Performance of Cystatin C-Based Equations for Estimation of Glomerular Filtration Rate in Diabetes Patients: A Prisma-Compliant Systematic Review and Meta-Analysis View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Amanda Veiga Cheuiche, Marina Queiroz, André Luis Ferreira Azeredo-da-Silva, Sandra Pinho Silveiro

ABSTRACT

The accuracy of estimated glomerular filtration rate (eGFR) equations in diabetes mellitus (DM) patients has been extensively questioned. We evaluated the performance of cystatin C-based equations alone or in combination with creatinine to estimate GFR in DM patients. A PRISMA-compliant systematic review was performed in the MEDLINE and Embase databases, with "diabetes mellitus" and "cystatin C" as search terms. Studies comparing cystatin C-based eGFR equations with measured GFR (mGFR) in DM patients were eligible. Accuracies P10, P15, P20, and P30 indicated the proportion of eGFR results within 10, 15, 20, and 30% of mGFR. Single-arm meta-analyses were conducted, and the Quality of Diagnostic Accuracy Studies-II tool (QUADAS-2) was applied. Twenty-three studies comprising 7065 participants were included, and 24 equations were analyzed in a broad range of GFRs. Meta-analyses were completed for 10 equations. The mean P30 accuracies of the equations ranged from 41% to 87%, with the highest values found with both CKD-EPI equations. Mean P10-P15 achieved 35% in the best scenario. A sensitivity analysis to evaluate different mGFR methods did not change results. In conclusion, cystatin C-based eGFR equations represent measured GFR fairly at best in DM patients, with high variability among the several proposed equations. More... »

PAGES

1418

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-018-38286-9

DOI

http://dx.doi.org/10.1038/s41598-018-38286-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111913152

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30723243


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Hospital de Cl\u00ednicas de Porto Alegre", 
          "id": "https://www.grid.ac/institutes/grid.414449.8", 
          "name": [
            "Graduate Program in Medical Science: Endocrinology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil", 
            "Endocrine Division, HCPA, Porto Alegre, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cheuiche", 
        "givenName": "Amanda Veiga", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Federal University of Rio Grande do Sul", 
          "id": "https://www.grid.ac/institutes/grid.8532.c", 
          "name": [
            "Graduate Program in Medical Science: Endocrinology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Queiroz", 
        "givenName": "Marina", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hospital de Cl\u00ednicas de Porto Alegre", 
          "id": "https://www.grid.ac/institutes/grid.414449.8", 
          "name": [
            "Internal Medicine Division, Hospital de Cl\u00ednicas de Porto Alegre (HCPA), Porto Alegre, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Azeredo-da-Silva", 
        "givenName": "Andr\u00e9 Luis Ferreira", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hospital de Cl\u00ednicas de Porto Alegre", 
          "id": "https://www.grid.ac/institutes/grid.414449.8", 
          "name": [
            "Graduate Program in Medical Science: Endocrinology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil", 
            "Endocrine Division, HCPA, Porto Alegre, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Silveiro", 
        "givenName": "Sandra Pinho", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1371/journal.pone.0147329", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004605837"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0147329", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004605837"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0147329", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004605837"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/cclm.2010.318", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004662272"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2012/179849", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007067311"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jdiacomp.2014.06.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007951486"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00125-011-2307-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008821023", 
          "https://doi.org/10.1007/s00125-011-2307-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00125-011-2307-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008821023", 
          "https://doi.org/10.1007/s00125-011-2307-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11255-013-0607-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010284799", 
          "https://doi.org/10.1007/s11255-013-0607-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1111/j.1523-1755.2004.00517.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011888526", 
          "https://doi.org/10.1111/j.1523-1755.2004.00517.x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1053/j.ajkd.2012.04.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012035385"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1053/j.ajkd.2012.04.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012035385"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00125-009-1379-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012457539", 
          "https://doi.org/10.1007/s00125-009-1379-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00125-009-1379-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012457539", 
          "https://doi.org/10.1007/s00125-009-1379-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00125-009-1379-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012457539", 
          "https://doi.org/10.1007/s00125-009-1379-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00125-009-1379-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012457539", 
          "https://doi.org/10.1007/s00125-009-1379-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/dc13-1899", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017276754"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3109/00365511003642535", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021955356"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1464-5491.2010.03121.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022354621"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1464-5491.2010.03121.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022354621"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1464-5491.2010.03161.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024346710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa1114248", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024595909"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ndt/gft509", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024873790"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00125-006-0275-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025565330", 
          "https://doi.org/10.1007/s00125-006-0275-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00125-006-0275-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025565330", 
          "https://doi.org/10.1007/s00125-006-0275-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00125-006-0275-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025565330", 
          "https://doi.org/10.1007/s00125-006-0275-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1159/000453531", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027293624"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/dc11-1282", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028565379"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1681/asn.2013050557", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029548664"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1681/asn.2013050557", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029548664"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/apa.12993", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031494613"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.clinbiochem.2016.11.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033604653"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1053/j.ajkd.2013.03.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036682237"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.clinbiochem.2013.05.067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037081269"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/dc11-2220", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038033782"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/dc09-0191", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039910873"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.diabet.2008.03.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041145896"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hep.26556", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042506935"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1744-9987.12462", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044710808"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1046/j.1523-1755.2003.00925.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046402632", 
          "https://doi.org/10.1046/j.1523-1755.2003.00925.x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/dc06-2637", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046479195"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sim.1186", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047418980"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1159/000452593", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048432886"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00365519950185076", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049710938"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/jech-2015-205834", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050018281"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12882-015-0196-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051347613", 
          "https://doi.org/10.1186/s12882-015-0196-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12882-015-0196-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051347613", 
          "https://doi.org/10.1186/s12882-015-0196-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/dc11-1998", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051648380"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1194/jlr.p800070-jlr200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051945354"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1198/016214502753479392", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064197988"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7326/0003-4819-155-8-201110180-00009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073712514"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1078141569", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1373/clinchem.2016.264325", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083788175"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/096228029900800204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090525344"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/096228029900800204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090525344"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/cclm-2017-0563", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092116932"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1373/clinchem.2017.276683", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092274746"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1373/clinchem.2017.276683", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092274746"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1373/clinchem.2017.276683", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092274746"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/dc18-s010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099630779"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ckj/sfx149", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099890737"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.clinbiochem.2018.01.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100288609"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/jama.2017.19163", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100560849"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/jama.2017.19163", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100560849"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "The accuracy of estimated glomerular filtration rate (eGFR) equations in diabetes mellitus (DM) patients has been extensively questioned. We evaluated the performance of cystatin C-based equations alone or in combination with creatinine to estimate GFR in DM patients. A PRISMA-compliant systematic review was performed in the MEDLINE and Embase databases, with \"diabetes mellitus\" and \"cystatin C\" as search terms. Studies comparing cystatin C-based eGFR equations with measured GFR (mGFR) in DM patients were eligible. Accuracies P10, P15, P20, and P30 indicated the proportion of eGFR results within 10, 15, 20, and 30% of mGFR. Single-arm meta-analyses were conducted, and the Quality of Diagnostic Accuracy Studies-II tool (QUADAS-2) was applied. Twenty-three studies comprising 7065 participants were included, and 24 equations were analyzed in a broad range of GFRs. Meta-analyses were completed for 10 equations. The mean P30 accuracies of the equations ranged from 41% to 87%, with the highest values found with both CKD-EPI equations. Mean P10-P15 achieved 35% in the best scenario. A sensitivity analysis to evaluate different mGFR methods did not change results. In conclusion, cystatin C-based eGFR equations represent measured GFR fairly at best in DM patients, with high variability among the several proposed equations.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-018-38286-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "Performance of Cystatin C-Based Equations for Estimation of Glomerular Filtration Rate in Diabetes Patients: A Prisma-Compliant Systematic Review and Meta-Analysis", 
    "pagination": "1418", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "850bf9f00103fb7e56119f194d8a74fcbf1bc4bb7a09d596ec60ef55723e066b"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30723243"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-018-38286-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111913152"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-018-38286-9", 
      "https://app.dimensions.ai/details/publication/pub.1111913152"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:02", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000331_0000000331/records_105415_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-018-38286-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-38286-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-38286-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-38286-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-38286-9'


 

This table displays all metadata directly associated to this object as RDF triples.

240 TRIPLES      21 PREDICATES      77 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-018-38286-9 schema:about anzsrc-for:11
2 anzsrc-for:1117
3 schema:author N80e6e4ef6fd647e5a81e1a7bd33f5c2c
4 schema:citation sg:pub.10.1007/s00125-006-0275-7
5 sg:pub.10.1007/s00125-009-1379-7
6 sg:pub.10.1007/s00125-011-2307-1
7 sg:pub.10.1007/s11255-013-0607-8
8 sg:pub.10.1046/j.1523-1755.2003.00925.x
9 sg:pub.10.1111/j.1523-1755.2004.00517.x
10 sg:pub.10.1186/s12882-015-0196-0
11 https://app.dimensions.ai/details/publication/pub.1078141569
12 https://doi.org/10.1001/jama.2017.19163
13 https://doi.org/10.1002/hep.26556
14 https://doi.org/10.1002/sim.1186
15 https://doi.org/10.1016/j.clinbiochem.2013.05.067
16 https://doi.org/10.1016/j.clinbiochem.2016.11.024
17 https://doi.org/10.1016/j.clinbiochem.2018.01.005
18 https://doi.org/10.1016/j.diabet.2008.03.004
19 https://doi.org/10.1016/j.jdiacomp.2014.06.001
20 https://doi.org/10.1053/j.ajkd.2012.04.012
21 https://doi.org/10.1053/j.ajkd.2013.03.027
22 https://doi.org/10.1056/nejmoa1114248
23 https://doi.org/10.1080/00365519950185076
24 https://doi.org/10.1093/ckj/sfx149
25 https://doi.org/10.1093/ndt/gft509
26 https://doi.org/10.1111/1744-9987.12462
27 https://doi.org/10.1111/apa.12993
28 https://doi.org/10.1111/j.1464-5491.2010.03121.x
29 https://doi.org/10.1111/j.1464-5491.2010.03161.x
30 https://doi.org/10.1136/jech-2015-205834
31 https://doi.org/10.1155/2012/179849
32 https://doi.org/10.1159/000452593
33 https://doi.org/10.1159/000453531
34 https://doi.org/10.1177/096228029900800204
35 https://doi.org/10.1194/jlr.p800070-jlr200
36 https://doi.org/10.1198/016214502753479392
37 https://doi.org/10.1371/journal.pone.0147329
38 https://doi.org/10.1373/clinchem.2016.264325
39 https://doi.org/10.1373/clinchem.2017.276683
40 https://doi.org/10.1515/cclm-2017-0563
41 https://doi.org/10.1515/cclm.2010.318
42 https://doi.org/10.1681/asn.2013050557
43 https://doi.org/10.2337/dc06-2637
44 https://doi.org/10.2337/dc09-0191
45 https://doi.org/10.2337/dc11-1282
46 https://doi.org/10.2337/dc11-1998
47 https://doi.org/10.2337/dc11-2220
48 https://doi.org/10.2337/dc13-1899
49 https://doi.org/10.2337/dc18-s010
50 https://doi.org/10.3109/00365511003642535
51 https://doi.org/10.7326/0003-4819-155-8-201110180-00009
52 schema:datePublished 2019-12
53 schema:datePublishedReg 2019-12-01
54 schema:description The accuracy of estimated glomerular filtration rate (eGFR) equations in diabetes mellitus (DM) patients has been extensively questioned. We evaluated the performance of cystatin C-based equations alone or in combination with creatinine to estimate GFR in DM patients. A PRISMA-compliant systematic review was performed in the MEDLINE and Embase databases, with "diabetes mellitus" and "cystatin C" as search terms. Studies comparing cystatin C-based eGFR equations with measured GFR (mGFR) in DM patients were eligible. Accuracies P10, P15, P20, and P30 indicated the proportion of eGFR results within 10, 15, 20, and 30% of mGFR. Single-arm meta-analyses were conducted, and the Quality of Diagnostic Accuracy Studies-II tool (QUADAS-2) was applied. Twenty-three studies comprising 7065 participants were included, and 24 equations were analyzed in a broad range of GFRs. Meta-analyses were completed for 10 equations. The mean P30 accuracies of the equations ranged from 41% to 87%, with the highest values found with both CKD-EPI equations. Mean P10-P15 achieved 35% in the best scenario. A sensitivity analysis to evaluate different mGFR methods did not change results. In conclusion, cystatin C-based eGFR equations represent measured GFR fairly at best in DM patients, with high variability among the several proposed equations.
55 schema:genre research_article
56 schema:inLanguage en
57 schema:isAccessibleForFree true
58 schema:isPartOf N1fbe9472e8554854949832908901aad8
59 N7d49ed45566249e3aa3acc8de410f4ad
60 sg:journal.1045337
61 schema:name Performance of Cystatin C-Based Equations for Estimation of Glomerular Filtration Rate in Diabetes Patients: A Prisma-Compliant Systematic Review and Meta-Analysis
62 schema:pagination 1418
63 schema:productId N09947cb263bf4efda6af984d234f2a3f
64 N5f1b902b88c34b2f9b59c89824978e8b
65 N780797daacee4df6abe836855d72fa43
66 N78ab3a23b609468e942c003c45bf139a
67 Nf643952739464f9d8debe804b0c1819f
68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111913152
69 https://doi.org/10.1038/s41598-018-38286-9
70 schema:sdDatePublished 2019-04-11T09:02
71 schema:sdLicense https://scigraph.springernature.com/explorer/license/
72 schema:sdPublisher Nd6390725f71a46da97860bdff09cb3f5
73 schema:url https://www.nature.com/articles/s41598-018-38286-9
74 sgo:license sg:explorer/license/
75 sgo:sdDataset articles
76 rdf:type schema:ScholarlyArticle
77 N09947cb263bf4efda6af984d234f2a3f schema:name pubmed_id
78 schema:value 30723243
79 rdf:type schema:PropertyValue
80 N0e5502b7297b43948f8476e2af551dca schema:affiliation https://www.grid.ac/institutes/grid.414449.8
81 schema:familyName Silveiro
82 schema:givenName Sandra Pinho
83 rdf:type schema:Person
84 N13f4a02371834921b87f6e503a0e582c schema:affiliation https://www.grid.ac/institutes/grid.414449.8
85 schema:familyName Cheuiche
86 schema:givenName Amanda Veiga
87 rdf:type schema:Person
88 N1fbe9472e8554854949832908901aad8 schema:issueNumber 1
89 rdf:type schema:PublicationIssue
90 N5f1b902b88c34b2f9b59c89824978e8b schema:name dimensions_id
91 schema:value pub.1111913152
92 rdf:type schema:PropertyValue
93 N625d1f4f5a4d40298c499f855158c1aa rdf:first Nd7fa50f9b63e46f8ad60f687d07cbbd4
94 rdf:rest Nc18d3f8dcb2d4884b3ba7ad1ce8a9b04
95 N780797daacee4df6abe836855d72fa43 schema:name nlm_unique_id
96 schema:value 101563288
97 rdf:type schema:PropertyValue
98 N78ab3a23b609468e942c003c45bf139a schema:name readcube_id
99 schema:value 850bf9f00103fb7e56119f194d8a74fcbf1bc4bb7a09d596ec60ef55723e066b
100 rdf:type schema:PropertyValue
101 N7d49ed45566249e3aa3acc8de410f4ad schema:volumeNumber 9
102 rdf:type schema:PublicationVolume
103 N80e6e4ef6fd647e5a81e1a7bd33f5c2c rdf:first N13f4a02371834921b87f6e503a0e582c
104 rdf:rest N625d1f4f5a4d40298c499f855158c1aa
105 N8eea434ea4fe412fb16c33fea35c91c4 schema:affiliation https://www.grid.ac/institutes/grid.414449.8
106 schema:familyName Azeredo-da-Silva
107 schema:givenName André Luis Ferreira
108 rdf:type schema:Person
109 Nc18d3f8dcb2d4884b3ba7ad1ce8a9b04 rdf:first N8eea434ea4fe412fb16c33fea35c91c4
110 rdf:rest Nd3db31850efb498dbecea956e44868d3
111 Nd3db31850efb498dbecea956e44868d3 rdf:first N0e5502b7297b43948f8476e2af551dca
112 rdf:rest rdf:nil
113 Nd6390725f71a46da97860bdff09cb3f5 schema:name Springer Nature - SN SciGraph project
114 rdf:type schema:Organization
115 Nd7fa50f9b63e46f8ad60f687d07cbbd4 schema:affiliation https://www.grid.ac/institutes/grid.8532.c
116 schema:familyName Queiroz
117 schema:givenName Marina
118 rdf:type schema:Person
119 Nf643952739464f9d8debe804b0c1819f schema:name doi
120 schema:value 10.1038/s41598-018-38286-9
121 rdf:type schema:PropertyValue
122 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
123 schema:name Medical and Health Sciences
124 rdf:type schema:DefinedTerm
125 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
126 schema:name Public Health and Health Services
127 rdf:type schema:DefinedTerm
128 sg:journal.1045337 schema:issn 2045-2322
129 schema:name Scientific Reports
130 rdf:type schema:Periodical
131 sg:pub.10.1007/s00125-006-0275-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025565330
132 https://doi.org/10.1007/s00125-006-0275-7
133 rdf:type schema:CreativeWork
134 sg:pub.10.1007/s00125-009-1379-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012457539
135 https://doi.org/10.1007/s00125-009-1379-7
136 rdf:type schema:CreativeWork
137 sg:pub.10.1007/s00125-011-2307-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008821023
138 https://doi.org/10.1007/s00125-011-2307-1
139 rdf:type schema:CreativeWork
140 sg:pub.10.1007/s11255-013-0607-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010284799
141 https://doi.org/10.1007/s11255-013-0607-8
142 rdf:type schema:CreativeWork
143 sg:pub.10.1046/j.1523-1755.2003.00925.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1046402632
144 https://doi.org/10.1046/j.1523-1755.2003.00925.x
145 rdf:type schema:CreativeWork
146 sg:pub.10.1111/j.1523-1755.2004.00517.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1011888526
147 https://doi.org/10.1111/j.1523-1755.2004.00517.x
148 rdf:type schema:CreativeWork
149 sg:pub.10.1186/s12882-015-0196-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051347613
150 https://doi.org/10.1186/s12882-015-0196-0
151 rdf:type schema:CreativeWork
152 https://app.dimensions.ai/details/publication/pub.1078141569 schema:CreativeWork
153 https://doi.org/10.1001/jama.2017.19163 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100560849
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1002/hep.26556 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042506935
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1002/sim.1186 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047418980
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/j.clinbiochem.2013.05.067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037081269
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/j.clinbiochem.2016.11.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033604653
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/j.clinbiochem.2018.01.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100288609
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/j.diabet.2008.03.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041145896
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/j.jdiacomp.2014.06.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007951486
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1053/j.ajkd.2012.04.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012035385
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1053/j.ajkd.2013.03.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036682237
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1056/nejmoa1114248 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024595909
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1080/00365519950185076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049710938
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1093/ckj/sfx149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099890737
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1093/ndt/gft509 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024873790
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1111/1744-9987.12462 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044710808
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1111/apa.12993 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031494613
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1111/j.1464-5491.2010.03121.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1022354621
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1111/j.1464-5491.2010.03161.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1024346710
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1136/jech-2015-205834 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050018281
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1155/2012/179849 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007067311
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1159/000452593 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048432886
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1159/000453531 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027293624
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1177/096228029900800204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090525344
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1194/jlr.p800070-jlr200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051945354
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1198/016214502753479392 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064197988
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1371/journal.pone.0147329 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004605837
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1373/clinchem.2016.264325 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083788175
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1373/clinchem.2017.276683 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092274746
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1515/cclm-2017-0563 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092116932
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1515/cclm.2010.318 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004662272
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1681/asn.2013050557 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029548664
214 rdf:type schema:CreativeWork
215 https://doi.org/10.2337/dc06-2637 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046479195
216 rdf:type schema:CreativeWork
217 https://doi.org/10.2337/dc09-0191 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039910873
218 rdf:type schema:CreativeWork
219 https://doi.org/10.2337/dc11-1282 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028565379
220 rdf:type schema:CreativeWork
221 https://doi.org/10.2337/dc11-1998 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051648380
222 rdf:type schema:CreativeWork
223 https://doi.org/10.2337/dc11-2220 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038033782
224 rdf:type schema:CreativeWork
225 https://doi.org/10.2337/dc13-1899 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017276754
226 rdf:type schema:CreativeWork
227 https://doi.org/10.2337/dc18-s010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099630779
228 rdf:type schema:CreativeWork
229 https://doi.org/10.3109/00365511003642535 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021955356
230 rdf:type schema:CreativeWork
231 https://doi.org/10.7326/0003-4819-155-8-201110180-00009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073712514
232 rdf:type schema:CreativeWork
233 https://www.grid.ac/institutes/grid.414449.8 schema:alternateName Hospital de Clínicas de Porto Alegre
234 schema:name Endocrine Division, HCPA, Porto Alegre, Brazil
235 Graduate Program in Medical Science: Endocrinology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
236 Internal Medicine Division, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
237 rdf:type schema:Organization
238 https://www.grid.ac/institutes/grid.8532.c schema:alternateName Federal University of Rio Grande do Sul
239 schema:name Graduate Program in Medical Science: Endocrinology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
240 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...