A biophysical model explains the spontaneous bursting behavior in the developing retina View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-02-12

AUTHORS

Dora Matzakos-Karvouniari, Lionel Gil, Elaine Orendorff, Olivier Marre, Serge Picaud, Bruno Cessac

ABSTRACT

During early development, waves of activity propagate across the retina and play a key role in the proper wiring of the early visual system. During a particular phase of the retina development (stage II) these waves are triggered by a transient network of neurons, called Starburst Amacrine Cells (SACs), showing a bursting activity which disappears upon further maturation. The underlying mechanisms of the spontaneous bursting and the transient excitability of immature SACs are not completely clear yet. While several models have attempted to reproduce retinal waves, none of them is able to mimic the rhythmic autonomous bursting of individual SACs and reveal how these cells change their intrinsic properties during development. Here, we introduce a mathematical model, grounded on biophysics, which enables us to reproduce the bursting activity of SACs and to propose a plausible, generic and robust, mechanism that generates it. The core parameters controlling repetitive firing are fast depolarizing V-gated calcium channels and hyperpolarizing V-gated potassium channels. The quiescent phase of bursting is controlled by a slow after hyperpolarization (sAHP), mediated by calcium-dependent potassium channels. Based on a bifurcation analysis we show how biophysical parameters, regulating calcium and potassium activity, control the spontaneously occurring fast oscillatory activity followed by long refractory periods in individual SACs. We make a testable experimental prediction on the role of voltage-dependent potassium channels on the excitability properties of SACs and on the evolution of this excitability along development. We also propose an explanation on how SACs can exhibit a large variability in their bursting periods, as observed experimentally within a SACs network as well as across different species, yet based on a simple, unique, mechanism. As we discuss, these observations at the cellular level have a deep impact on the retinal waves description. More... »

PAGES

1859

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-018-38299-4

DOI

http://dx.doi.org/10.1038/s41598-018-38299-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112070023

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30755684


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Neurosciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Amacrine Cells", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Calcium", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Calmodulin", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Kinetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Theoretical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Normal Distribution", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Oscillometry", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Potassium Channels", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Retina", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Retinal Ganglion Cells", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Visual Pathways", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Biovision team, Universit\u00e9 C\u00f4te d\u2019Azur, Inria, France", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Biovision team, Universit\u00e9 C\u00f4te d\u2019Azur, Inria, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Matzakos-Karvouniari", 
        "givenName": "Dora", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "INPHYNI, Universit\u00e9 C\u00f4te d\u2019Azur, CNRS, Sophia Antipolis, France", 
          "id": "http://www.grid.ac/institutes/grid.4444.0", 
          "name": [
            "INPHYNI, Universit\u00e9 C\u00f4te d\u2019Azur, CNRS, Sophia Antipolis, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gil", 
        "givenName": "Lionel", 
        "id": "sg:person.016347701713.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016347701713.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut de la Vision, Paris, France", 
          "id": "http://www.grid.ac/institutes/grid.418241.a", 
          "name": [
            "Institut de la Vision, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Orendorff", 
        "givenName": "Elaine", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut de la Vision, Paris, France", 
          "id": "http://www.grid.ac/institutes/grid.418241.a", 
          "name": [
            "Institut de la Vision, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Marre", 
        "givenName": "Olivier", 
        "id": "sg:person.01115332067.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01115332067.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut de la Vision, Paris, France", 
          "id": "http://www.grid.ac/institutes/grid.418241.a", 
          "name": [
            "Institut de la Vision, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Picaud", 
        "givenName": "Serge", 
        "id": "sg:person.0642273724.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0642273724.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Biovision team, Universit\u00e9 C\u00f4te d\u2019Azur, Inria, France", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Biovision team, Universit\u00e9 C\u00f4te d\u2019Azur, Inria, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cessac", 
        "givenName": "Bruno", 
        "id": "sg:person.01074735442.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01074735442.62"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nn1644", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042502798", 
          "https://doi.org/10.1038/nn1644"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrn1949", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050354047", 
          "https://doi.org/10.1038/nrn1949"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10867-005-4472-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038600475", 
          "https://doi.org/10.1007/s10867-005-4472-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10827-012-0425-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008546820", 
          "https://doi.org/10.1007/s10827-012-0425-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-1140-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044255212", 
          "https://doi.org/10.1007/978-1-4612-1140-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01179", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044195794", 
          "https://doi.org/10.1038/nature01179"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-02-12", 
    "datePublishedReg": "2019-02-12", 
    "description": "During early development, waves of activity propagate across the retina and play a key role in the proper wiring of the early visual system. During a particular phase of the retina development (stage II) these waves are triggered by a transient network of neurons, called Starburst Amacrine Cells (SACs), showing a bursting activity which disappears upon further maturation. The underlying mechanisms of the spontaneous bursting and the transient excitability of immature SACs are not completely clear yet. While several models have attempted to reproduce retinal waves, none of them is able to mimic the rhythmic autonomous bursting of individual SACs and reveal how these cells change their intrinsic properties during development. Here, we introduce a mathematical model, grounded on biophysics, which enables us to reproduce the bursting activity of SACs and to propose a plausible, generic and robust, mechanism that generates it. The core parameters controlling repetitive firing are fast depolarizing V-gated calcium channels and hyperpolarizing V-gated potassium channels. The quiescent phase of bursting is controlled by a slow after hyperpolarization (sAHP), mediated by calcium-dependent potassium channels. Based on a bifurcation analysis we show how biophysical parameters, regulating calcium and potassium activity, control the spontaneously occurring fast oscillatory activity followed by long refractory periods in individual SACs. We make a testable experimental prediction on the role of voltage-dependent potassium channels on the excitability properties of SACs and on the evolution of this excitability along development. We also propose an explanation on how SACs can exhibit a large variability in their bursting periods, as observed experimentally within a SACs network as well as across different species, yet based on a simple, unique, mechanism. As we discuss, these observations at the cellular level have a deep impact on the retinal waves description.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/s41598-018-38299-4", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "keywords": [
      "starburst amacrine cells", 
      "potassium channels", 
      "bursting activity", 
      "calcium-dependent potassium channels", 
      "fast oscillatory activity", 
      "spontaneous bursting behavior", 
      "voltage-dependent potassium channels", 
      "long refractory period", 
      "amacrine cells", 
      "retinal waves", 
      "spontaneous bursting", 
      "calcium channels", 
      "repetitive firing", 
      "refractory period", 
      "autonomous bursting", 
      "excitability properties", 
      "oscillatory activity", 
      "retina development", 
      "proper wiring", 
      "waves of activity", 
      "early visual system", 
      "potassium activity", 
      "excitability", 
      "retina", 
      "further maturation", 
      "cellular level", 
      "quiescent phase", 
      "cells", 
      "visual system", 
      "activity", 
      "early development", 
      "bursting behavior", 
      "neurons", 
      "key role", 
      "hyperpolarization", 
      "period", 
      "bursting", 
      "role", 
      "mechanism", 
      "calcium", 
      "maturation", 
      "firing", 
      "development", 
      "large variability", 
      "testable experimental predictions", 
      "bursting period", 
      "levels", 
      "wiring", 
      "particular phase", 
      "biophysical model", 
      "different species", 
      "intrinsic properties", 
      "model", 
      "impact", 
      "channels", 
      "biophysical parameters", 
      "variability", 
      "analysis", 
      "phase", 
      "observations", 
      "parameters", 
      "deep impact", 
      "explanation", 
      "system", 
      "behavior", 
      "biophysics", 
      "species", 
      "properties", 
      "waves", 
      "description", 
      "prediction", 
      "network", 
      "mathematical model", 
      "evolution", 
      "core parameters", 
      "experimental predictions", 
      "transient network", 
      "bifurcation analysis", 
      "wave description", 
      "transient excitability", 
      "immature SACs", 
      "rhythmic autonomous bursting", 
      "individual SACs", 
      "SACs network", 
      "retinal waves description"
    ], 
    "name": "A biophysical model explains the spontaneous bursting behavior in the developing retina", 
    "pagination": "1859", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112070023"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-018-38299-4"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30755684"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-018-38299-4", 
      "https://app.dimensions.ai/details/publication/pub.1112070023"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:50", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_796.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/s41598-018-38299-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-38299-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-38299-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-38299-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-38299-4'


 

This table displays all metadata directly associated to this object as RDF triples.

261 TRIPLES      22 PREDICATES      130 URIs      116 LITERALS      20 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-018-38299-4 schema:about N0cbed27afbf4457d8247d39d77b85d65
2 N15ac5ec13482473aa3a34037a3ec2fbb
3 N24437af28f284a4db07b2a6a57037a2c
4 N29c0004546d14a3093813893ee447ef5
5 N7c2c48da26ad4357b15827b57ca70439
6 N886fec2ca5fa4cd0b197a73f9a7daf64
7 Na50dd6a18f9b4476956dcc7e5371000d
8 Nb7f6e5a191ac4a398ee85c621c2d5d1f
9 Nceb774735f4e48cc93f371730416f24d
10 Nd56b85f1f0c242f9bca5924811376ec1
11 Ndcc5f7ccbc65497d80c8ee026c4a7ebd
12 Ne47db5e852a84ecdbc67c440f38aa01c
13 Nf87b5a683d6e4278b87b806cf22aae77
14 anzsrc-for:11
15 anzsrc-for:1109
16 schema:author Ned32b2ed57bc4a84883e9aaabc9a04a6
17 schema:citation sg:pub.10.1007/978-1-4612-1140-2
18 sg:pub.10.1007/s10827-012-0425-5
19 sg:pub.10.1007/s10867-005-4472-2
20 sg:pub.10.1038/nature01179
21 sg:pub.10.1038/nn1644
22 sg:pub.10.1038/nrn1949
23 schema:datePublished 2019-02-12
24 schema:datePublishedReg 2019-02-12
25 schema:description During early development, waves of activity propagate across the retina and play a key role in the proper wiring of the early visual system. During a particular phase of the retina development (stage II) these waves are triggered by a transient network of neurons, called Starburst Amacrine Cells (SACs), showing a bursting activity which disappears upon further maturation. The underlying mechanisms of the spontaneous bursting and the transient excitability of immature SACs are not completely clear yet. While several models have attempted to reproduce retinal waves, none of them is able to mimic the rhythmic autonomous bursting of individual SACs and reveal how these cells change their intrinsic properties during development. Here, we introduce a mathematical model, grounded on biophysics, which enables us to reproduce the bursting activity of SACs and to propose a plausible, generic and robust, mechanism that generates it. The core parameters controlling repetitive firing are fast depolarizing V-gated calcium channels and hyperpolarizing V-gated potassium channels. The quiescent phase of bursting is controlled by a slow after hyperpolarization (sAHP), mediated by calcium-dependent potassium channels. Based on a bifurcation analysis we show how biophysical parameters, regulating calcium and potassium activity, control the spontaneously occurring fast oscillatory activity followed by long refractory periods in individual SACs. We make a testable experimental prediction on the role of voltage-dependent potassium channels on the excitability properties of SACs and on the evolution of this excitability along development. We also propose an explanation on how SACs can exhibit a large variability in their bursting periods, as observed experimentally within a SACs network as well as across different species, yet based on a simple, unique, mechanism. As we discuss, these observations at the cellular level have a deep impact on the retinal waves description.
26 schema:genre article
27 schema:inLanguage en
28 schema:isAccessibleForFree true
29 schema:isPartOf N29f12da12ccd413ba68be590ce42a98d
30 N4b3350e63bc8482eae331503f0d6926c
31 sg:journal.1045337
32 schema:keywords SACs network
33 activity
34 amacrine cells
35 analysis
36 autonomous bursting
37 behavior
38 bifurcation analysis
39 biophysical model
40 biophysical parameters
41 biophysics
42 bursting
43 bursting activity
44 bursting behavior
45 bursting period
46 calcium
47 calcium channels
48 calcium-dependent potassium channels
49 cells
50 cellular level
51 channels
52 core parameters
53 deep impact
54 description
55 development
56 different species
57 early development
58 early visual system
59 evolution
60 excitability
61 excitability properties
62 experimental predictions
63 explanation
64 fast oscillatory activity
65 firing
66 further maturation
67 hyperpolarization
68 immature SACs
69 impact
70 individual SACs
71 intrinsic properties
72 key role
73 large variability
74 levels
75 long refractory period
76 mathematical model
77 maturation
78 mechanism
79 model
80 network
81 neurons
82 observations
83 oscillatory activity
84 parameters
85 particular phase
86 period
87 phase
88 potassium activity
89 potassium channels
90 prediction
91 proper wiring
92 properties
93 quiescent phase
94 refractory period
95 repetitive firing
96 retina
97 retina development
98 retinal waves
99 retinal waves description
100 rhythmic autonomous bursting
101 role
102 species
103 spontaneous bursting
104 spontaneous bursting behavior
105 starburst amacrine cells
106 system
107 testable experimental predictions
108 transient excitability
109 transient network
110 variability
111 visual system
112 voltage-dependent potassium channels
113 wave description
114 waves
115 waves of activity
116 wiring
117 schema:name A biophysical model explains the spontaneous bursting behavior in the developing retina
118 schema:pagination 1859
119 schema:productId N7145bd71c87549e6986af45881e20598
120 N9171d1c535094363acebb9a8429a61e3
121 Nc520ecb50adb4718913c63d0ba13d80d
122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112070023
123 https://doi.org/10.1038/s41598-018-38299-4
124 schema:sdDatePublished 2022-01-01T18:50
125 schema:sdLicense https://scigraph.springernature.com/explorer/license/
126 schema:sdPublisher N4f2aec5484a240c19295fd277ea9b412
127 schema:url https://doi.org/10.1038/s41598-018-38299-4
128 sgo:license sg:explorer/license/
129 sgo:sdDataset articles
130 rdf:type schema:ScholarlyArticle
131 N0a8dc23fe33c44ecaed553abc87e0cd3 schema:affiliation grid-institutes:grid.418241.a
132 schema:familyName Orendorff
133 schema:givenName Elaine
134 rdf:type schema:Person
135 N0cbed27afbf4457d8247d39d77b85d65 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Oscillometry
137 rdf:type schema:DefinedTerm
138 N15ac5ec13482473aa3a34037a3ec2fbb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Kinetics
140 rdf:type schema:DefinedTerm
141 N24437af28f284a4db07b2a6a57037a2c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
142 schema:name Algorithms
143 rdf:type schema:DefinedTerm
144 N29c0004546d14a3093813893ee447ef5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Calcium
146 rdf:type schema:DefinedTerm
147 N29f12da12ccd413ba68be590ce42a98d schema:issueNumber 1
148 rdf:type schema:PublicationIssue
149 N4b3350e63bc8482eae331503f0d6926c schema:volumeNumber 9
150 rdf:type schema:PublicationVolume
151 N4f2aec5484a240c19295fd277ea9b412 schema:name Springer Nature - SN SciGraph project
152 rdf:type schema:Organization
153 N58e674b9e68a4642854d968616b98ef6 rdf:first N0a8dc23fe33c44ecaed553abc87e0cd3
154 rdf:rest Ncb65d48bf5e44b62a20078a3b17315d3
155 N7145bd71c87549e6986af45881e20598 schema:name pubmed_id
156 schema:value 30755684
157 rdf:type schema:PropertyValue
158 N7c2c48da26ad4357b15827b57ca70439 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
159 schema:name Retina
160 rdf:type schema:DefinedTerm
161 N886fec2ca5fa4cd0b197a73f9a7daf64 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
162 schema:name Amacrine Cells
163 rdf:type schema:DefinedTerm
164 N9171d1c535094363acebb9a8429a61e3 schema:name dimensions_id
165 schema:value pub.1112070023
166 rdf:type schema:PropertyValue
167 Na50dd6a18f9b4476956dcc7e5371000d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
168 schema:name Retinal Ganglion Cells
169 rdf:type schema:DefinedTerm
170 Nb7f6e5a191ac4a398ee85c621c2d5d1f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
171 schema:name Animals
172 rdf:type schema:DefinedTerm
173 Nc520ecb50adb4718913c63d0ba13d80d schema:name doi
174 schema:value 10.1038/s41598-018-38299-4
175 rdf:type schema:PropertyValue
176 Ncaea74a1d82e4f4a9de37bff3acc08bb schema:affiliation grid-institutes:None
177 schema:familyName Matzakos-Karvouniari
178 schema:givenName Dora
179 rdf:type schema:Person
180 Ncb65d48bf5e44b62a20078a3b17315d3 rdf:first sg:person.01115332067.10
181 rdf:rest Nde3b91f9810f4a1abcf3cc30964e49a0
182 Nceb774735f4e48cc93f371730416f24d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
183 schema:name Visual Pathways
184 rdf:type schema:DefinedTerm
185 Nd56b85f1f0c242f9bca5924811376ec1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
186 schema:name Calmodulin
187 rdf:type schema:DefinedTerm
188 Nd64722b007c04acb92fa4313292bbc01 rdf:first sg:person.01074735442.62
189 rdf:rest rdf:nil
190 Ndcc5f7ccbc65497d80c8ee026c4a7ebd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
191 schema:name Normal Distribution
192 rdf:type schema:DefinedTerm
193 Nde3b91f9810f4a1abcf3cc30964e49a0 rdf:first sg:person.0642273724.04
194 rdf:rest Nd64722b007c04acb92fa4313292bbc01
195 Ne47db5e852a84ecdbc67c440f38aa01c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
196 schema:name Potassium Channels
197 rdf:type schema:DefinedTerm
198 Ne77c4ac5c066472ea0245c7055c9a73c rdf:first sg:person.016347701713.55
199 rdf:rest N58e674b9e68a4642854d968616b98ef6
200 Ned32b2ed57bc4a84883e9aaabc9a04a6 rdf:first Ncaea74a1d82e4f4a9de37bff3acc08bb
201 rdf:rest Ne77c4ac5c066472ea0245c7055c9a73c
202 Nf87b5a683d6e4278b87b806cf22aae77 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
203 schema:name Models, Theoretical
204 rdf:type schema:DefinedTerm
205 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
206 schema:name Medical and Health Sciences
207 rdf:type schema:DefinedTerm
208 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
209 schema:name Neurosciences
210 rdf:type schema:DefinedTerm
211 sg:journal.1045337 schema:issn 2045-2322
212 schema:name Scientific Reports
213 schema:publisher Springer Nature
214 rdf:type schema:Periodical
215 sg:person.01074735442.62 schema:affiliation grid-institutes:None
216 schema:familyName Cessac
217 schema:givenName Bruno
218 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01074735442.62
219 rdf:type schema:Person
220 sg:person.01115332067.10 schema:affiliation grid-institutes:grid.418241.a
221 schema:familyName Marre
222 schema:givenName Olivier
223 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01115332067.10
224 rdf:type schema:Person
225 sg:person.016347701713.55 schema:affiliation grid-institutes:grid.4444.0
226 schema:familyName Gil
227 schema:givenName Lionel
228 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016347701713.55
229 rdf:type schema:Person
230 sg:person.0642273724.04 schema:affiliation grid-institutes:grid.418241.a
231 schema:familyName Picaud
232 schema:givenName Serge
233 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0642273724.04
234 rdf:type schema:Person
235 sg:pub.10.1007/978-1-4612-1140-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044255212
236 https://doi.org/10.1007/978-1-4612-1140-2
237 rdf:type schema:CreativeWork
238 sg:pub.10.1007/s10827-012-0425-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008546820
239 https://doi.org/10.1007/s10827-012-0425-5
240 rdf:type schema:CreativeWork
241 sg:pub.10.1007/s10867-005-4472-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038600475
242 https://doi.org/10.1007/s10867-005-4472-2
243 rdf:type schema:CreativeWork
244 sg:pub.10.1038/nature01179 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044195794
245 https://doi.org/10.1038/nature01179
246 rdf:type schema:CreativeWork
247 sg:pub.10.1038/nn1644 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042502798
248 https://doi.org/10.1038/nn1644
249 rdf:type schema:CreativeWork
250 sg:pub.10.1038/nrn1949 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050354047
251 https://doi.org/10.1038/nrn1949
252 rdf:type schema:CreativeWork
253 grid-institutes:None schema:alternateName Biovision team, Université Côte d’Azur, Inria, France
254 schema:name Biovision team, Université Côte d’Azur, Inria, France
255 rdf:type schema:Organization
256 grid-institutes:grid.418241.a schema:alternateName Institut de la Vision, Paris, France
257 schema:name Institut de la Vision, Paris, France
258 rdf:type schema:Organization
259 grid-institutes:grid.4444.0 schema:alternateName INPHYNI, Université Côte d’Azur, CNRS, Sophia Antipolis, France
260 schema:name INPHYNI, Université Côte d’Azur, CNRS, Sophia Antipolis, France
261 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...