Thermodynamic Signatures of Weyl Fermions in NbP View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

K. A. Modic, Tobias Meng, Filip Ronning, Eric D. Bauer, Philip J. W. Moll, B. J. Ramshaw

ABSTRACT

We present a high magnetic field study of NbP-a member of the monopnictide Weyl semimetal (WSM) family. While the monoarsenides (NbAs and TaAs) have topologically distinct left and right-handed Weyl fermi surfaces, NbP is argued to be "topologically trivial" due to the fact that all pairs of Weyl nodes are encompassed by a single Fermi surface. We use torque magnetometry to measure the magnetic response of NbP up to 60 tesla and uncover a Berry paramagnetic response, characteristic of the topological Weyl nodes, across the entire field range. At the quantum limit B* (≈32 T), τ/B experiences a change in slope when the chemical potential enters the last Landau level. Our calculations confirm that this magnetic response arises from band topology of the Weyl pocket, even though the Fermi surface encompasses both Weyl nodes at zero magnetic field. We also find that the magnetic field pulls the chemical potential to the chiral n = 0 Landau level in the quantum limit, providing a disorder-free way of accessing chiral Weyl fermions in systems that are "not quite" WSMs in zero magnetic field. More... »

PAGES

2095

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-018-38161-7

DOI

http://dx.doi.org/10.1038/s41598-018-38161-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112136618

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30765755


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for Chemical Physics of Solids", 
          "id": "https://www.grid.ac/institutes/grid.419507.e", 
          "name": [
            "Max-Planck-Institute for Chemical Physics of Solids, 01187, Dresden, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Modic", 
        "givenName": "K. A.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "TU Dresden", 
          "id": "https://www.grid.ac/institutes/grid.4488.0", 
          "name": [
            "Institut f\u00fcr Theoretische Physik, Technische Universit\u00e4t Dresden, 01062, Dresden, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Meng", 
        "givenName": "Tobias", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Los Alamos National Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.148313.c", 
          "name": [
            "Los Alamos National Laboratory, 87545, Los Alamos, NM, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ronning", 
        "givenName": "Filip", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Los Alamos National Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.148313.c", 
          "name": [
            "Los Alamos National Laboratory, 87545, Los Alamos, NM, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bauer", 
        "givenName": "Eric D.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for Chemical Physics of Solids", 
          "id": "https://www.grid.ac/institutes/grid.419507.e", 
          "name": [
            "Max-Planck-Institute for Chemical Physics of Solids, 01187, Dresden, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Moll", 
        "givenName": "Philip J. W.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cornell University", 
          "id": "https://www.grid.ac/institutes/grid.5386.8", 
          "name": [
            "Laboratory of Atomic and Solid State Physics, Cornell University, 14853, Ithaca, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ramshaw", 
        "givenName": "B. J.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevlett.109.196403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001733098"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.109.196403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001733098"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys3437", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002042648", 
          "https://doi.org/10.1038/nphys3437"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.86.214514", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006951010"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.86.214514", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006951010"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-2693(83)91529-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009993034"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-2693(83)91529-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009993034"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms12492", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010846919", 
          "https://doi.org/10.1038/ncomms12492"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev-conmatphys-031113-133841", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017335807"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1608881113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020802117"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms11615", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021091120", 
          "https://doi.org/10.1038/ncomms11615"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.91.081106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031542974"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.91.081106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031542974"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep33859", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032232594", 
          "https://doi.org/10.1038/srep33859"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.86.054504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032291586"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.86.054504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032291586"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms8373", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032808151", 
          "https://doi.org/10.1038/ncomms8373"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevx.5.011029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034242879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevx.5.011029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034242879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.88.104412", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037744625"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.88.104412", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037744625"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms11006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045615993", 
          "https://doi.org/10.1038/ncomms11006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0921-4526(97)00920-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051477517"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ic950826f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055585758"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ic950826f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055585758"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1491999", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057712221"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.52.365", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060449632"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.52.365", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060449632"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.92.115428", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060647138"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.92.115428", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060647138"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.93.121105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060649520"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.93.121105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060649520"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.93.121112", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060649527"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.93.121112", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060649527"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.93.201105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060650380"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.93.201105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060650380"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep43394", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084131350", 
          "https://doi.org/10.1038/srep43394"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep46062", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084759383", 
          "https://doi.org/10.1038/srep46062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.95.205108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085367302"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.95.205108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085367302"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.95.205143", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085784090"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.95.205143", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085784090"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature23005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090775029", 
          "https://doi.org/10.1038/nature23005"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature23005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090775029", 
          "https://doi.org/10.1038/nature23005"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41467-018-04542-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104356825", 
          "https://doi.org/10.1038/s41467-018-04542-9"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "We present a high magnetic field study of NbP-a member of the monopnictide Weyl semimetal (WSM) family. While the monoarsenides (NbAs and TaAs) have topologically distinct left and right-handed Weyl fermi surfaces, NbP is argued to be \"topologically trivial\" due to the fact that all pairs of Weyl nodes are encompassed by a single Fermi surface. We use torque magnetometry to measure the magnetic response of NbP up to 60 tesla and uncover a Berry paramagnetic response, characteristic of the topological Weyl nodes, across the entire field range. At the quantum limit B* (\u224832\u2009T), \u03c4/B experiences a change in slope when the chemical potential enters the last Landau level. Our calculations confirm that this magnetic response arises from band topology of the Weyl pocket, even though the Fermi surface encompasses both Weyl nodes at zero magnetic field. We also find that the magnetic field pulls the chemical potential to the chiral n\u2009=\u20090 Landau level in the quantum limit, providing a disorder-free way of accessing chiral Weyl fermions in systems that are \"not quite\" WSMs in zero magnetic field.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-018-38161-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6493811", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.7507449", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "Thermodynamic Signatures of Weyl Fermions in NbP", 
    "pagination": "2095", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "af298a35411cf75162c6ec36d2ce74251568d6938d3d2f2bf57b4a0e3c8089cd"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30765755"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-018-38161-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112136618"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-018-38161-7", 
      "https://app.dimensions.ai/details/publication/pub.1112136618"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:08", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000338_0000000338/records_47960_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-018-38161-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-38161-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-38161-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-38161-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-38161-7'


 

This table displays all metadata directly associated to this object as RDF triples.

207 TRIPLES      21 PREDICATES      58 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-018-38161-7 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author N247a7cc2cd984960b966107e5daee10f
4 schema:citation sg:pub.10.1038/nature23005
5 sg:pub.10.1038/ncomms11006
6 sg:pub.10.1038/ncomms11615
7 sg:pub.10.1038/ncomms12492
8 sg:pub.10.1038/ncomms8373
9 sg:pub.10.1038/nphys3437
10 sg:pub.10.1038/s41467-018-04542-9
11 sg:pub.10.1038/srep33859
12 sg:pub.10.1038/srep43394
13 sg:pub.10.1038/srep46062
14 https://doi.org/10.1016/0370-2693(83)91529-0
15 https://doi.org/10.1016/s0921-4526(97)00920-4
16 https://doi.org/10.1021/ic950826f
17 https://doi.org/10.1063/1.1491999
18 https://doi.org/10.1073/pnas.1608881113
19 https://doi.org/10.1103/physrev.52.365
20 https://doi.org/10.1103/physrevb.86.054504
21 https://doi.org/10.1103/physrevb.86.214514
22 https://doi.org/10.1103/physrevb.88.104412
23 https://doi.org/10.1103/physrevb.91.081106
24 https://doi.org/10.1103/physrevb.92.115428
25 https://doi.org/10.1103/physrevb.93.121105
26 https://doi.org/10.1103/physrevb.93.121112
27 https://doi.org/10.1103/physrevb.93.201105
28 https://doi.org/10.1103/physrevb.95.205108
29 https://doi.org/10.1103/physrevb.95.205143
30 https://doi.org/10.1103/physrevlett.109.196403
31 https://doi.org/10.1103/physrevx.5.011029
32 https://doi.org/10.1146/annurev-conmatphys-031113-133841
33 schema:datePublished 2019-12
34 schema:datePublishedReg 2019-12-01
35 schema:description We present a high magnetic field study of NbP-a member of the monopnictide Weyl semimetal (WSM) family. While the monoarsenides (NbAs and TaAs) have topologically distinct left and right-handed Weyl fermi surfaces, NbP is argued to be "topologically trivial" due to the fact that all pairs of Weyl nodes are encompassed by a single Fermi surface. We use torque magnetometry to measure the magnetic response of NbP up to 60 tesla and uncover a Berry paramagnetic response, characteristic of the topological Weyl nodes, across the entire field range. At the quantum limit B<sup>*</sup> (≈32 T), τ/B experiences a change in slope when the chemical potential enters the last Landau level. Our calculations confirm that this magnetic response arises from band topology of the Weyl pocket, even though the Fermi surface encompasses both Weyl nodes at zero magnetic field. We also find that the magnetic field pulls the chemical potential to the chiral n = 0 Landau level in the quantum limit, providing a disorder-free way of accessing chiral Weyl fermions in systems that are "not quite" WSMs in zero magnetic field.
36 schema:genre research_article
37 schema:inLanguage en
38 schema:isAccessibleForFree true
39 schema:isPartOf Nd38a888a37524c6db2d71f7f2a910e84
40 Ne13bcc7b6f024c628fe7cfbb16dfe57e
41 sg:journal.1045337
42 schema:name Thermodynamic Signatures of Weyl Fermions in NbP
43 schema:pagination 2095
44 schema:productId N1937674250f64a45bf0bfd6c10011df8
45 N51270d2465414433bfc42be2ff81a778
46 N8085fb301c74449da9204a1e46b54a95
47 N9c12c506438f4f4e9905fd3c94aed7cc
48 Nfefe01366637454e9e5a9bda5e6f1708
49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112136618
50 https://doi.org/10.1038/s41598-018-38161-7
51 schema:sdDatePublished 2019-04-11T09:08
52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
53 schema:sdPublisher Nf8fd6bbc25af4b3597ac61e52c854c9c
54 schema:url https://www.nature.com/articles/s41598-018-38161-7
55 sgo:license sg:explorer/license/
56 sgo:sdDataset articles
57 rdf:type schema:ScholarlyArticle
58 N1937674250f64a45bf0bfd6c10011df8 schema:name nlm_unique_id
59 schema:value 101563288
60 rdf:type schema:PropertyValue
61 N215893decf0b4edc98236b83da2bc31e rdf:first N65407a7ade75458aa170075cbe275c13
62 rdf:rest rdf:nil
63 N247a7cc2cd984960b966107e5daee10f rdf:first N7076136a97e349159a8120a36d58eccb
64 rdf:rest Na825ee4d11f84f19941dcd0483a1e549
65 N272272b9118046c28b19f55cee403c33 schema:affiliation https://www.grid.ac/institutes/grid.148313.c
66 schema:familyName Bauer
67 schema:givenName Eric D.
68 rdf:type schema:Person
69 N330812c5878448ce9a1a03673f3407da schema:affiliation https://www.grid.ac/institutes/grid.148313.c
70 schema:familyName Ronning
71 schema:givenName Filip
72 rdf:type schema:Person
73 N51270d2465414433bfc42be2ff81a778 schema:name doi
74 schema:value 10.1038/s41598-018-38161-7
75 rdf:type schema:PropertyValue
76 N5223e84066c94591b6367f385a77dea5 rdf:first N330812c5878448ce9a1a03673f3407da
77 rdf:rest Na96bc0d9dbd849a28a5ab3a3205ab198
78 N65407a7ade75458aa170075cbe275c13 schema:affiliation https://www.grid.ac/institutes/grid.5386.8
79 schema:familyName Ramshaw
80 schema:givenName B. J.
81 rdf:type schema:Person
82 N7076136a97e349159a8120a36d58eccb schema:affiliation https://www.grid.ac/institutes/grid.419507.e
83 schema:familyName Modic
84 schema:givenName K. A.
85 rdf:type schema:Person
86 N710b12fab5494fd3b6496f0ffbdb1569 schema:affiliation https://www.grid.ac/institutes/grid.4488.0
87 schema:familyName Meng
88 schema:givenName Tobias
89 rdf:type schema:Person
90 N7d7be49c9d904b829658caab1ffc73d3 schema:affiliation https://www.grid.ac/institutes/grid.419507.e
91 schema:familyName Moll
92 schema:givenName Philip J. W.
93 rdf:type schema:Person
94 N8085fb301c74449da9204a1e46b54a95 schema:name pubmed_id
95 schema:value 30765755
96 rdf:type schema:PropertyValue
97 N9c12c506438f4f4e9905fd3c94aed7cc schema:name readcube_id
98 schema:value af298a35411cf75162c6ec36d2ce74251568d6938d3d2f2bf57b4a0e3c8089cd
99 rdf:type schema:PropertyValue
100 Na825ee4d11f84f19941dcd0483a1e549 rdf:first N710b12fab5494fd3b6496f0ffbdb1569
101 rdf:rest N5223e84066c94591b6367f385a77dea5
102 Na96bc0d9dbd849a28a5ab3a3205ab198 rdf:first N272272b9118046c28b19f55cee403c33
103 rdf:rest Nd84c52c2e4c8420e877c2c9d462523e6
104 Nd38a888a37524c6db2d71f7f2a910e84 schema:issueNumber 1
105 rdf:type schema:PublicationIssue
106 Nd84c52c2e4c8420e877c2c9d462523e6 rdf:first N7d7be49c9d904b829658caab1ffc73d3
107 rdf:rest N215893decf0b4edc98236b83da2bc31e
108 Ne13bcc7b6f024c628fe7cfbb16dfe57e schema:volumeNumber 9
109 rdf:type schema:PublicationVolume
110 Nf8fd6bbc25af4b3597ac61e52c854c9c schema:name Springer Nature - SN SciGraph project
111 rdf:type schema:Organization
112 Nfefe01366637454e9e5a9bda5e6f1708 schema:name dimensions_id
113 schema:value pub.1112136618
114 rdf:type schema:PropertyValue
115 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
116 schema:name Chemical Sciences
117 rdf:type schema:DefinedTerm
118 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
119 schema:name Physical Chemistry (incl. Structural)
120 rdf:type schema:DefinedTerm
121 sg:grant.6493811 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-018-38161-7
122 rdf:type schema:MonetaryGrant
123 sg:grant.7507449 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-018-38161-7
124 rdf:type schema:MonetaryGrant
125 sg:journal.1045337 schema:issn 2045-2322
126 schema:name Scientific Reports
127 rdf:type schema:Periodical
128 sg:pub.10.1038/nature23005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090775029
129 https://doi.org/10.1038/nature23005
130 rdf:type schema:CreativeWork
131 sg:pub.10.1038/ncomms11006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045615993
132 https://doi.org/10.1038/ncomms11006
133 rdf:type schema:CreativeWork
134 sg:pub.10.1038/ncomms11615 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021091120
135 https://doi.org/10.1038/ncomms11615
136 rdf:type schema:CreativeWork
137 sg:pub.10.1038/ncomms12492 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010846919
138 https://doi.org/10.1038/ncomms12492
139 rdf:type schema:CreativeWork
140 sg:pub.10.1038/ncomms8373 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032808151
141 https://doi.org/10.1038/ncomms8373
142 rdf:type schema:CreativeWork
143 sg:pub.10.1038/nphys3437 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002042648
144 https://doi.org/10.1038/nphys3437
145 rdf:type schema:CreativeWork
146 sg:pub.10.1038/s41467-018-04542-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104356825
147 https://doi.org/10.1038/s41467-018-04542-9
148 rdf:type schema:CreativeWork
149 sg:pub.10.1038/srep33859 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032232594
150 https://doi.org/10.1038/srep33859
151 rdf:type schema:CreativeWork
152 sg:pub.10.1038/srep43394 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084131350
153 https://doi.org/10.1038/srep43394
154 rdf:type schema:CreativeWork
155 sg:pub.10.1038/srep46062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084759383
156 https://doi.org/10.1038/srep46062
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/0370-2693(83)91529-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009993034
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/s0921-4526(97)00920-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051477517
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1021/ic950826f schema:sameAs https://app.dimensions.ai/details/publication/pub.1055585758
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1063/1.1491999 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057712221
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1073/pnas.1608881113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020802117
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1103/physrev.52.365 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060449632
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1103/physrevb.86.054504 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032291586
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1103/physrevb.86.214514 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006951010
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1103/physrevb.88.104412 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037744625
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1103/physrevb.91.081106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031542974
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1103/physrevb.92.115428 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060647138
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1103/physrevb.93.121105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060649520
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1103/physrevb.93.121112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060649527
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1103/physrevb.93.201105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060650380
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1103/physrevb.95.205108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085367302
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1103/physrevb.95.205143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085784090
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1103/physrevlett.109.196403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001733098
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1103/physrevx.5.011029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034242879
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1146/annurev-conmatphys-031113-133841 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017335807
195 rdf:type schema:CreativeWork
196 https://www.grid.ac/institutes/grid.148313.c schema:alternateName Los Alamos National Laboratory
197 schema:name Los Alamos National Laboratory, 87545, Los Alamos, NM, USA
198 rdf:type schema:Organization
199 https://www.grid.ac/institutes/grid.419507.e schema:alternateName Max Planck Institute for Chemical Physics of Solids
200 schema:name Max-Planck-Institute for Chemical Physics of Solids, 01187, Dresden, Germany
201 rdf:type schema:Organization
202 https://www.grid.ac/institutes/grid.4488.0 schema:alternateName TU Dresden
203 schema:name Institut für Theoretische Physik, Technische Universität Dresden, 01062, Dresden, Germany
204 rdf:type schema:Organization
205 https://www.grid.ac/institutes/grid.5386.8 schema:alternateName Cornell University
206 schema:name Laboratory of Atomic and Solid State Physics, Cornell University, 14853, Ithaca, NY, USA
207 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...