Permeability regain and aqueous phase migration during hydraulic fracturing shut-ins View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Shuai Li, Qun Lei, Xin Wang, Bo Cai, Guangfeng Liu, Long Wang

ABSTRACT

Hydraulic fracturing has become a key technology to economically extract oil and gas from unconventional reservoirs. During hydraulic fracturing, fluid loss and water invasion into formation can cause serious permeability reduction near fracture face. At the same time, field practice also showed that well shut-ins after hydraulic fracturing could significantly increase hydrocarbon outputs, whereas the inner mechanism still remains unknown. In this paper, firstly, we studied permeability reduction after water invasion and permeability enhancement after well shut-ins using a core flooding system. Then, to investigate the inner mechanism, we studied aqueous phase migration during shut-ins using nuclear magnetic resonance (NMR) method. Results showed that fluids invasion reduce matrix permeability while well shut-ins can improve permeability and this improvement depends on the length of shut-ins time. NMR results showed that aqueous phases mainly distribute in macropores and mesopores after water invasion, while in shut-ins period, these invaded aqueous phases redistribute and migrate from larger pore spaces to smaller ones. Aqueous phase redistribution and migration during shut-ins period can remove near fracture water-block, reduce capillary discontinuity and increase the relative permeability of hydrocarbon phase, and this is the reason for permeability enhancement and hydrocarbon output increase after well shut-ins. More... »

PAGES

1818

References to SciGraph publications

  • 2017-09. Solution for counter-current imbibition of 1D immiscible two-phase flow in tight oil reservoir in JOURNAL OF PETROLEUM EXPLORATION AND PRODUCTION TECHNOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41598-018-38211-0

    DOI

    http://dx.doi.org/10.1038/s41598-018-38211-0

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1112063942

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30755652


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0914", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Resources Engineering and Extractive Metallurgy", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Sinopec (China)", 
              "id": "https://www.grid.ac/institutes/grid.418531.a", 
              "name": [
                "Research Institute of Petroleum Exploration & Development, PetroChina, 100083, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Li", 
            "givenName": "Shuai", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Sinopec (China)", 
              "id": "https://www.grid.ac/institutes/grid.418531.a", 
              "name": [
                "Research Institute of Petroleum Exploration & Development, PetroChina, 100083, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lei", 
            "givenName": "Qun", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Sinopec (China)", 
              "id": "https://www.grid.ac/institutes/grid.418531.a", 
              "name": [
                "Research Institute of Petroleum Exploration & Development, PetroChina, 100083, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Xin", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Sinopec (China)", 
              "id": "https://www.grid.ac/institutes/grid.418531.a", 
              "name": [
                "Research Institute of Petroleum Exploration & Development, PetroChina, 100083, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cai", 
            "givenName": "Bo", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "China University of Petroleum, Beijing", 
              "id": "https://www.grid.ac/institutes/grid.411519.9", 
              "name": [
                "Education Ministry Key Laboratory of Petroleum Engineering, China University of Petroleum, 102249, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Liu", 
            "givenName": "Guangfeng", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "The 4th oil production plant in North China Oilfield, PetroChina, 065007, Langfang, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Long", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s13202-016-0273-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003979615", 
              "https://doi.org/10.1007/s13202-016-0273-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13202-016-0273-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003979615", 
              "https://doi.org/10.1007/s13202-016-0273-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jngse.2015.08.069", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005721291"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jngse.2016.01.023", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016357298"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.petrol.2016.01.024", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018026998"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/ente.201402039", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021412423"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.grj.2015.02.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022807934"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jngse.2013.12.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025600628"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jngse.2016.12.031", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025876780"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jngse.2016.12.031", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025876780"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jngse.2016.12.031", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025876780"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.apgeochem.2012.10.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028293693"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.petrol.2012.04.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045640722"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jngse.2015.03.017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050387780"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jngse.2015.09.070", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050550110"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.fuel.2015.09.040", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050738414"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/acs.energyfuels.5b02321", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055086090"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/acs.energyfuels.6b01324", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055086811"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/acs.energyfuels.6b01739", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055086979"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ef400631h", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055479393"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/la803568a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056164016"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/la803568a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056164016"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2118/121812-pa", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1068948782"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2118/127863-pa", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1068949170"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2118/154939-pa", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1068951204"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2118/167698-pa", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1068952198"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2118/7561-pa", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1068959413"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2118/88995-pa", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1068961101"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.petrol.2017.06.013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085962944"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.fuel.2017.07.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090386338"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3390/en10091279", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091372546"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.petrol.2017.08.070", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091431171"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2118/187398-ms", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095937378"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1190/segam2017-17798488.1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1096003674"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2118/166098-ms", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1096030791"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2118/171799-ms", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1096105114"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2118/180561-ms", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1096461982"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2523/iptc-18865-ms", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1096462291"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2118/167056-ms", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1096952887"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2118/165705-ms", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1096990221"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-12", 
        "datePublishedReg": "2019-12-01", 
        "description": "Hydraulic fracturing has become a key technology to economically extract oil and gas from unconventional reservoirs. During hydraulic fracturing, fluid loss and water invasion into formation can cause serious permeability reduction near fracture face. At the same time, field practice also showed that well shut-ins after hydraulic fracturing could significantly increase hydrocarbon outputs, whereas the inner mechanism still remains unknown. In this paper, firstly, we studied permeability reduction after water invasion and permeability enhancement after well shut-ins using a core flooding system. Then, to investigate the inner mechanism, we studied aqueous phase migration during shut-ins using nuclear magnetic resonance (NMR) method. Results showed that fluids invasion reduce matrix permeability while well shut-ins can improve permeability and this improvement depends on the length of shut-ins time. NMR results showed that aqueous phases mainly distribute in macropores and mesopores after water invasion, while in shut-ins period, these invaded aqueous phases redistribute and migrate from larger pore spaces to smaller ones. Aqueous phase redistribution and migration during shut-ins period can remove near fracture water-block, reduce capillary discontinuity and increase the relative permeability of hydrocarbon phase, and this is the reason for permeability enhancement and hydrocarbon output increase after well shut-ins.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/s41598-018-38211-0", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1045337", 
            "issn": [
              "2045-2322"
            ], 
            "name": "Scientific Reports", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "9"
          }
        ], 
        "name": "Permeability regain and aqueous phase migration during hydraulic fracturing shut-ins", 
        "pagination": "1818", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "1d131d71d98bbc2fe0473a03c456e18d456b6c13a2e5d794fe4d2028dfaaa4e6"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30755652"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101563288"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41598-018-38211-0"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1112063942"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41598-018-38211-0", 
          "https://app.dimensions.ai/details/publication/pub.1112063942"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T09:08", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000338_0000000338/records_47960_00000002.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://www.nature.com/articles/s41598-018-38211-0"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-38211-0'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-38211-0'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-38211-0'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-38211-0'


     

    This table displays all metadata directly associated to this object as RDF triples.

    211 TRIPLES      21 PREDICATES      65 URIs      21 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41598-018-38211-0 schema:about anzsrc-for:09
    2 anzsrc-for:0914
    3 schema:author Nae0d602201524418b7c6a95dd28ec663
    4 schema:citation sg:pub.10.1007/s13202-016-0273-3
    5 https://doi.org/10.1002/ente.201402039
    6 https://doi.org/10.1016/j.apgeochem.2012.10.002
    7 https://doi.org/10.1016/j.fuel.2015.09.040
    8 https://doi.org/10.1016/j.fuel.2017.07.003
    9 https://doi.org/10.1016/j.grj.2015.02.003
    10 https://doi.org/10.1016/j.jngse.2013.12.002
    11 https://doi.org/10.1016/j.jngse.2015.03.017
    12 https://doi.org/10.1016/j.jngse.2015.08.069
    13 https://doi.org/10.1016/j.jngse.2015.09.070
    14 https://doi.org/10.1016/j.jngse.2016.01.023
    15 https://doi.org/10.1016/j.jngse.2016.12.031
    16 https://doi.org/10.1016/j.petrol.2012.04.002
    17 https://doi.org/10.1016/j.petrol.2016.01.024
    18 https://doi.org/10.1016/j.petrol.2017.06.013
    19 https://doi.org/10.1016/j.petrol.2017.08.070
    20 https://doi.org/10.1021/acs.energyfuels.5b02321
    21 https://doi.org/10.1021/acs.energyfuels.6b01324
    22 https://doi.org/10.1021/acs.energyfuels.6b01739
    23 https://doi.org/10.1021/ef400631h
    24 https://doi.org/10.1021/la803568a
    25 https://doi.org/10.1190/segam2017-17798488.1
    26 https://doi.org/10.2118/121812-pa
    27 https://doi.org/10.2118/127863-pa
    28 https://doi.org/10.2118/154939-pa
    29 https://doi.org/10.2118/165705-ms
    30 https://doi.org/10.2118/166098-ms
    31 https://doi.org/10.2118/167056-ms
    32 https://doi.org/10.2118/167698-pa
    33 https://doi.org/10.2118/171799-ms
    34 https://doi.org/10.2118/180561-ms
    35 https://doi.org/10.2118/187398-ms
    36 https://doi.org/10.2118/7561-pa
    37 https://doi.org/10.2118/88995-pa
    38 https://doi.org/10.2523/iptc-18865-ms
    39 https://doi.org/10.3390/en10091279
    40 schema:datePublished 2019-12
    41 schema:datePublishedReg 2019-12-01
    42 schema:description Hydraulic fracturing has become a key technology to economically extract oil and gas from unconventional reservoirs. During hydraulic fracturing, fluid loss and water invasion into formation can cause serious permeability reduction near fracture face. At the same time, field practice also showed that well shut-ins after hydraulic fracturing could significantly increase hydrocarbon outputs, whereas the inner mechanism still remains unknown. In this paper, firstly, we studied permeability reduction after water invasion and permeability enhancement after well shut-ins using a core flooding system. Then, to investigate the inner mechanism, we studied aqueous phase migration during shut-ins using nuclear magnetic resonance (NMR) method. Results showed that fluids invasion reduce matrix permeability while well shut-ins can improve permeability and this improvement depends on the length of shut-ins time. NMR results showed that aqueous phases mainly distribute in macropores and mesopores after water invasion, while in shut-ins period, these invaded aqueous phases redistribute and migrate from larger pore spaces to smaller ones. Aqueous phase redistribution and migration during shut-ins period can remove near fracture water-block, reduce capillary discontinuity and increase the relative permeability of hydrocarbon phase, and this is the reason for permeability enhancement and hydrocarbon output increase after well shut-ins.
    43 schema:genre research_article
    44 schema:inLanguage en
    45 schema:isAccessibleForFree true
    46 schema:isPartOf Nc7857d19935a46a39f32778c085d2a96
    47 Nf347485b277043b1aa50b89708b510cb
    48 sg:journal.1045337
    49 schema:name Permeability regain and aqueous phase migration during hydraulic fracturing shut-ins
    50 schema:pagination 1818
    51 schema:productId N42168cf47a8a4fc281ef7cdcd2f823dd
    52 N63368b8fefb143b89304d49ba9f7d131
    53 N6e980e106ed64d0e979436cd9db0f3bb
    54 N97138b1caa11489382f321209a232347
    55 Nae8d055c34ef45febe266f51675764f7
    56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112063942
    57 https://doi.org/10.1038/s41598-018-38211-0
    58 schema:sdDatePublished 2019-04-11T09:08
    59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    60 schema:sdPublisher N5782d26c77324731b1edfb8f2e8c66a6
    61 schema:url https://www.nature.com/articles/s41598-018-38211-0
    62 sgo:license sg:explorer/license/
    63 sgo:sdDataset articles
    64 rdf:type schema:ScholarlyArticle
    65 N06ff797835484fae9fe4c7a3f39b0f9f schema:affiliation https://www.grid.ac/institutes/grid.411519.9
    66 schema:familyName Liu
    67 schema:givenName Guangfeng
    68 rdf:type schema:Person
    69 N0884f9f547d64393874d9ec61829c839 rdf:first Nd924a22938dc4ee595e16a2741421316
    70 rdf:rest rdf:nil
    71 N42168cf47a8a4fc281ef7cdcd2f823dd schema:name dimensions_id
    72 schema:value pub.1112063942
    73 rdf:type schema:PropertyValue
    74 N4758d1c83a594680b7e421c4914ca480 schema:name The 4th oil production plant in North China Oilfield, PetroChina, 065007, Langfang, China
    75 rdf:type schema:Organization
    76 N5782d26c77324731b1edfb8f2e8c66a6 schema:name Springer Nature - SN SciGraph project
    77 rdf:type schema:Organization
    78 N59eb69f4c4124449ba43574c20736874 rdf:first Ncc92af75ddc341ea94f0bee17ab8cb3a
    79 rdf:rest N9f1f23571cb1481e97ef04a18ffb7621
    80 N5edf9503dec5472692c0d42aa3393022 schema:affiliation https://www.grid.ac/institutes/grid.418531.a
    81 schema:familyName Li
    82 schema:givenName Shuai
    83 rdf:type schema:Person
    84 N63368b8fefb143b89304d49ba9f7d131 schema:name pubmed_id
    85 schema:value 30755652
    86 rdf:type schema:PropertyValue
    87 N699969f95de64aea9db4ad85ab0f2204 rdf:first N6e1577f6c0364aa28893477e6df9c9d9
    88 rdf:rest N9d3d643c2458449e88121118a6fb4c04
    89 N6e1577f6c0364aa28893477e6df9c9d9 schema:affiliation https://www.grid.ac/institutes/grid.418531.a
    90 schema:familyName Lei
    91 schema:givenName Qun
    92 rdf:type schema:Person
    93 N6e980e106ed64d0e979436cd9db0f3bb schema:name nlm_unique_id
    94 schema:value 101563288
    95 rdf:type schema:PropertyValue
    96 N97138b1caa11489382f321209a232347 schema:name readcube_id
    97 schema:value 1d131d71d98bbc2fe0473a03c456e18d456b6c13a2e5d794fe4d2028dfaaa4e6
    98 rdf:type schema:PropertyValue
    99 N9d27b15990144ee69bbd95432cfc15b7 schema:affiliation https://www.grid.ac/institutes/grid.418531.a
    100 schema:familyName Wang
    101 schema:givenName Xin
    102 rdf:type schema:Person
    103 N9d3d643c2458449e88121118a6fb4c04 rdf:first N9d27b15990144ee69bbd95432cfc15b7
    104 rdf:rest N59eb69f4c4124449ba43574c20736874
    105 N9f1f23571cb1481e97ef04a18ffb7621 rdf:first N06ff797835484fae9fe4c7a3f39b0f9f
    106 rdf:rest N0884f9f547d64393874d9ec61829c839
    107 Nae0d602201524418b7c6a95dd28ec663 rdf:first N5edf9503dec5472692c0d42aa3393022
    108 rdf:rest N699969f95de64aea9db4ad85ab0f2204
    109 Nae8d055c34ef45febe266f51675764f7 schema:name doi
    110 schema:value 10.1038/s41598-018-38211-0
    111 rdf:type schema:PropertyValue
    112 Nc7857d19935a46a39f32778c085d2a96 schema:volumeNumber 9
    113 rdf:type schema:PublicationVolume
    114 Ncc92af75ddc341ea94f0bee17ab8cb3a schema:affiliation https://www.grid.ac/institutes/grid.418531.a
    115 schema:familyName Cai
    116 schema:givenName Bo
    117 rdf:type schema:Person
    118 Nd924a22938dc4ee595e16a2741421316 schema:affiliation N4758d1c83a594680b7e421c4914ca480
    119 schema:familyName Wang
    120 schema:givenName Long
    121 rdf:type schema:Person
    122 Nf347485b277043b1aa50b89708b510cb schema:issueNumber 1
    123 rdf:type schema:PublicationIssue
    124 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    125 schema:name Engineering
    126 rdf:type schema:DefinedTerm
    127 anzsrc-for:0914 schema:inDefinedTermSet anzsrc-for:
    128 schema:name Resources Engineering and Extractive Metallurgy
    129 rdf:type schema:DefinedTerm
    130 sg:journal.1045337 schema:issn 2045-2322
    131 schema:name Scientific Reports
    132 rdf:type schema:Periodical
    133 sg:pub.10.1007/s13202-016-0273-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003979615
    134 https://doi.org/10.1007/s13202-016-0273-3
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.1002/ente.201402039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021412423
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1016/j.apgeochem.2012.10.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028293693
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.1016/j.fuel.2015.09.040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050738414
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.1016/j.fuel.2017.07.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090386338
    143 rdf:type schema:CreativeWork
    144 https://doi.org/10.1016/j.grj.2015.02.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022807934
    145 rdf:type schema:CreativeWork
    146 https://doi.org/10.1016/j.jngse.2013.12.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025600628
    147 rdf:type schema:CreativeWork
    148 https://doi.org/10.1016/j.jngse.2015.03.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050387780
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.1016/j.jngse.2015.08.069 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005721291
    151 rdf:type schema:CreativeWork
    152 https://doi.org/10.1016/j.jngse.2015.09.070 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050550110
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.1016/j.jngse.2016.01.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016357298
    155 rdf:type schema:CreativeWork
    156 https://doi.org/10.1016/j.jngse.2016.12.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025876780
    157 rdf:type schema:CreativeWork
    158 https://doi.org/10.1016/j.petrol.2012.04.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045640722
    159 rdf:type schema:CreativeWork
    160 https://doi.org/10.1016/j.petrol.2016.01.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018026998
    161 rdf:type schema:CreativeWork
    162 https://doi.org/10.1016/j.petrol.2017.06.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085962944
    163 rdf:type schema:CreativeWork
    164 https://doi.org/10.1016/j.petrol.2017.08.070 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091431171
    165 rdf:type schema:CreativeWork
    166 https://doi.org/10.1021/acs.energyfuels.5b02321 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055086090
    167 rdf:type schema:CreativeWork
    168 https://doi.org/10.1021/acs.energyfuels.6b01324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055086811
    169 rdf:type schema:CreativeWork
    170 https://doi.org/10.1021/acs.energyfuels.6b01739 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055086979
    171 rdf:type schema:CreativeWork
    172 https://doi.org/10.1021/ef400631h schema:sameAs https://app.dimensions.ai/details/publication/pub.1055479393
    173 rdf:type schema:CreativeWork
    174 https://doi.org/10.1021/la803568a schema:sameAs https://app.dimensions.ai/details/publication/pub.1056164016
    175 rdf:type schema:CreativeWork
    176 https://doi.org/10.1190/segam2017-17798488.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1096003674
    177 rdf:type schema:CreativeWork
    178 https://doi.org/10.2118/121812-pa schema:sameAs https://app.dimensions.ai/details/publication/pub.1068948782
    179 rdf:type schema:CreativeWork
    180 https://doi.org/10.2118/127863-pa schema:sameAs https://app.dimensions.ai/details/publication/pub.1068949170
    181 rdf:type schema:CreativeWork
    182 https://doi.org/10.2118/154939-pa schema:sameAs https://app.dimensions.ai/details/publication/pub.1068951204
    183 rdf:type schema:CreativeWork
    184 https://doi.org/10.2118/165705-ms schema:sameAs https://app.dimensions.ai/details/publication/pub.1096990221
    185 rdf:type schema:CreativeWork
    186 https://doi.org/10.2118/166098-ms schema:sameAs https://app.dimensions.ai/details/publication/pub.1096030791
    187 rdf:type schema:CreativeWork
    188 https://doi.org/10.2118/167056-ms schema:sameAs https://app.dimensions.ai/details/publication/pub.1096952887
    189 rdf:type schema:CreativeWork
    190 https://doi.org/10.2118/167698-pa schema:sameAs https://app.dimensions.ai/details/publication/pub.1068952198
    191 rdf:type schema:CreativeWork
    192 https://doi.org/10.2118/171799-ms schema:sameAs https://app.dimensions.ai/details/publication/pub.1096105114
    193 rdf:type schema:CreativeWork
    194 https://doi.org/10.2118/180561-ms schema:sameAs https://app.dimensions.ai/details/publication/pub.1096461982
    195 rdf:type schema:CreativeWork
    196 https://doi.org/10.2118/187398-ms schema:sameAs https://app.dimensions.ai/details/publication/pub.1095937378
    197 rdf:type schema:CreativeWork
    198 https://doi.org/10.2118/7561-pa schema:sameAs https://app.dimensions.ai/details/publication/pub.1068959413
    199 rdf:type schema:CreativeWork
    200 https://doi.org/10.2118/88995-pa schema:sameAs https://app.dimensions.ai/details/publication/pub.1068961101
    201 rdf:type schema:CreativeWork
    202 https://doi.org/10.2523/iptc-18865-ms schema:sameAs https://app.dimensions.ai/details/publication/pub.1096462291
    203 rdf:type schema:CreativeWork
    204 https://doi.org/10.3390/en10091279 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091372546
    205 rdf:type schema:CreativeWork
    206 https://www.grid.ac/institutes/grid.411519.9 schema:alternateName China University of Petroleum, Beijing
    207 schema:name Education Ministry Key Laboratory of Petroleum Engineering, China University of Petroleum, 102249, Beijing, China
    208 rdf:type schema:Organization
    209 https://www.grid.ac/institutes/grid.418531.a schema:alternateName Sinopec (China)
    210 schema:name Research Institute of Petroleum Exploration & Development, PetroChina, 100083, Beijing, China
    211 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...