Satellite-based soil moisture provides missing link between summertime precipitation and surface temperature biases in CMIP5 simulations over conterminous United States View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

A Al-Yaari, A Ducharne, F Cheruy, W T Crow, J-P Wigneron

ABSTRACT

Past studies have shown that climate simulations have substantial warm and dry biases during the summer in the conterminous United States (CONUS), particularly in the central Great Plains (CGP). These biases have critical implications for the interpretation of climate change projections, but the complex overlap of multiple land-atmosphere feedback processes make them difficult to explain (and therefore correct). Even though surface soil moisture (SM) is often cited as a key control variable in these processes, there are still knowledge gaps about its specific role. Here, we use recently developed remotely sensed SM products to analyse the link between spatial patterns of summertime SM, precipitation and air temperature biases over CONUS in 20 different CMIP5 simulations. We identify three main types of bias combinations: (i) a dry/warm bias over the CGP region, with a significant inter-model correlation between SM and air temperature biases (R = -0.65), (ii) a wet/cold bias in NW CONUS, and (iii) a dry/cold bias in SW CONUS. Combined with irrigation patterns, these results suggest that land-atmosphere feedbacks over the CGP are not only local but have a regional dimension, and demonstrate the added-value of large-scale SM observations for resolving the full feed-back loop between precipitation and temperature. More... »

PAGES

1657

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-018-38309-5

DOI

http://dx.doi.org/10.1038/s41598-018-38309-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111978889

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30733521


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0406", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Geography and Environmental Geoscience", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "INRA, UMR, 1391 ISPA, Villenave d'Ornon, France. amen.al-yaari@inra.fr."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Al-Yaari", 
        "givenName": "A", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Unit\u00e9 Mixte de Recherche METIS, IPSL, Sorbonne Universit\u00e9, CNRS, EPHE, Paris, France."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ducharne", 
        "givenName": "A", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Laboratoire de M\u00e9t\u00e9orologie Dynamique, IPSL, CNRS, Sorbonne Universit\u00e9s, Paris, France."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cheruy", 
        "givenName": "F", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Agricultural Research Service", 
          "id": "https://www.grid.ac/institutes/grid.463419.d", 
          "name": [
            "Hydrology and Remote Sensing Lab, USDA ARS, Beltsville, MD, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Crow", 
        "givenName": "W T", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "INRA, UMR, 1391 ISPA, Villenave d'Ornon, France."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wigneron", 
        "givenName": "J-P", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.5194/hess-15-425-2011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001232485"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jcli-d-15-0705.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001692228"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nclimate1716", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002144786", 
          "https://doi.org/10.1038/nclimate1716"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/hess-19-4463-2015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002363170"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/gmd-9-2809-2016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002943715"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jcli-d-13-00474.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004938855"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rse.2014.07.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005607763"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2012gl053650", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005803310"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2012gl053650", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005803310"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/2009jhm1116.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006338946"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-013-1794-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006494353", 
          "https://doi.org/10.1007/s00382-013-1794-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ngeo2141", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006668095", 
          "https://doi.org/10.1038/ngeo2141"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.earscirev.2010.02.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006890429"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0700144104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006929757"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2005gl022760", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007243767"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2005gl022760", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007243767"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nclimate2118", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007897400", 
          "https://doi.org/10.1038/nclimate2118"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rse.2016.02.042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009693549"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rse.2016.02.042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009693549"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jgrd.50627", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014549635"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/wcc.95", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015288051"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ngeo2514", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016611773", 
          "https://doi.org/10.1038/ngeo2514"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10040-006-0095-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021899229", 
          "https://doi.org/10.1007/s10040-006-0095-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10040-006-0095-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021899229", 
          "https://doi.org/10.1007/s10040-006-0095-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/gmd-9-2973-2016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022094389"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1204330109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022379548"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ngeo1174", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022701505", 
          "https://doi.org/10.1038/ngeo1174"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1525-7541(2003)004<1147:tvgpcp>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023719243"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2002jd002952", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023933563"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rse.2012.03.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024199277"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-011-1252-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024230710", 
          "https://doi.org/10.1007/s00382-011-1252-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ngeo1032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025101977", 
          "https://doi.org/10.1038/ngeo1032"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ngeo1032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025101977", 
          "https://doi.org/10.1038/ngeo1032"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep12004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025154203", 
          "https://doi.org/10.1038/srep12004"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jcli-d-14-00324.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029755291"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/hess-19-1521-2015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030002839"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0309-1708(02)00057-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031914830"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0309-1708(02)00057-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031914830"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.gloplacha.2016.12.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033055634"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.gloplacha.2016.12.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033055634"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.gloplacha.2016.12.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033055634"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2010jd013892", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035382412"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2010jd013892", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035382412"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2007jf000769", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036379151"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2011gl048268", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036996953"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/joc.3711", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038108572"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1100217", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038718082"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/grl.50956", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038780592"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/grl.50956", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038780592"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-014-2204-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038976954", 
          "https://doi.org/10.1007/s00382-014-2204-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-012-1469-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042824118", 
          "https://doi.org/10.1007/s00382-012-1469-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05095", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043618867", 
          "https://doi.org/10.1038/nature05095"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05095", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043618867", 
          "https://doi.org/10.1038/nature05095"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05095", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043618867", 
          "https://doi.org/10.1038/nature05095"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/2009jcli2832.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043881523"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2006gl027567", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044252213"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jhm554.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045237171"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2010gl043888", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046242669"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/2013gl058055", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046262609"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-014-2301-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048849952", 
          "https://doi.org/10.1007/s00382-014-2301-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/2014gl061145", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049205392"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jas-d-14-0336.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050243670"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0034-4257(03)00052-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051126298"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0034-4257(03)00052-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051126298"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/bams-d-11-00094.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051805105"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2000jd900719", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052382105"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/2008jhm997.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052612016"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rse.2014.04.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053226916"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature11377", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053314176", 
          "https://doi.org/10.1038/nature11377"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-012-1380-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053728296", 
          "https://doi.org/10.1007/s00382-012-1380-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jhm-d-10-05014.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063455391"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2136/vzj2012.0170", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069054578"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/gmd-9-1937-2016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072670599"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jcli-d-15-0706.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083939700"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rse.2017.01.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084106818"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/hess-21-2203-2017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085057537"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/rs9050457", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085217056"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41467-017-01040-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092119339", 
          "https://doi.org/10.1038/s41467-017-01040-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/2017ms001036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092518659"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/2017jd027200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101239933"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/2017jd027194", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101241432"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "Past studies have shown that climate simulations have substantial warm and dry biases during the summer in the conterminous United States (CONUS), particularly in the central Great Plains (CGP). These biases have critical implications for the interpretation of climate change projections, but the complex overlap of multiple land-atmosphere feedback processes make them difficult to explain (and therefore correct). Even though surface soil moisture (SM) is often cited as a key control variable in these processes, there are still knowledge gaps about its specific role. Here, we use recently developed remotely sensed SM products to analyse the link between spatial patterns of summertime SM, precipitation and air temperature biases over CONUS in 20 different CMIP5 simulations. We identify three main types of bias combinations: (i) a dry/warm bias over the CGP region, with a significant inter-model correlation between SM and air temperature biases (R\u2009=\u2009-0.65), (ii) a wet/cold bias in NW CONUS, and (iii) a dry/cold bias in SW CONUS. Combined with irrigation patterns, these results suggest that land-atmosphere feedbacks over the CGP are not only local but have a regional dimension, and demonstrate the added-value of large-scale SM observations for resolving the full feed-back loop between precipitation and temperature.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-018-38309-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3794811", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "Satellite-based soil moisture provides missing link between summertime precipitation and surface temperature biases in CMIP5 simulations over conterminous United States", 
    "pagination": "1657", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "94f9455338163b845e281bae24db4ed8001291efed4016663236d5d6bd5e3912"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30733521"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-018-38309-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111978889"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-018-38309-5", 
      "https://app.dimensions.ai/details/publication/pub.1111978889"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:04", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000334_0000000334/records_127783_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-018-38309-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-38309-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-38309-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-38309-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-38309-5'


 

This table displays all metadata directly associated to this object as RDF triples.

322 TRIPLES      21 PREDICATES      97 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-018-38309-5 schema:about anzsrc-for:04
2 anzsrc-for:0406
3 schema:author N8d8875888de344e69a47786d9acc9bd9
4 schema:citation sg:pub.10.1007/s00382-011-1252-5
5 sg:pub.10.1007/s00382-012-1380-6
6 sg:pub.10.1007/s00382-012-1469-y
7 sg:pub.10.1007/s00382-013-1794-9
8 sg:pub.10.1007/s00382-014-2204-7
9 sg:pub.10.1007/s00382-014-2301-7
10 sg:pub.10.1007/s10040-006-0095-3
11 sg:pub.10.1038/nature05095
12 sg:pub.10.1038/nature11377
13 sg:pub.10.1038/nclimate1716
14 sg:pub.10.1038/nclimate2118
15 sg:pub.10.1038/ngeo1032
16 sg:pub.10.1038/ngeo1174
17 sg:pub.10.1038/ngeo2141
18 sg:pub.10.1038/ngeo2514
19 sg:pub.10.1038/s41467-017-01040-2
20 sg:pub.10.1038/srep12004
21 https://doi.org/10.1002/2013gl058055
22 https://doi.org/10.1002/2014gl061145
23 https://doi.org/10.1002/2017jd027194
24 https://doi.org/10.1002/2017jd027200
25 https://doi.org/10.1002/2017ms001036
26 https://doi.org/10.1002/grl.50956
27 https://doi.org/10.1002/jgrd.50627
28 https://doi.org/10.1002/joc.3711
29 https://doi.org/10.1002/wcc.95
30 https://doi.org/10.1016/j.earscirev.2010.02.004
31 https://doi.org/10.1016/j.gloplacha.2016.12.009
32 https://doi.org/10.1016/j.rse.2012.03.014
33 https://doi.org/10.1016/j.rse.2014.04.006
34 https://doi.org/10.1016/j.rse.2014.07.023
35 https://doi.org/10.1016/j.rse.2016.02.042
36 https://doi.org/10.1016/j.rse.2017.01.024
37 https://doi.org/10.1016/s0034-4257(03)00052-x
38 https://doi.org/10.1016/s0309-1708(02)00057-x
39 https://doi.org/10.1029/2000jd900719
40 https://doi.org/10.1029/2002jd002952
41 https://doi.org/10.1029/2005gl022760
42 https://doi.org/10.1029/2006gl027567
43 https://doi.org/10.1029/2007jf000769
44 https://doi.org/10.1029/2010gl043888
45 https://doi.org/10.1029/2010jd013892
46 https://doi.org/10.1029/2011gl048268
47 https://doi.org/10.1029/2012gl053650
48 https://doi.org/10.1073/pnas.0700144104
49 https://doi.org/10.1073/pnas.1204330109
50 https://doi.org/10.1126/science.1100217
51 https://doi.org/10.1175/1525-7541(2003)004<1147:tvgpcp>2.0.co;2
52 https://doi.org/10.1175/2008jhm997.1
53 https://doi.org/10.1175/2009jcli2832.1
54 https://doi.org/10.1175/2009jhm1116.1
55 https://doi.org/10.1175/bams-d-11-00094.1
56 https://doi.org/10.1175/jas-d-14-0336.1
57 https://doi.org/10.1175/jcli-d-13-00474.1
58 https://doi.org/10.1175/jcli-d-14-00324.1
59 https://doi.org/10.1175/jcli-d-15-0705.1
60 https://doi.org/10.1175/jcli-d-15-0706.1
61 https://doi.org/10.1175/jhm-d-10-05014.1
62 https://doi.org/10.1175/jhm554.1
63 https://doi.org/10.2136/vzj2012.0170
64 https://doi.org/10.3390/rs9050457
65 https://doi.org/10.5194/gmd-9-1937-2016
66 https://doi.org/10.5194/gmd-9-2809-2016
67 https://doi.org/10.5194/gmd-9-2973-2016
68 https://doi.org/10.5194/hess-15-425-2011
69 https://doi.org/10.5194/hess-19-1521-2015
70 https://doi.org/10.5194/hess-19-4463-2015
71 https://doi.org/10.5194/hess-21-2203-2017
72 schema:datePublished 2019-12
73 schema:datePublishedReg 2019-12-01
74 schema:description Past studies have shown that climate simulations have substantial warm and dry biases during the summer in the conterminous United States (CONUS), particularly in the central Great Plains (CGP). These biases have critical implications for the interpretation of climate change projections, but the complex overlap of multiple land-atmosphere feedback processes make them difficult to explain (and therefore correct). Even though surface soil moisture (SM) is often cited as a key control variable in these processes, there are still knowledge gaps about its specific role. Here, we use recently developed remotely sensed SM products to analyse the link between spatial patterns of summertime SM, precipitation and air temperature biases over CONUS in 20 different CMIP5 simulations. We identify three main types of bias combinations: (i) a dry/warm bias over the CGP region, with a significant inter-model correlation between SM and air temperature biases (R = -0.65), (ii) a wet/cold bias in NW CONUS, and (iii) a dry/cold bias in SW CONUS. Combined with irrigation patterns, these results suggest that land-atmosphere feedbacks over the CGP are not only local but have a regional dimension, and demonstrate the added-value of large-scale SM observations for resolving the full feed-back loop between precipitation and temperature.
75 schema:genre research_article
76 schema:inLanguage en
77 schema:isAccessibleForFree true
78 schema:isPartOf N7e672d26567d427796329db0ccecc441
79 Nc1b5e3d636984f5aadbb92652d246907
80 sg:journal.1045337
81 schema:name Satellite-based soil moisture provides missing link between summertime precipitation and surface temperature biases in CMIP5 simulations over conterminous United States
82 schema:pagination 1657
83 schema:productId N4a51e9281af24a6c99a4700a25a71100
84 N8f3077620e014b6aafa29f8750df36e1
85 Nc412e3df4ddf42909486471ba317ed71
86 Nccc80bbc87cc4be3bb9b4ff08f6b2d44
87 Nd128b06434de4ae88b3c5f43a6a57d74
88 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111978889
89 https://doi.org/10.1038/s41598-018-38309-5
90 schema:sdDatePublished 2019-04-11T09:04
91 schema:sdLicense https://scigraph.springernature.com/explorer/license/
92 schema:sdPublisher N9d8c0a5036af4e889325b5b2056d9ac4
93 schema:url https://www.nature.com/articles/s41598-018-38309-5
94 sgo:license sg:explorer/license/
95 sgo:sdDataset articles
96 rdf:type schema:ScholarlyArticle
97 N0dd9af685a1e4a7d9d05b4e47bdb0764 rdf:first Nca5a04862fd94e33b9a890abb8c62692
98 rdf:rest N95f1dcfa831d4bc48b111ee7d98a03b8
99 N1912be0c1d9742c7bae8c3ababcfc4bb schema:affiliation https://www.grid.ac/institutes/grid.463419.d
100 schema:familyName Crow
101 schema:givenName W T
102 rdf:type schema:Person
103 N2746ae19cea047e9bca5ebe49b79d758 schema:name INRA, UMR, 1391 ISPA, Villenave d'Ornon, France.
104 rdf:type schema:Organization
105 N4a51e9281af24a6c99a4700a25a71100 schema:name dimensions_id
106 schema:value pub.1111978889
107 rdf:type schema:PropertyValue
108 N540e19e73cca4b2096f9f02907a9bfb3 schema:name INRA, UMR, 1391 ISPA, Villenave d'Ornon, France. amen.al-yaari@inra.fr.
109 rdf:type schema:Organization
110 N7b78015fc5814ddca3517764f6ace4f0 schema:affiliation N540e19e73cca4b2096f9f02907a9bfb3
111 schema:familyName Al-Yaari
112 schema:givenName A
113 rdf:type schema:Person
114 N7e672d26567d427796329db0ccecc441 schema:issueNumber 1
115 rdf:type schema:PublicationIssue
116 N868cd95baa2f4d3ab1188814b96b4955 schema:affiliation N2746ae19cea047e9bca5ebe49b79d758
117 schema:familyName Wigneron
118 schema:givenName J-P
119 rdf:type schema:Person
120 N88cfb0b0f48d41c79c17ff3d3b89a186 rdf:first N868cd95baa2f4d3ab1188814b96b4955
121 rdf:rest rdf:nil
122 N8d8875888de344e69a47786d9acc9bd9 rdf:first N7b78015fc5814ddca3517764f6ace4f0
123 rdf:rest N0dd9af685a1e4a7d9d05b4e47bdb0764
124 N8f3077620e014b6aafa29f8750df36e1 schema:name nlm_unique_id
125 schema:value 101563288
126 rdf:type schema:PropertyValue
127 N903174dc7927484ab357e3d1d7543537 rdf:first N1912be0c1d9742c7bae8c3ababcfc4bb
128 rdf:rest N88cfb0b0f48d41c79c17ff3d3b89a186
129 N95f1dcfa831d4bc48b111ee7d98a03b8 rdf:first Ned8d9fbe550d402fbb6f07b00d046992
130 rdf:rest N903174dc7927484ab357e3d1d7543537
131 N9d8c0a5036af4e889325b5b2056d9ac4 schema:name Springer Nature - SN SciGraph project
132 rdf:type schema:Organization
133 Nb7767bc2ddc14f8cb8691cfe758691cf schema:name Unité Mixte de Recherche METIS, IPSL, Sorbonne Université, CNRS, EPHE, Paris, France.
134 rdf:type schema:Organization
135 Nc1b5e3d636984f5aadbb92652d246907 schema:volumeNumber 9
136 rdf:type schema:PublicationVolume
137 Nc412e3df4ddf42909486471ba317ed71 schema:name pubmed_id
138 schema:value 30733521
139 rdf:type schema:PropertyValue
140 Nca5a04862fd94e33b9a890abb8c62692 schema:affiliation Nb7767bc2ddc14f8cb8691cfe758691cf
141 schema:familyName Ducharne
142 schema:givenName A
143 rdf:type schema:Person
144 Nccc80bbc87cc4be3bb9b4ff08f6b2d44 schema:name readcube_id
145 schema:value 94f9455338163b845e281bae24db4ed8001291efed4016663236d5d6bd5e3912
146 rdf:type schema:PropertyValue
147 Nd128b06434de4ae88b3c5f43a6a57d74 schema:name doi
148 schema:value 10.1038/s41598-018-38309-5
149 rdf:type schema:PropertyValue
150 Ned8d9fbe550d402fbb6f07b00d046992 schema:affiliation Nfc4fc81a169748bb9eaf8c0aa57ff32b
151 schema:familyName Cheruy
152 schema:givenName F
153 rdf:type schema:Person
154 Nfc4fc81a169748bb9eaf8c0aa57ff32b schema:name Laboratoire de Météorologie Dynamique, IPSL, CNRS, Sorbonne Universités, Paris, France.
155 rdf:type schema:Organization
156 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
157 schema:name Earth Sciences
158 rdf:type schema:DefinedTerm
159 anzsrc-for:0406 schema:inDefinedTermSet anzsrc-for:
160 schema:name Physical Geography and Environmental Geoscience
161 rdf:type schema:DefinedTerm
162 sg:grant.3794811 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-018-38309-5
163 rdf:type schema:MonetaryGrant
164 sg:journal.1045337 schema:issn 2045-2322
165 schema:name Scientific Reports
166 rdf:type schema:Periodical
167 sg:pub.10.1007/s00382-011-1252-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024230710
168 https://doi.org/10.1007/s00382-011-1252-5
169 rdf:type schema:CreativeWork
170 sg:pub.10.1007/s00382-012-1380-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053728296
171 https://doi.org/10.1007/s00382-012-1380-6
172 rdf:type schema:CreativeWork
173 sg:pub.10.1007/s00382-012-1469-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1042824118
174 https://doi.org/10.1007/s00382-012-1469-y
175 rdf:type schema:CreativeWork
176 sg:pub.10.1007/s00382-013-1794-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006494353
177 https://doi.org/10.1007/s00382-013-1794-9
178 rdf:type schema:CreativeWork
179 sg:pub.10.1007/s00382-014-2204-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038976954
180 https://doi.org/10.1007/s00382-014-2204-7
181 rdf:type schema:CreativeWork
182 sg:pub.10.1007/s00382-014-2301-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048849952
183 https://doi.org/10.1007/s00382-014-2301-7
184 rdf:type schema:CreativeWork
185 sg:pub.10.1007/s10040-006-0095-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021899229
186 https://doi.org/10.1007/s10040-006-0095-3
187 rdf:type schema:CreativeWork
188 sg:pub.10.1038/nature05095 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043618867
189 https://doi.org/10.1038/nature05095
190 rdf:type schema:CreativeWork
191 sg:pub.10.1038/nature11377 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053314176
192 https://doi.org/10.1038/nature11377
193 rdf:type schema:CreativeWork
194 sg:pub.10.1038/nclimate1716 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002144786
195 https://doi.org/10.1038/nclimate1716
196 rdf:type schema:CreativeWork
197 sg:pub.10.1038/nclimate2118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007897400
198 https://doi.org/10.1038/nclimate2118
199 rdf:type schema:CreativeWork
200 sg:pub.10.1038/ngeo1032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025101977
201 https://doi.org/10.1038/ngeo1032
202 rdf:type schema:CreativeWork
203 sg:pub.10.1038/ngeo1174 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022701505
204 https://doi.org/10.1038/ngeo1174
205 rdf:type schema:CreativeWork
206 sg:pub.10.1038/ngeo2141 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006668095
207 https://doi.org/10.1038/ngeo2141
208 rdf:type schema:CreativeWork
209 sg:pub.10.1038/ngeo2514 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016611773
210 https://doi.org/10.1038/ngeo2514
211 rdf:type schema:CreativeWork
212 sg:pub.10.1038/s41467-017-01040-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092119339
213 https://doi.org/10.1038/s41467-017-01040-2
214 rdf:type schema:CreativeWork
215 sg:pub.10.1038/srep12004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025154203
216 https://doi.org/10.1038/srep12004
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1002/2013gl058055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046262609
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1002/2014gl061145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049205392
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1002/2017jd027194 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101241432
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1002/2017jd027200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101239933
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1002/2017ms001036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092518659
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1002/grl.50956 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038780592
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1002/jgrd.50627 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014549635
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1002/joc.3711 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038108572
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1002/wcc.95 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015288051
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1016/j.earscirev.2010.02.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006890429
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1016/j.gloplacha.2016.12.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033055634
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1016/j.rse.2012.03.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024199277
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1016/j.rse.2014.04.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053226916
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1016/j.rse.2014.07.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005607763
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1016/j.rse.2016.02.042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009693549
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1016/j.rse.2017.01.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084106818
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1016/s0034-4257(03)00052-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1051126298
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1016/s0309-1708(02)00057-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1031914830
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1029/2000jd900719 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052382105
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1029/2002jd002952 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023933563
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1029/2005gl022760 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007243767
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1029/2006gl027567 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044252213
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1029/2007jf000769 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036379151
263 rdf:type schema:CreativeWork
264 https://doi.org/10.1029/2010gl043888 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046242669
265 rdf:type schema:CreativeWork
266 https://doi.org/10.1029/2010jd013892 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035382412
267 rdf:type schema:CreativeWork
268 https://doi.org/10.1029/2011gl048268 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036996953
269 rdf:type schema:CreativeWork
270 https://doi.org/10.1029/2012gl053650 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005803310
271 rdf:type schema:CreativeWork
272 https://doi.org/10.1073/pnas.0700144104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006929757
273 rdf:type schema:CreativeWork
274 https://doi.org/10.1073/pnas.1204330109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022379548
275 rdf:type schema:CreativeWork
276 https://doi.org/10.1126/science.1100217 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038718082
277 rdf:type schema:CreativeWork
278 https://doi.org/10.1175/1525-7541(2003)004<1147:tvgpcp>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023719243
279 rdf:type schema:CreativeWork
280 https://doi.org/10.1175/2008jhm997.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052612016
281 rdf:type schema:CreativeWork
282 https://doi.org/10.1175/2009jcli2832.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043881523
283 rdf:type schema:CreativeWork
284 https://doi.org/10.1175/2009jhm1116.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006338946
285 rdf:type schema:CreativeWork
286 https://doi.org/10.1175/bams-d-11-00094.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051805105
287 rdf:type schema:CreativeWork
288 https://doi.org/10.1175/jas-d-14-0336.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050243670
289 rdf:type schema:CreativeWork
290 https://doi.org/10.1175/jcli-d-13-00474.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004938855
291 rdf:type schema:CreativeWork
292 https://doi.org/10.1175/jcli-d-14-00324.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029755291
293 rdf:type schema:CreativeWork
294 https://doi.org/10.1175/jcli-d-15-0705.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001692228
295 rdf:type schema:CreativeWork
296 https://doi.org/10.1175/jcli-d-15-0706.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083939700
297 rdf:type schema:CreativeWork
298 https://doi.org/10.1175/jhm-d-10-05014.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063455391
299 rdf:type schema:CreativeWork
300 https://doi.org/10.1175/jhm554.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045237171
301 rdf:type schema:CreativeWork
302 https://doi.org/10.2136/vzj2012.0170 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069054578
303 rdf:type schema:CreativeWork
304 https://doi.org/10.3390/rs9050457 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085217056
305 rdf:type schema:CreativeWork
306 https://doi.org/10.5194/gmd-9-1937-2016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072670599
307 rdf:type schema:CreativeWork
308 https://doi.org/10.5194/gmd-9-2809-2016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002943715
309 rdf:type schema:CreativeWork
310 https://doi.org/10.5194/gmd-9-2973-2016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022094389
311 rdf:type schema:CreativeWork
312 https://doi.org/10.5194/hess-15-425-2011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001232485
313 rdf:type schema:CreativeWork
314 https://doi.org/10.5194/hess-19-1521-2015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030002839
315 rdf:type schema:CreativeWork
316 https://doi.org/10.5194/hess-19-4463-2015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002363170
317 rdf:type schema:CreativeWork
318 https://doi.org/10.5194/hess-21-2203-2017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085057537
319 rdf:type schema:CreativeWork
320 https://www.grid.ac/institutes/grid.463419.d schema:alternateName Agricultural Research Service
321 schema:name Hydrology and Remote Sensing Lab, USDA ARS, Beltsville, MD, USA.
322 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...