"
},
{
"id": "https://app.dimensions.ai/details/publication/pub.1032640480",
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-319-15195-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1032640480",
"https://doi.org/10.1007/978-3-319-15195-3"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-319-15195-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1032640480",
"https://doi.org/10.1007/978-3-319-15195-3"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1158/1078-0432.ccr-14-0044",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1034345537"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/jmri.21819",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1035020143"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/jmri.21819",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1035020143"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1111/j.1466-8238.2007.00358.x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1036408795"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/srep13087",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1036587522",
"https://doi.org/10.1038/srep13087"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1073/pnas.1505935112",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1036814570"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/jmri.25372",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1039185803"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.juro.2015.10.140",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1041055388"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1023/a:1009715923555",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1042048349",
"https://doi.org/10.1023/a:1009715923555"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nmeth.2340",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1046100259",
"https://doi.org/10.1038/nmeth.2340"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1118/1.4918318",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1046844312"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1145/507338.507355",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1046992474"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1111/j.1553-2712.2011.01185.x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1047014333"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.eururo.2015.01.013",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1049128446"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.compbiomed.2010.03.005",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1050979075"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.urolonc.2015.05.005",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1052379385"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1088/0031-9155/57/12/3833",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1059029248"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/mci.2014.2326099",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061392458"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/tip.2013.2295759",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061643820"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/tmi.2005.859208",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061694790"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/tsmc.1973.4309314",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061792707"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1214/09-ss054",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1064391087"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1259/bjr.20160665",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1064566189"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.21037/tcr.2016.06.20",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1068834616"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.21037/tcr.2016.07.11",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1068834644"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1148/radiol.2016152542",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1079252037"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00330-017-4800-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1084510751",
"https://doi.org/10.1007/s00330-017-4800-5"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00330-017-4800-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1084510751",
"https://doi.org/10.1007/s00330-017-4800-5"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.acra.2017.03.019",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1085464043"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1371/journal.pone.0178524",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1091890638"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00330-017-5146-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1100405761",
"https://doi.org/10.1007/s00330-017-5146-8"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/s41598-018-20713-6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1100726951",
"https://doi.org/10.1038/s41598-018-20713-6"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/jmri.25983",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1101164876"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00330-018-5343-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1101386895",
"https://doi.org/10.1007/s00330-018-5343-0"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00330-018-5343-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1101386895",
"https://doi.org/10.1007/s00330-018-5343-0"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00330-018-5343-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1101386895",
"https://doi.org/10.1007/s00330-018-5343-0"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00330-018-5343-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1101386895",
"https://doi.org/10.1007/s00330-018-5343-0"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/s41598-018-27189-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1104412647",
"https://doi.org/10.1038/s41598-018-27189-4"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00261-018-1660-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1105006047",
"https://doi.org/10.1007/s00261-018-1660-7"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10278-018-0100-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1105338530",
"https://doi.org/10.1007/s10278-018-0100-0"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.2214/ajr.18.19551",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1107123007"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/s41747-018-0061-6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1107320443",
"https://doi.org/10.1186/s41747-018-0061-6"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.ijrobp.2018.08.022",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1107683885"
],
"type": "CreativeWork"
}
],
"datePublished": "2019-12",
"datePublishedReg": "2019-12-01",
"description": "Multiparametric magnetic resonance imaging (mpMRI) has become increasingly important for the clinical assessment of prostate cancer (PCa), but its interpretation is generally variable due to its relatively subjective nature. Radiomics and classification methods have shown potential for improving the accuracy and objectivity of mpMRI-based PCa assessment. However, these studies are limited to a small number of classification methods, evaluation using the AUC score only, and a non-rigorous assessment of all possible combinations of radiomics and classification methods. This paper presents a systematic and rigorous framework comprised of classification, cross-validation and statistical analyses that was developed to identify the best performing classifier for PCa risk stratification based on mpMRI-derived radiomic features derived from a sizeable cohort. This classifier performed well in an independent validation set, including performing better than PI-RADS v2 in some aspects, indicating the value of objectively interpreting mpMRI images using radiomics and classification methods for PCa risk assessment.",
"genre": "research_article",
"id": "sg:pub.10.1038/s41598-018-38381-x",
"inLanguage": [
"en"
],
"isAccessibleForFree": true,
"isFundedItemOf": [
{
"id": "sg:grant.4454708",
"type": "MonetaryGrant"
},
{
"id": "sg:grant.3935877",
"type": "MonetaryGrant"
}
],
"isPartOf": [
{
"id": "sg:journal.1045337",
"issn": [
"2045-2322"
],
"name": "Scientific Reports",
"type": "Periodical"
},
{
"issueNumber": "1",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "9"
}
],
"name": "Objective risk stratification of prostate cancer using machine learning and radiomics applied to multiparametric magnetic resonance images",
"pagination": "1570",
"productId": [
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"44df64023ce8f1eb3241878005dfae72ffee8e2bfd01f72270fda2baa5cef8ee"
]
},
{
"name": "pubmed_id",
"type": "PropertyValue",
"value": [
"30733585"
]
},
{
"name": "nlm_unique_id",
"type": "PropertyValue",
"value": [
"101563288"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1038/s41598-018-38381-x"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1111977761"
]
}
],
"sameAs": [
"https://doi.org/10.1038/s41598-018-38381-x",
"https://app.dimensions.ai/details/publication/pub.1111977761"
],
"sdDataset": "articles",
"sdDatePublished": "2019-04-11T09:04",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000334_0000000334/records_127816_00000000.jsonl",
"type": "ScholarlyArticle",
"url": "https://www.nature.com/articles/s41598-018-38381-x"
}
]
Download the RDF metadata as:Â json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-38381-x'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-38381-x'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-38381-x'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-38381-x'
This table displays all metadata directly associated to this object as RDF triples.
356 TRIPLES
21 PREDICATES
96 URIs
21 LITERALS
9 BLANK NODES