Electrochemical Oxidation Induced Multi-Level Memory in Carbon-Based Resistive Switching Devices View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Paola Russo, Ming Xiao, Norman Y. Zhou

ABSTRACT

In this work, we report for the first time the electrochemical oxidation as a technique to improve the electrical performances of carbon-based resistive switching devices. The devices obtained through the anodic oxidation of carbon-structures possess superior electrical performances i.e. a 3-level memory behavior and an ON/OFF ratio two order of magnitude higher than the non-oxidized carbon-based devices. It is demonstrated that the chemical composition of the carbon structures (i.e. percentage of oxygen groups, sp2 and sp3 carbon atoms) plays a key role in the improvement of the carbon-based devices. The electrochemical oxidation allows the possibility to control the oxidation degree, and therefore, to tailor the devices electrical performances. We demonstrated that the resistive switching behavior in the electrochemically oxidized devices is originated from the formation of conductive filament paths, which are built from the oxygen vacancies and structural defects of the anodic oxidized carbon materials. The novelty of this work relies on the anodic oxidation as a time- and cost-effective technique that can be employed for the engineering and improvement of the electrical performances of next generation carbon-based resistive switching devices. More... »

PAGES

1564

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-018-38249-0

DOI

http://dx.doi.org/10.1038/s41598-018-38249-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111979767

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30733534


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Waterloo", 
          "id": "https://www.grid.ac/institutes/grid.46078.3d", 
          "name": [
            "Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West Waterloo, N2L 3G1, Ontario, Canada", 
            "Centre for Advanced Materials Joining, University of Waterloo, 200 University Avenue West Waterloo, N2L 3G1, Ontario, Canada", 
            "Multi-Scale Additive Manufacturing Lab, University of Waterloo, 200 University Avenue West Waterloo, N2L 3G1, Ontario, Canada", 
            "Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Avenue West Waterloo, N2L 3G1, Ontario, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Russo", 
        "givenName": "Paola", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Waterloo", 
          "id": "https://www.grid.ac/institutes/grid.46078.3d", 
          "name": [
            "Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West Waterloo, N2L 3G1, Ontario, Canada", 
            "Centre for Advanced Materials Joining, University of Waterloo, 200 University Avenue West Waterloo, N2L 3G1, Ontario, Canada", 
            "Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Avenue West Waterloo, N2L 3G1, Ontario, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xiao", 
        "givenName": "Ming", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Waterloo", 
          "id": "https://www.grid.ac/institutes/grid.46078.3d", 
          "name": [
            "Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West Waterloo, N2L 3G1, Ontario, Canada", 
            "Centre for Advanced Materials Joining, University of Waterloo, 200 University Avenue West Waterloo, N2L 3G1, Ontario, Canada", 
            "Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Avenue West Waterloo, N2L 3G1, Ontario, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhou", 
        "givenName": "Norman Y.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1021/cr300115g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000405039"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mser.2014.06.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001327897"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c6nr01383j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002258174"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0957-4484/24/33/335201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004855220"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0034-4885/75/7/076502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005544019"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adfm.201601143", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007145106"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/2053-1591/1/1/015001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008192898"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b9nr00140a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008743521"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0008-6223(96)00139-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012494267"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl101902k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013267747"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl101902k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013267747"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.electacta.2010.03.056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013813829"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2533/chimia.2012.941", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013998690"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4963671", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014212868"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apsusc.2014.12.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014799180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1063783415040034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016100973", 
          "https://doi.org/10.1134/s1063783415040034"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1149/2.068206jes", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016628784"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms9600", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017145505", 
          "https://doi.org/10.1038/ncomms9600"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/smll.200901934", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018338994"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/smll.200901934", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018338994"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nantod.2010.06.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018858958"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apsusc.2013.01.112", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019477658"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.carbon.2011.04.071", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021969477"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep26763", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022280126", 
          "https://doi.org/10.1038/srep26763"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c2cs35043b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023828839"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/electronics4030586", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026240145"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1063784213120025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028641099", 
          "https://doi.org/10.1134/s1063784213120025"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0008-6223(03)00345-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029281855"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physrep.2009.02.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029913597"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/c1010077", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031159434"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.carbon.2012.01.053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032480239"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.carbon.2013.04.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034943359"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2007.300", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035164187", 
          "https://doi.org/10.1038/nnano.2007.300"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1149/2.036309jes", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035470965"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4745783", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036216795"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0144842", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039208504"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5772/15201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039239946"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adfm.201602748", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039635358"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep05642", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040560977", 
          "https://doi.org/10.1038/srep05642"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adfm.201502734", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042544941"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.201502574", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045260140"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.carbon.2009.04.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046790627"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0957-4484/27/1/015702", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050114551"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10800-008-9612-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052903344", 
          "https://doi.org/10.1007/s10800-008-9612-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c2jm34517j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053094241"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4893277", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053277085"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c6ra27470f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053870047"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.langmuir.5b00391", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055115768"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acsami.6b13416", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055132666"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3271177", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057928685"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3275500", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057929628"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3624947", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057987290"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3681366", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057999710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4823734", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058084204"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0022-3727/49/12/125303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058968848"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0256-307x/32/7/077201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059061447"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevapplied.4.064010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060517763"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevapplied.4.064010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060517763"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.64.075414", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060600456"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.64.075414", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060600456"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.86.165445", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060640274"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.86.165445", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060640274"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcsii.2013.2290921", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061570928"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.20.019463", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065201179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.carbon.2017.05.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085201575"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2017/8263904", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091860843"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/inec.2013.6466025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095671685"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "In this work, we report for the first time the electrochemical oxidation as a technique to improve the electrical performances of carbon-based resistive switching devices. The devices obtained through the anodic oxidation of carbon-structures possess superior electrical performances i.e. a 3-level memory behavior and an ON/OFF ratio two order of magnitude higher than the non-oxidized carbon-based devices. It is demonstrated that the chemical composition of the carbon structures (i.e. percentage of oxygen groups, sp2 and sp3 carbon atoms) plays a key role in the improvement of the carbon-based devices. The electrochemical oxidation allows the possibility to control the oxidation degree, and therefore, to tailor the devices electrical performances. We demonstrated that the resistive switching behavior in the electrochemically oxidized devices is originated from the formation of conductive filament paths, which are built from the oxygen vacancies and structural defects of the anodic oxidized carbon materials. The novelty of this work relies on the anodic oxidation as a time- and cost-effective technique that can be employed for the engineering and improvement of the electrical performances of next generation carbon-based resistive switching devices.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-018-38249-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "Electrochemical Oxidation Induced Multi-Level Memory in Carbon-Based Resistive Switching Devices", 
    "pagination": "1564", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d6655c040dcbceb15423846c2b23e9fb3e497cd7e7b05f3b1c707c0756195ad4"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30733534"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-018-38249-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111979767"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-018-38249-0", 
      "https://app.dimensions.ai/details/publication/pub.1111979767"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:04", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000334_0000000334/records_127782_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-018-38249-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-38249-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-38249-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-38249-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-38249-0'


 

This table displays all metadata directly associated to this object as RDF triples.

275 TRIPLES      21 PREDICATES      91 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-018-38249-0 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author Nd8b04e9e3cfb4a26a67090ae20477534
4 schema:citation sg:pub.10.1007/s10800-008-9612-5
5 sg:pub.10.1038/ncomms9600
6 sg:pub.10.1038/nnano.2007.300
7 sg:pub.10.1038/srep05642
8 sg:pub.10.1038/srep26763
9 sg:pub.10.1134/s1063783415040034
10 sg:pub.10.1134/s1063784213120025
11 https://doi.org/10.1002/adfm.201502734
12 https://doi.org/10.1002/adfm.201601143
13 https://doi.org/10.1002/adfm.201602748
14 https://doi.org/10.1002/adma.201502574
15 https://doi.org/10.1002/smll.200901934
16 https://doi.org/10.1016/j.apsusc.2013.01.112
17 https://doi.org/10.1016/j.apsusc.2014.12.014
18 https://doi.org/10.1016/j.carbon.2009.04.010
19 https://doi.org/10.1016/j.carbon.2011.04.071
20 https://doi.org/10.1016/j.carbon.2012.01.053
21 https://doi.org/10.1016/j.carbon.2013.04.015
22 https://doi.org/10.1016/j.carbon.2017.05.004
23 https://doi.org/10.1016/j.electacta.2010.03.056
24 https://doi.org/10.1016/j.mser.2014.06.002
25 https://doi.org/10.1016/j.nantod.2010.06.010
26 https://doi.org/10.1016/j.physrep.2009.02.003
27 https://doi.org/10.1016/s0008-6223(03)00345-2
28 https://doi.org/10.1016/s0008-6223(96)00139-x
29 https://doi.org/10.1021/acs.langmuir.5b00391
30 https://doi.org/10.1021/acsami.6b13416
31 https://doi.org/10.1021/cr300115g
32 https://doi.org/10.1021/nl101902k
33 https://doi.org/10.1039/b9nr00140a
34 https://doi.org/10.1039/c2cs35043b
35 https://doi.org/10.1039/c2jm34517j
36 https://doi.org/10.1039/c6nr01383j
37 https://doi.org/10.1039/c6ra27470f
38 https://doi.org/10.1063/1.3271177
39 https://doi.org/10.1063/1.3275500
40 https://doi.org/10.1063/1.3624947
41 https://doi.org/10.1063/1.3681366
42 https://doi.org/10.1063/1.4745783
43 https://doi.org/10.1063/1.4823734
44 https://doi.org/10.1063/1.4893277
45 https://doi.org/10.1063/1.4963671
46 https://doi.org/10.1088/0022-3727/49/12/125303
47 https://doi.org/10.1088/0034-4885/75/7/076502
48 https://doi.org/10.1088/0256-307x/32/7/077201
49 https://doi.org/10.1088/0957-4484/24/33/335201
50 https://doi.org/10.1088/0957-4484/27/1/015702
51 https://doi.org/10.1088/2053-1591/1/1/015001
52 https://doi.org/10.1103/physrevapplied.4.064010
53 https://doi.org/10.1103/physrevb.64.075414
54 https://doi.org/10.1103/physrevb.86.165445
55 https://doi.org/10.1109/inec.2013.6466025
56 https://doi.org/10.1109/tcsii.2013.2290921
57 https://doi.org/10.1149/2.036309jes
58 https://doi.org/10.1149/2.068206jes
59 https://doi.org/10.1155/2017/8263904
60 https://doi.org/10.1364/oe.20.019463
61 https://doi.org/10.1371/journal.pone.0144842
62 https://doi.org/10.2533/chimia.2012.941
63 https://doi.org/10.3390/c1010077
64 https://doi.org/10.3390/electronics4030586
65 https://doi.org/10.5772/15201
66 schema:datePublished 2019-12
67 schema:datePublishedReg 2019-12-01
68 schema:description In this work, we report for the first time the electrochemical oxidation as a technique to improve the electrical performances of carbon-based resistive switching devices. The devices obtained through the anodic oxidation of carbon-structures possess superior electrical performances i.e. a 3-level memory behavior and an ON/OFF ratio two order of magnitude higher than the non-oxidized carbon-based devices. It is demonstrated that the chemical composition of the carbon structures (i.e. percentage of oxygen groups, sp<sup>2</sup> and sp<sup>3</sup> carbon atoms) plays a key role in the improvement of the carbon-based devices. The electrochemical oxidation allows the possibility to control the oxidation degree, and therefore, to tailor the devices electrical performances. We demonstrated that the resistive switching behavior in the electrochemically oxidized devices is originated from the formation of conductive filament paths, which are built from the oxygen vacancies and structural defects of the anodic oxidized carbon materials. The novelty of this work relies on the anodic oxidation as a time- and cost-effective technique that can be employed for the engineering and improvement of the electrical performances of next generation carbon-based resistive switching devices.
69 schema:genre research_article
70 schema:inLanguage en
71 schema:isAccessibleForFree true
72 schema:isPartOf Ncde0840b852942fb9f8f36ba99231037
73 Nea6a68d94eda49f0ab73720ff32534a6
74 sg:journal.1045337
75 schema:name Electrochemical Oxidation Induced Multi-Level Memory in Carbon-Based Resistive Switching Devices
76 schema:pagination 1564
77 schema:productId N74615044f1f04049a2c03df498607487
78 Nb5c9840f0c6f4d1082a1e3c9b6fe3181
79 Nc9bf52035cd64751ad9315759ae20c56
80 Nce3904e68d8d47c58f68c64a4995ed36
81 Nfbcea81535c847c684894eeccf9109f2
82 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111979767
83 https://doi.org/10.1038/s41598-018-38249-0
84 schema:sdDatePublished 2019-04-11T09:04
85 schema:sdLicense https://scigraph.springernature.com/explorer/license/
86 schema:sdPublisher N512dc6c0e1d94a2d943115577c1faa0b
87 schema:url https://www.nature.com/articles/s41598-018-38249-0
88 sgo:license sg:explorer/license/
89 sgo:sdDataset articles
90 rdf:type schema:ScholarlyArticle
91 N283531a1e472456cbfef3c3d693c8009 schema:affiliation https://www.grid.ac/institutes/grid.46078.3d
92 schema:familyName Zhou
93 schema:givenName Norman Y.
94 rdf:type schema:Person
95 N512dc6c0e1d94a2d943115577c1faa0b schema:name Springer Nature - SN SciGraph project
96 rdf:type schema:Organization
97 N56ca78e3ff7d4474bf60329fb9a5f403 rdf:first N283531a1e472456cbfef3c3d693c8009
98 rdf:rest rdf:nil
99 N724229a5a20845f88ea9231ce940ca0c schema:affiliation https://www.grid.ac/institutes/grid.46078.3d
100 schema:familyName Russo
101 schema:givenName Paola
102 rdf:type schema:Person
103 N74615044f1f04049a2c03df498607487 schema:name doi
104 schema:value 10.1038/s41598-018-38249-0
105 rdf:type schema:PropertyValue
106 N850049e106b34ad1b316fc7edbcbe8cf rdf:first Nb4fcc8039e0c4400a94f0c3804f8b8d6
107 rdf:rest N56ca78e3ff7d4474bf60329fb9a5f403
108 Nb4fcc8039e0c4400a94f0c3804f8b8d6 schema:affiliation https://www.grid.ac/institutes/grid.46078.3d
109 schema:familyName Xiao
110 schema:givenName Ming
111 rdf:type schema:Person
112 Nb5c9840f0c6f4d1082a1e3c9b6fe3181 schema:name pubmed_id
113 schema:value 30733534
114 rdf:type schema:PropertyValue
115 Nc9bf52035cd64751ad9315759ae20c56 schema:name nlm_unique_id
116 schema:value 101563288
117 rdf:type schema:PropertyValue
118 Ncde0840b852942fb9f8f36ba99231037 schema:issueNumber 1
119 rdf:type schema:PublicationIssue
120 Nce3904e68d8d47c58f68c64a4995ed36 schema:name readcube_id
121 schema:value d6655c040dcbceb15423846c2b23e9fb3e497cd7e7b05f3b1c707c0756195ad4
122 rdf:type schema:PropertyValue
123 Nd8b04e9e3cfb4a26a67090ae20477534 rdf:first N724229a5a20845f88ea9231ce940ca0c
124 rdf:rest N850049e106b34ad1b316fc7edbcbe8cf
125 Nea6a68d94eda49f0ab73720ff32534a6 schema:volumeNumber 9
126 rdf:type schema:PublicationVolume
127 Nfbcea81535c847c684894eeccf9109f2 schema:name dimensions_id
128 schema:value pub.1111979767
129 rdf:type schema:PropertyValue
130 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
131 schema:name Chemical Sciences
132 rdf:type schema:DefinedTerm
133 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
134 schema:name Physical Chemistry (incl. Structural)
135 rdf:type schema:DefinedTerm
136 sg:journal.1045337 schema:issn 2045-2322
137 schema:name Scientific Reports
138 rdf:type schema:Periodical
139 sg:pub.10.1007/s10800-008-9612-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052903344
140 https://doi.org/10.1007/s10800-008-9612-5
141 rdf:type schema:CreativeWork
142 sg:pub.10.1038/ncomms9600 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017145505
143 https://doi.org/10.1038/ncomms9600
144 rdf:type schema:CreativeWork
145 sg:pub.10.1038/nnano.2007.300 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035164187
146 https://doi.org/10.1038/nnano.2007.300
147 rdf:type schema:CreativeWork
148 sg:pub.10.1038/srep05642 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040560977
149 https://doi.org/10.1038/srep05642
150 rdf:type schema:CreativeWork
151 sg:pub.10.1038/srep26763 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022280126
152 https://doi.org/10.1038/srep26763
153 rdf:type schema:CreativeWork
154 sg:pub.10.1134/s1063783415040034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016100973
155 https://doi.org/10.1134/s1063783415040034
156 rdf:type schema:CreativeWork
157 sg:pub.10.1134/s1063784213120025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028641099
158 https://doi.org/10.1134/s1063784213120025
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1002/adfm.201502734 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042544941
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1002/adfm.201601143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007145106
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1002/adfm.201602748 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039635358
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1002/adma.201502574 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045260140
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1002/smll.200901934 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018338994
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/j.apsusc.2013.01.112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019477658
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1016/j.apsusc.2014.12.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014799180
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1016/j.carbon.2009.04.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046790627
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1016/j.carbon.2011.04.071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021969477
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1016/j.carbon.2012.01.053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032480239
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1016/j.carbon.2013.04.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034943359
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1016/j.carbon.2017.05.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085201575
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1016/j.electacta.2010.03.056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013813829
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1016/j.mser.2014.06.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001327897
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1016/j.nantod.2010.06.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018858958
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1016/j.physrep.2009.02.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029913597
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1016/s0008-6223(03)00345-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029281855
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1016/s0008-6223(96)00139-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1012494267
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1021/acs.langmuir.5b00391 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055115768
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1021/acsami.6b13416 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055132666
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1021/cr300115g schema:sameAs https://app.dimensions.ai/details/publication/pub.1000405039
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1021/nl101902k schema:sameAs https://app.dimensions.ai/details/publication/pub.1013267747
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1039/b9nr00140a schema:sameAs https://app.dimensions.ai/details/publication/pub.1008743521
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1039/c2cs35043b schema:sameAs https://app.dimensions.ai/details/publication/pub.1023828839
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1039/c2jm34517j schema:sameAs https://app.dimensions.ai/details/publication/pub.1053094241
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1039/c6nr01383j schema:sameAs https://app.dimensions.ai/details/publication/pub.1002258174
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1039/c6ra27470f schema:sameAs https://app.dimensions.ai/details/publication/pub.1053870047
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1063/1.3271177 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057928685
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1063/1.3275500 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057929628
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1063/1.3624947 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057987290
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1063/1.3681366 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057999710
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1063/1.4745783 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036216795
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1063/1.4823734 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058084204
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1063/1.4893277 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053277085
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1063/1.4963671 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014212868
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1088/0022-3727/49/12/125303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058968848
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1088/0034-4885/75/7/076502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005544019
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1088/0256-307x/32/7/077201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059061447
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1088/0957-4484/24/33/335201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004855220
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1088/0957-4484/27/1/015702 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050114551
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1088/2053-1591/1/1/015001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008192898
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1103/physrevapplied.4.064010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060517763
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1103/physrevb.64.075414 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060600456
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1103/physrevb.86.165445 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060640274
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1109/inec.2013.6466025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095671685
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1109/tcsii.2013.2290921 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061570928
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1149/2.036309jes schema:sameAs https://app.dimensions.ai/details/publication/pub.1035470965
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1149/2.068206jes schema:sameAs https://app.dimensions.ai/details/publication/pub.1016628784
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1155/2017/8263904 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091860843
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1364/oe.20.019463 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065201179
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1371/journal.pone.0144842 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039208504
261 rdf:type schema:CreativeWork
262 https://doi.org/10.2533/chimia.2012.941 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013998690
263 rdf:type schema:CreativeWork
264 https://doi.org/10.3390/c1010077 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031159434
265 rdf:type schema:CreativeWork
266 https://doi.org/10.3390/electronics4030586 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026240145
267 rdf:type schema:CreativeWork
268 https://doi.org/10.5772/15201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039239946
269 rdf:type schema:CreativeWork
270 https://www.grid.ac/institutes/grid.46078.3d schema:alternateName University of Waterloo
271 schema:name Centre for Advanced Materials Joining, University of Waterloo, 200 University Avenue West Waterloo, N2L 3G1, Ontario, Canada
272 Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Avenue West Waterloo, N2L 3G1, Ontario, Canada
273 Multi-Scale Additive Manufacturing Lab, University of Waterloo, 200 University Avenue West Waterloo, N2L 3G1, Ontario, Canada
274 Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West Waterloo, N2L 3G1, Ontario, Canada
275 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...