Ontology type: schema:ScholarlyArticle Open Access: True
2019-12
AUTHORSK. A. Modic, Tobias Meng, Filip Ronning, Eric D. Bauer, Philip J. W. Moll, B. J. Ramshaw
ABSTRACTWe present a high magnetic field study of NbP-a member of the monopnictide Weyl semimetal (WSM) family. While the monoarsenides (NbAs and TaAs) have topologically distinct left and right-handed Weyl fermi surfaces, NbP is argued to be "topologically trivial" due to the fact that all pairs of Weyl nodes are encompassed by a single Fermi surface. We use torque magnetometry to measure the magnetic response of NbP up to 60 tesla and uncover a Berry paramagnetic response, characteristic of the topological Weyl nodes, across the entire field range. At the quantum limit B* (≈32 T), τ/B experiences a change in slope when the chemical potential enters the last Landau level. Our calculations confirm that this magnetic response arises from band topology of the Weyl pocket, even though the Fermi surface encompasses both Weyl nodes at zero magnetic field. We also find that the magnetic field pulls the chemical potential to the chiral n = 0 Landau level in the quantum limit, providing a disorder-free way of accessing chiral Weyl fermions in systems that are "not quite" WSMs in zero magnetic field. More... »
PAGES2095
http://scigraph.springernature.com/pub.10.1038/s41598-018-38161-7
DOIhttp://dx.doi.org/10.1038/s41598-018-38161-7
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1112136618
PUBMEDhttps://www.ncbi.nlm.nih.gov/pubmed/30765755
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Chemistry (incl. Structural)",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Chemical Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Max Planck Institute for Chemical Physics of Solids",
"id": "https://www.grid.ac/institutes/grid.419507.e",
"name": [
"Max-Planck-Institute for Chemical Physics of Solids, 01187, Dresden, Germany"
],
"type": "Organization"
},
"familyName": "Modic",
"givenName": "K. A.",
"type": "Person"
},
{
"affiliation": {
"alternateName": "TU Dresden",
"id": "https://www.grid.ac/institutes/grid.4488.0",
"name": [
"Institut f\u00fcr Theoretische Physik, Technische Universit\u00e4t Dresden, 01062, Dresden, Germany"
],
"type": "Organization"
},
"familyName": "Meng",
"givenName": "Tobias",
"type": "Person"
},
{
"affiliation": {
"alternateName": "Los Alamos National Laboratory",
"id": "https://www.grid.ac/institutes/grid.148313.c",
"name": [
"Los Alamos National Laboratory, 87545, Los Alamos, NM, USA"
],
"type": "Organization"
},
"familyName": "Ronning",
"givenName": "Filip",
"type": "Person"
},
{
"affiliation": {
"alternateName": "Los Alamos National Laboratory",
"id": "https://www.grid.ac/institutes/grid.148313.c",
"name": [
"Los Alamos National Laboratory, 87545, Los Alamos, NM, USA"
],
"type": "Organization"
},
"familyName": "Bauer",
"givenName": "Eric D.",
"type": "Person"
},
{
"affiliation": {
"alternateName": "Max Planck Institute for Chemical Physics of Solids",
"id": "https://www.grid.ac/institutes/grid.419507.e",
"name": [
"Max-Planck-Institute for Chemical Physics of Solids, 01187, Dresden, Germany"
],
"type": "Organization"
},
"familyName": "Moll",
"givenName": "Philip J. W.",
"type": "Person"
},
{
"affiliation": {
"alternateName": "Cornell University",
"id": "https://www.grid.ac/institutes/grid.5386.8",
"name": [
"Laboratory of Atomic and Solid State Physics, Cornell University, 14853, Ithaca, NY, USA"
],
"type": "Organization"
},
"familyName": "Ramshaw",
"givenName": "B. J.",
"type": "Person"
}
],
"citation": [
{
"id": "https://doi.org/10.1103/physrevlett.109.196403",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1001733098"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevlett.109.196403",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1001733098"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nphys3437",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1002042648",
"https://doi.org/10.1038/nphys3437"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevb.86.214514",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1006951010"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevb.86.214514",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1006951010"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0370-2693(83)91529-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1009993034"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0370-2693(83)91529-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1009993034"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/ncomms12492",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1010846919",
"https://doi.org/10.1038/ncomms12492"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1146/annurev-conmatphys-031113-133841",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1017335807"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1073/pnas.1608881113",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1020802117"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/ncomms11615",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1021091120",
"https://doi.org/10.1038/ncomms11615"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevb.91.081106",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1031542974"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevb.91.081106",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1031542974"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/srep33859",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1032232594",
"https://doi.org/10.1038/srep33859"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevb.86.054504",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1032291586"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevb.86.054504",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1032291586"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/ncomms8373",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1032808151",
"https://doi.org/10.1038/ncomms8373"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevx.5.011029",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1034242879"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevx.5.011029",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1034242879"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevb.88.104412",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1037744625"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevb.88.104412",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1037744625"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/ncomms11006",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1045615993",
"https://doi.org/10.1038/ncomms11006"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s0921-4526(97)00920-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1051477517"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1021/ic950826f",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1055585758"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1021/ic950826f",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1055585758"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1063/1.1491999",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1057712221"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrev.52.365",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060449632"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrev.52.365",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060449632"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevb.92.115428",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060647138"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevb.92.115428",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060647138"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevb.93.121105",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060649520"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevb.93.121105",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060649520"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevb.93.121112",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060649527"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevb.93.121112",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060649527"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevb.93.201105",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060650380"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevb.93.201105",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060650380"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/srep43394",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1084131350",
"https://doi.org/10.1038/srep43394"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/srep46062",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1084759383",
"https://doi.org/10.1038/srep46062"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevb.95.205108",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1085367302"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevb.95.205108",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1085367302"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevb.95.205143",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1085784090"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevb.95.205143",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1085784090"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nature23005",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1090775029",
"https://doi.org/10.1038/nature23005"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nature23005",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1090775029",
"https://doi.org/10.1038/nature23005"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/s41467-018-04542-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1104356825",
"https://doi.org/10.1038/s41467-018-04542-9"
],
"type": "CreativeWork"
}
],
"datePublished": "2019-12",
"datePublishedReg": "2019-12-01",
"description": "We present a high magnetic field study of NbP-a member of the monopnictide Weyl semimetal (WSM) family. While the monoarsenides (NbAs and TaAs) have topologically distinct left and right-handed Weyl fermi surfaces, NbP is argued to be \"topologically trivial\" due to the fact that all pairs of Weyl nodes are encompassed by a single Fermi surface. We use torque magnetometry to measure the magnetic response of NbP up to 60 tesla and uncover a Berry paramagnetic response, characteristic of the topological Weyl nodes, across the entire field range. At the quantum limit B* (\u224832\u2009T), \u03c4/B experiences a change in slope when the chemical potential enters the last Landau level. Our calculations confirm that this magnetic response arises from band topology of the Weyl pocket, even though the Fermi surface encompasses both Weyl nodes at zero magnetic field. We also find that the magnetic field pulls the chemical potential to the chiral n\u2009=\u20090 Landau level in the quantum limit, providing a disorder-free way of accessing chiral Weyl fermions in systems that are \"not quite\" WSMs in zero magnetic field.",
"genre": "research_article",
"id": "sg:pub.10.1038/s41598-018-38161-7",
"inLanguage": [
"en"
],
"isAccessibleForFree": true,
"isFundedItemOf": [
{
"id": "sg:grant.6493811",
"type": "MonetaryGrant"
},
{
"id": "sg:grant.7507449",
"type": "MonetaryGrant"
}
],
"isPartOf": [
{
"id": "sg:journal.1045337",
"issn": [
"2045-2322"
],
"name": "Scientific Reports",
"type": "Periodical"
},
{
"issueNumber": "1",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "9"
}
],
"name": "Thermodynamic Signatures of Weyl Fermions in NbP",
"pagination": "2095",
"productId": [
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"af298a35411cf75162c6ec36d2ce74251568d6938d3d2f2bf57b4a0e3c8089cd"
]
},
{
"name": "pubmed_id",
"type": "PropertyValue",
"value": [
"30765755"
]
},
{
"name": "nlm_unique_id",
"type": "PropertyValue",
"value": [
"101563288"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1038/s41598-018-38161-7"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1112136618"
]
}
],
"sameAs": [
"https://doi.org/10.1038/s41598-018-38161-7",
"https://app.dimensions.ai/details/publication/pub.1112136618"
],
"sdDataset": "articles",
"sdDatePublished": "2019-04-11T09:08",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000338_0000000338/records_47960_00000002.jsonl",
"type": "ScholarlyArticle",
"url": "https://www.nature.com/articles/s41598-018-38161-7"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-38161-7'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-38161-7'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-38161-7'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-38161-7'
This table displays all metadata directly associated to this object as RDF triples.
207 TRIPLES
21 PREDICATES
58 URIs
21 LITERALS
9 BLANK NODES