Thermodynamic Signatures of Weyl Fermions in NbP View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

K. A. Modic, Tobias Meng, Filip Ronning, Eric D. Bauer, Philip J. W. Moll, B. J. Ramshaw

ABSTRACT

We present a high magnetic field study of NbP-a member of the monopnictide Weyl semimetal (WSM) family. While the monoarsenides (NbAs and TaAs) have topologically distinct left and right-handed Weyl fermi surfaces, NbP is argued to be "topologically trivial" due to the fact that all pairs of Weyl nodes are encompassed by a single Fermi surface. We use torque magnetometry to measure the magnetic response of NbP up to 60 tesla and uncover a Berry paramagnetic response, characteristic of the topological Weyl nodes, across the entire field range. At the quantum limit B* (≈32 T), τ/B experiences a change in slope when the chemical potential enters the last Landau level. Our calculations confirm that this magnetic response arises from band topology of the Weyl pocket, even though the Fermi surface encompasses both Weyl nodes at zero magnetic field. We also find that the magnetic field pulls the chemical potential to the chiral n = 0 Landau level in the quantum limit, providing a disorder-free way of accessing chiral Weyl fermions in systems that are "not quite" WSMs in zero magnetic field. More... »

PAGES

2095

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-018-38161-7

DOI

http://dx.doi.org/10.1038/s41598-018-38161-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112136618

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30765755


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for Chemical Physics of Solids", 
          "id": "https://www.grid.ac/institutes/grid.419507.e", 
          "name": [
            "Max-Planck-Institute for Chemical Physics of Solids, 01187, Dresden, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Modic", 
        "givenName": "K. A.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "TU Dresden", 
          "id": "https://www.grid.ac/institutes/grid.4488.0", 
          "name": [
            "Institut f\u00fcr Theoretische Physik, Technische Universit\u00e4t Dresden, 01062, Dresden, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Meng", 
        "givenName": "Tobias", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Los Alamos National Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.148313.c", 
          "name": [
            "Los Alamos National Laboratory, 87545, Los Alamos, NM, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ronning", 
        "givenName": "Filip", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Los Alamos National Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.148313.c", 
          "name": [
            "Los Alamos National Laboratory, 87545, Los Alamos, NM, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bauer", 
        "givenName": "Eric D.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for Chemical Physics of Solids", 
          "id": "https://www.grid.ac/institutes/grid.419507.e", 
          "name": [
            "Max-Planck-Institute for Chemical Physics of Solids, 01187, Dresden, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Moll", 
        "givenName": "Philip J. W.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cornell University", 
          "id": "https://www.grid.ac/institutes/grid.5386.8", 
          "name": [
            "Laboratory of Atomic and Solid State Physics, Cornell University, 14853, Ithaca, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ramshaw", 
        "givenName": "B. J.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevlett.109.196403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001733098"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.109.196403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001733098"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys3437", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002042648", 
          "https://doi.org/10.1038/nphys3437"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.86.214514", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006951010"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.86.214514", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006951010"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-2693(83)91529-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009993034"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-2693(83)91529-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009993034"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms12492", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010846919", 
          "https://doi.org/10.1038/ncomms12492"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev-conmatphys-031113-133841", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017335807"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1608881113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020802117"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms11615", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021091120", 
          "https://doi.org/10.1038/ncomms11615"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.91.081106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031542974"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.91.081106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031542974"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep33859", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032232594", 
          "https://doi.org/10.1038/srep33859"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.86.054504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032291586"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.86.054504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032291586"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms8373", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032808151", 
          "https://doi.org/10.1038/ncomms8373"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevx.5.011029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034242879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevx.5.011029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034242879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.88.104412", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037744625"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.88.104412", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037744625"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms11006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045615993", 
          "https://doi.org/10.1038/ncomms11006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0921-4526(97)00920-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051477517"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ic950826f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055585758"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ic950826f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055585758"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1491999", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057712221"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.52.365", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060449632"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.52.365", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060449632"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.92.115428", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060647138"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.92.115428", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060647138"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.93.121105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060649520"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.93.121105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060649520"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.93.121112", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060649527"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.93.121112", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060649527"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.93.201105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060650380"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.93.201105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060650380"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep43394", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084131350", 
          "https://doi.org/10.1038/srep43394"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep46062", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084759383", 
          "https://doi.org/10.1038/srep46062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.95.205108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085367302"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.95.205108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085367302"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.95.205143", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085784090"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.95.205143", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085784090"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature23005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090775029", 
          "https://doi.org/10.1038/nature23005"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature23005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090775029", 
          "https://doi.org/10.1038/nature23005"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41467-018-04542-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104356825", 
          "https://doi.org/10.1038/s41467-018-04542-9"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "We present a high magnetic field study of NbP-a member of the monopnictide Weyl semimetal (WSM) family. While the monoarsenides (NbAs and TaAs) have topologically distinct left and right-handed Weyl fermi surfaces, NbP is argued to be \"topologically trivial\" due to the fact that all pairs of Weyl nodes are encompassed by a single Fermi surface. We use torque magnetometry to measure the magnetic response of NbP up to 60 tesla and uncover a Berry paramagnetic response, characteristic of the topological Weyl nodes, across the entire field range. At the quantum limit B* (\u224832\u2009T), \u03c4/B experiences a change in slope when the chemical potential enters the last Landau level. Our calculations confirm that this magnetic response arises from band topology of the Weyl pocket, even though the Fermi surface encompasses both Weyl nodes at zero magnetic field. We also find that the magnetic field pulls the chemical potential to the chiral n\u2009=\u20090 Landau level in the quantum limit, providing a disorder-free way of accessing chiral Weyl fermions in systems that are \"not quite\" WSMs in zero magnetic field.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-018-38161-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6493811", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.7507449", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "Thermodynamic Signatures of Weyl Fermions in NbP", 
    "pagination": "2095", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "af298a35411cf75162c6ec36d2ce74251568d6938d3d2f2bf57b4a0e3c8089cd"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30765755"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-018-38161-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112136618"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-018-38161-7", 
      "https://app.dimensions.ai/details/publication/pub.1112136618"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:08", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000338_0000000338/records_47960_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-018-38161-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-38161-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-38161-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-38161-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-38161-7'


 

This table displays all metadata directly associated to this object as RDF triples.

207 TRIPLES      21 PREDICATES      58 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-018-38161-7 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author N278cc787b06040afb062312ba0b3b175
4 schema:citation sg:pub.10.1038/nature23005
5 sg:pub.10.1038/ncomms11006
6 sg:pub.10.1038/ncomms11615
7 sg:pub.10.1038/ncomms12492
8 sg:pub.10.1038/ncomms8373
9 sg:pub.10.1038/nphys3437
10 sg:pub.10.1038/s41467-018-04542-9
11 sg:pub.10.1038/srep33859
12 sg:pub.10.1038/srep43394
13 sg:pub.10.1038/srep46062
14 https://doi.org/10.1016/0370-2693(83)91529-0
15 https://doi.org/10.1016/s0921-4526(97)00920-4
16 https://doi.org/10.1021/ic950826f
17 https://doi.org/10.1063/1.1491999
18 https://doi.org/10.1073/pnas.1608881113
19 https://doi.org/10.1103/physrev.52.365
20 https://doi.org/10.1103/physrevb.86.054504
21 https://doi.org/10.1103/physrevb.86.214514
22 https://doi.org/10.1103/physrevb.88.104412
23 https://doi.org/10.1103/physrevb.91.081106
24 https://doi.org/10.1103/physrevb.92.115428
25 https://doi.org/10.1103/physrevb.93.121105
26 https://doi.org/10.1103/physrevb.93.121112
27 https://doi.org/10.1103/physrevb.93.201105
28 https://doi.org/10.1103/physrevb.95.205108
29 https://doi.org/10.1103/physrevb.95.205143
30 https://doi.org/10.1103/physrevlett.109.196403
31 https://doi.org/10.1103/physrevx.5.011029
32 https://doi.org/10.1146/annurev-conmatphys-031113-133841
33 schema:datePublished 2019-12
34 schema:datePublishedReg 2019-12-01
35 schema:description We present a high magnetic field study of NbP-a member of the monopnictide Weyl semimetal (WSM) family. While the monoarsenides (NbAs and TaAs) have topologically distinct left and right-handed Weyl fermi surfaces, NbP is argued to be "topologically trivial" due to the fact that all pairs of Weyl nodes are encompassed by a single Fermi surface. We use torque magnetometry to measure the magnetic response of NbP up to 60 tesla and uncover a Berry paramagnetic response, characteristic of the topological Weyl nodes, across the entire field range. At the quantum limit B<sup>*</sup> (≈32 T), τ/B experiences a change in slope when the chemical potential enters the last Landau level. Our calculations confirm that this magnetic response arises from band topology of the Weyl pocket, even though the Fermi surface encompasses both Weyl nodes at zero magnetic field. We also find that the magnetic field pulls the chemical potential to the chiral n = 0 Landau level in the quantum limit, providing a disorder-free way of accessing chiral Weyl fermions in systems that are "not quite" WSMs in zero magnetic field.
36 schema:genre research_article
37 schema:inLanguage en
38 schema:isAccessibleForFree true
39 schema:isPartOf N641060acb5b64a52b28da0089b4a3f4e
40 Nba2f3db872e64102a7e3a126bdea4dc5
41 sg:journal.1045337
42 schema:name Thermodynamic Signatures of Weyl Fermions in NbP
43 schema:pagination 2095
44 schema:productId N360904d7fa964fd6bfffc2b40d171811
45 N36707faac01b4988a65a3f7acb1c4d82
46 N40c0cf0757c04b74a1f55f99f99c9213
47 N787b41399ba6456ab77faf0c3fc228f4
48 Nfc96aec2825d4be2bf4ed7902a2dea6f
49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112136618
50 https://doi.org/10.1038/s41598-018-38161-7
51 schema:sdDatePublished 2019-04-11T09:08
52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
53 schema:sdPublisher N9d9cd2b8317e45f7b5e66162a5e9a96a
54 schema:url https://www.nature.com/articles/s41598-018-38161-7
55 sgo:license sg:explorer/license/
56 sgo:sdDataset articles
57 rdf:type schema:ScholarlyArticle
58 N278cc787b06040afb062312ba0b3b175 rdf:first Nb42242e9945143e6a748f76bd9fb9866
59 rdf:rest N2b97165239064b689f1147728137ecf5
60 N2b97165239064b689f1147728137ecf5 rdf:first Ndfcef6852a884bcca989c200c1a3d236
61 rdf:rest N866530a8a3cf4f88a3abb6243b28da8a
62 N360904d7fa964fd6bfffc2b40d171811 schema:name pubmed_id
63 schema:value 30765755
64 rdf:type schema:PropertyValue
65 N36707faac01b4988a65a3f7acb1c4d82 schema:name doi
66 schema:value 10.1038/s41598-018-38161-7
67 rdf:type schema:PropertyValue
68 N40c0cf0757c04b74a1f55f99f99c9213 schema:name nlm_unique_id
69 schema:value 101563288
70 rdf:type schema:PropertyValue
71 N4e1db561de3e4f5da5a02666c6cf85eb rdf:first N6cb715dbbd0e4fec82f15005b1243d2d
72 rdf:rest rdf:nil
73 N51e77d087e73489480ec55bfcd739f24 schema:affiliation https://www.grid.ac/institutes/grid.148313.c
74 schema:familyName Ronning
75 schema:givenName Filip
76 rdf:type schema:Person
77 N5a31b56d83d24954a123a212e39079e3 schema:affiliation https://www.grid.ac/institutes/grid.419507.e
78 schema:familyName Moll
79 schema:givenName Philip J. W.
80 rdf:type schema:Person
81 N641060acb5b64a52b28da0089b4a3f4e schema:issueNumber 1
82 rdf:type schema:PublicationIssue
83 N6cb715dbbd0e4fec82f15005b1243d2d schema:affiliation https://www.grid.ac/institutes/grid.5386.8
84 schema:familyName Ramshaw
85 schema:givenName B. J.
86 rdf:type schema:Person
87 N787b41399ba6456ab77faf0c3fc228f4 schema:name dimensions_id
88 schema:value pub.1112136618
89 rdf:type schema:PropertyValue
90 N866530a8a3cf4f88a3abb6243b28da8a rdf:first N51e77d087e73489480ec55bfcd739f24
91 rdf:rest Ne2a8d20855554ad9a05fbcb609ed0425
92 N9d9cd2b8317e45f7b5e66162a5e9a96a schema:name Springer Nature - SN SciGraph project
93 rdf:type schema:Organization
94 N9fd211dd58164c4c9de0d551cfa311cd schema:affiliation https://www.grid.ac/institutes/grid.148313.c
95 schema:familyName Bauer
96 schema:givenName Eric D.
97 rdf:type schema:Person
98 Nb42242e9945143e6a748f76bd9fb9866 schema:affiliation https://www.grid.ac/institutes/grid.419507.e
99 schema:familyName Modic
100 schema:givenName K. A.
101 rdf:type schema:Person
102 Nba2f3db872e64102a7e3a126bdea4dc5 schema:volumeNumber 9
103 rdf:type schema:PublicationVolume
104 Ndfcef6852a884bcca989c200c1a3d236 schema:affiliation https://www.grid.ac/institutes/grid.4488.0
105 schema:familyName Meng
106 schema:givenName Tobias
107 rdf:type schema:Person
108 Ne2a8d20855554ad9a05fbcb609ed0425 rdf:first N9fd211dd58164c4c9de0d551cfa311cd
109 rdf:rest Nf52b674cd7cf4a729432396d0e6a6a3a
110 Nf52b674cd7cf4a729432396d0e6a6a3a rdf:first N5a31b56d83d24954a123a212e39079e3
111 rdf:rest N4e1db561de3e4f5da5a02666c6cf85eb
112 Nfc96aec2825d4be2bf4ed7902a2dea6f schema:name readcube_id
113 schema:value af298a35411cf75162c6ec36d2ce74251568d6938d3d2f2bf57b4a0e3c8089cd
114 rdf:type schema:PropertyValue
115 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
116 schema:name Chemical Sciences
117 rdf:type schema:DefinedTerm
118 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
119 schema:name Physical Chemistry (incl. Structural)
120 rdf:type schema:DefinedTerm
121 sg:grant.6493811 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-018-38161-7
122 rdf:type schema:MonetaryGrant
123 sg:grant.7507449 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-018-38161-7
124 rdf:type schema:MonetaryGrant
125 sg:journal.1045337 schema:issn 2045-2322
126 schema:name Scientific Reports
127 rdf:type schema:Periodical
128 sg:pub.10.1038/nature23005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090775029
129 https://doi.org/10.1038/nature23005
130 rdf:type schema:CreativeWork
131 sg:pub.10.1038/ncomms11006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045615993
132 https://doi.org/10.1038/ncomms11006
133 rdf:type schema:CreativeWork
134 sg:pub.10.1038/ncomms11615 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021091120
135 https://doi.org/10.1038/ncomms11615
136 rdf:type schema:CreativeWork
137 sg:pub.10.1038/ncomms12492 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010846919
138 https://doi.org/10.1038/ncomms12492
139 rdf:type schema:CreativeWork
140 sg:pub.10.1038/ncomms8373 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032808151
141 https://doi.org/10.1038/ncomms8373
142 rdf:type schema:CreativeWork
143 sg:pub.10.1038/nphys3437 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002042648
144 https://doi.org/10.1038/nphys3437
145 rdf:type schema:CreativeWork
146 sg:pub.10.1038/s41467-018-04542-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104356825
147 https://doi.org/10.1038/s41467-018-04542-9
148 rdf:type schema:CreativeWork
149 sg:pub.10.1038/srep33859 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032232594
150 https://doi.org/10.1038/srep33859
151 rdf:type schema:CreativeWork
152 sg:pub.10.1038/srep43394 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084131350
153 https://doi.org/10.1038/srep43394
154 rdf:type schema:CreativeWork
155 sg:pub.10.1038/srep46062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084759383
156 https://doi.org/10.1038/srep46062
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/0370-2693(83)91529-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009993034
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/s0921-4526(97)00920-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051477517
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1021/ic950826f schema:sameAs https://app.dimensions.ai/details/publication/pub.1055585758
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1063/1.1491999 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057712221
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1073/pnas.1608881113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020802117
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1103/physrev.52.365 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060449632
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1103/physrevb.86.054504 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032291586
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1103/physrevb.86.214514 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006951010
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1103/physrevb.88.104412 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037744625
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1103/physrevb.91.081106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031542974
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1103/physrevb.92.115428 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060647138
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1103/physrevb.93.121105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060649520
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1103/physrevb.93.121112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060649527
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1103/physrevb.93.201105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060650380
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1103/physrevb.95.205108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085367302
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1103/physrevb.95.205143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085784090
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1103/physrevlett.109.196403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001733098
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1103/physrevx.5.011029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034242879
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1146/annurev-conmatphys-031113-133841 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017335807
195 rdf:type schema:CreativeWork
196 https://www.grid.ac/institutes/grid.148313.c schema:alternateName Los Alamos National Laboratory
197 schema:name Los Alamos National Laboratory, 87545, Los Alamos, NM, USA
198 rdf:type schema:Organization
199 https://www.grid.ac/institutes/grid.419507.e schema:alternateName Max Planck Institute for Chemical Physics of Solids
200 schema:name Max-Planck-Institute for Chemical Physics of Solids, 01187, Dresden, Germany
201 rdf:type schema:Organization
202 https://www.grid.ac/institutes/grid.4488.0 schema:alternateName TU Dresden
203 schema:name Institut für Theoretische Physik, Technische Universität Dresden, 01062, Dresden, Germany
204 rdf:type schema:Organization
205 https://www.grid.ac/institutes/grid.5386.8 schema:alternateName Cornell University
206 schema:name Laboratory of Atomic and Solid State Physics, Cornell University, 14853, Ithaca, NY, USA
207 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...