Jordan–Wigner transformations for tree structures View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Stefan Backens, Alexander Shnirman, Yuriy Makhlin

ABSTRACT

The celebrated Jordan-Wigner transformation provides an efficient mapping between spin chains and fermionic systems in one dimension. Here we extend this spin-fermion mapping to arbitrary tree structures, which enables mapping between fermionic and spin systems with nearest-neighbor coupling. The mapping is achieved with the help of additional spins at the junctions between one-dimensional chains. This property allows for straightforward simulation of Majorana braiding in spin or qubit systems. More... »

PAGES

2598

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-018-38128-8

DOI

http://dx.doi.org/10.1038/s41598-018-38128-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112308311

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30796240


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Karlsruhe Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.7892.4", 
          "name": [
            "Institut f\u00fcr Theorie der Kondensierten Materie, Karlsruhe Institute of Technology, D-76131, Karlsruhe, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Backens", 
        "givenName": "Stefan", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Karlsruhe Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.7892.4", 
          "name": [
            "Institut f\u00fcr Theorie der Kondensierten Materie, Karlsruhe Institute of Technology, D-76131, Karlsruhe, Germany", 
            "Institute of Nanotechnology, Karlsruhe Institute of Technology, D-76344, Eggenstein-Leopoldshafen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shnirman", 
        "givenName": "Alexander", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Landau Institute for Theoretical Physics", 
          "id": "https://www.grid.ac/institutes/grid.436090.8", 
          "name": [
            "Condensed-matter physics Laboratory, National Research University Higher School of Economics, 101000, Moscow, Russia", 
            "Landau Institute for Theoretical Physics, acad. Semyonov av. 1a, 142432, Chernogolovka, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Makhlin", 
        "givenName": "Yuriy", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevb.83.075103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004349150"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.83.075103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004349150"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.113.057003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011327318"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.113.057003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011327318"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/aphy.2002.6254", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011814055"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1521-3889(199811)7:4<225::aid-andp225>3.0.co;2-l", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013256140"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevx.3.041018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014376267"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevx.3.041018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014376267"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00018730310001642086", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019117717"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.55.1142", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021857649"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.55.1142", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021857649"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys1915", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022583847", 
          "https://doi.org/10.1038/nphys1915"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nuclphysb.2013.03.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029151315"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.86.268", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030223311"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.86.268", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030223311"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.110.147202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031336267"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.110.147202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031336267"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.53.12373", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033643312"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.53.12373", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033643312"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.61.10267", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034267261"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.61.10267", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034267261"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01331938", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035156962", 
          "https://doi.org/10.1007/bf01331938"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1070/1063-7869/44/10s/s29", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036504866"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.71.3622", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038042267"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.71.3622", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038042267"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0003-4916(61)90115-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039019843"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00268976.2011.552441", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046110412"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1742-5468/2005/09/p09012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047474916"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.43.3786", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060557485"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.43.3786", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060557485"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.51.1004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060717473"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.51.1004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060717473"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.115.197001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060764418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.115.197001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060764418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.63.322", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060799892"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.63.322", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060799892"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.96.195402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092484440"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.96.195402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092484440"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevapplied.9.044036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103695949"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevapplied.9.044036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103695949"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "The celebrated Jordan-Wigner transformation provides an efficient mapping between spin chains and fermionic systems in one dimension. Here we extend this spin-fermion mapping to arbitrary tree structures, which enables mapping between fermionic and spin systems with nearest-neighbor coupling. The mapping is achieved with the help of additional spins at the junctions between one-dimensional chains. This property allows for straightforward simulation of Majorana braiding in spin or qubit systems.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-018-38128-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.5492354", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "Jordan\u2013Wigner transformations for tree structures", 
    "pagination": "2598", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "7f4c1e0168a645338e88ae8aa4fda6d8ac5dc84c3bfb3a40651eeea2d2b89095"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30796240"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-018-38128-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112308311"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-018-38128-8", 
      "https://app.dimensions.ai/details/publication/pub.1112308311"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:28", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000349_0000000349/records_113640_00000005.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-018-38128-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-38128-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-38128-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-38128-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-38128-8'


 

This table displays all metadata directly associated to this object as RDF triples.

163 TRIPLES      21 PREDICATES      54 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-018-38128-8 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N9e7c5101212b48c6b6d2689f503de07a
4 schema:citation sg:pub.10.1007/bf01331938
5 sg:pub.10.1038/nphys1915
6 https://doi.org/10.1002/(sici)1521-3889(199811)7:4<225::aid-andp225>3.0.co;2-l
7 https://doi.org/10.1006/aphy.2002.6254
8 https://doi.org/10.1016/0003-4916(61)90115-4
9 https://doi.org/10.1016/j.nuclphysb.2013.03.001
10 https://doi.org/10.1070/1063-7869/44/10s/s29
11 https://doi.org/10.1080/00018730310001642086
12 https://doi.org/10.1080/00268976.2011.552441
13 https://doi.org/10.1088/1742-5468/2005/09/p09012
14 https://doi.org/10.1103/physrevapplied.9.044036
15 https://doi.org/10.1103/physrevb.43.3786
16 https://doi.org/10.1103/physrevb.53.12373
17 https://doi.org/10.1103/physrevb.55.1142
18 https://doi.org/10.1103/physrevb.61.10267
19 https://doi.org/10.1103/physrevb.83.075103
20 https://doi.org/10.1103/physrevb.96.195402
21 https://doi.org/10.1103/physreve.51.1004
22 https://doi.org/10.1103/physrevlett.110.147202
23 https://doi.org/10.1103/physrevlett.113.057003
24 https://doi.org/10.1103/physrevlett.115.197001
25 https://doi.org/10.1103/physrevlett.63.322
26 https://doi.org/10.1103/physrevlett.71.3622
27 https://doi.org/10.1103/physrevlett.86.268
28 https://doi.org/10.1103/physrevx.3.041018
29 schema:datePublished 2019-12
30 schema:datePublishedReg 2019-12-01
31 schema:description The celebrated Jordan-Wigner transformation provides an efficient mapping between spin chains and fermionic systems in one dimension. Here we extend this spin-fermion mapping to arbitrary tree structures, which enables mapping between fermionic and spin systems with nearest-neighbor coupling. The mapping is achieved with the help of additional spins at the junctions between one-dimensional chains. This property allows for straightforward simulation of Majorana braiding in spin or qubit systems.
32 schema:genre research_article
33 schema:inLanguage en
34 schema:isAccessibleForFree true
35 schema:isPartOf N60ed0a522ed24607a3c0bdc4c8c2abd6
36 Ncf57182f0e2a4c19acb7abe28b7fde7b
37 sg:journal.1045337
38 schema:name Jordan–Wigner transformations for tree structures
39 schema:pagination 2598
40 schema:productId N14fec705abd94923bce2da098bc9d674
41 N2c9a67ca71764a8680e2a733fe1fa548
42 N3a6b45a387894c2a8d0a9a91a1577aa9
43 N496b271479ff42eebf02cb91a98fba0e
44 N965d04afcae34c5ab3944f6d876515a6
45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112308311
46 https://doi.org/10.1038/s41598-018-38128-8
47 schema:sdDatePublished 2019-04-11T10:28
48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
49 schema:sdPublisher Nb36c896f59bf4f1db50cea0133bfdc62
50 schema:url https://www.nature.com/articles/s41598-018-38128-8
51 sgo:license sg:explorer/license/
52 sgo:sdDataset articles
53 rdf:type schema:ScholarlyArticle
54 N0ca9f006e7aa499780b264d85b9d5045 schema:affiliation https://www.grid.ac/institutes/grid.7892.4
55 schema:familyName Backens
56 schema:givenName Stefan
57 rdf:type schema:Person
58 N14fec705abd94923bce2da098bc9d674 schema:name nlm_unique_id
59 schema:value 101563288
60 rdf:type schema:PropertyValue
61 N2c9a67ca71764a8680e2a733fe1fa548 schema:name pubmed_id
62 schema:value 30796240
63 rdf:type schema:PropertyValue
64 N3a6b45a387894c2a8d0a9a91a1577aa9 schema:name readcube_id
65 schema:value 7f4c1e0168a645338e88ae8aa4fda6d8ac5dc84c3bfb3a40651eeea2d2b89095
66 rdf:type schema:PropertyValue
67 N496b271479ff42eebf02cb91a98fba0e schema:name doi
68 schema:value 10.1038/s41598-018-38128-8
69 rdf:type schema:PropertyValue
70 N584c86476fc94f1ab49a6a76f582a72a schema:affiliation https://www.grid.ac/institutes/grid.7892.4
71 schema:familyName Shnirman
72 schema:givenName Alexander
73 rdf:type schema:Person
74 N60ed0a522ed24607a3c0bdc4c8c2abd6 schema:issueNumber 1
75 rdf:type schema:PublicationIssue
76 N937a3a873c0045caa469bbfba1e4bf89 rdf:first N584c86476fc94f1ab49a6a76f582a72a
77 rdf:rest Nb847ea6db964465da7a1cd5c3789173b
78 N965d04afcae34c5ab3944f6d876515a6 schema:name dimensions_id
79 schema:value pub.1112308311
80 rdf:type schema:PropertyValue
81 N9e7c5101212b48c6b6d2689f503de07a rdf:first N0ca9f006e7aa499780b264d85b9d5045
82 rdf:rest N937a3a873c0045caa469bbfba1e4bf89
83 Nb36c896f59bf4f1db50cea0133bfdc62 schema:name Springer Nature - SN SciGraph project
84 rdf:type schema:Organization
85 Nb847ea6db964465da7a1cd5c3789173b rdf:first Nb9712a2b325941158f1ded834a931fae
86 rdf:rest rdf:nil
87 Nb9712a2b325941158f1ded834a931fae schema:affiliation https://www.grid.ac/institutes/grid.436090.8
88 schema:familyName Makhlin
89 schema:givenName Yuriy
90 rdf:type schema:Person
91 Ncf57182f0e2a4c19acb7abe28b7fde7b schema:volumeNumber 9
92 rdf:type schema:PublicationVolume
93 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
94 schema:name Information and Computing Sciences
95 rdf:type schema:DefinedTerm
96 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
97 schema:name Artificial Intelligence and Image Processing
98 rdf:type schema:DefinedTerm
99 sg:grant.5492354 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-018-38128-8
100 rdf:type schema:MonetaryGrant
101 sg:journal.1045337 schema:issn 2045-2322
102 schema:name Scientific Reports
103 rdf:type schema:Periodical
104 sg:pub.10.1007/bf01331938 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035156962
105 https://doi.org/10.1007/bf01331938
106 rdf:type schema:CreativeWork
107 sg:pub.10.1038/nphys1915 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022583847
108 https://doi.org/10.1038/nphys1915
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1002/(sici)1521-3889(199811)7:4<225::aid-andp225>3.0.co;2-l schema:sameAs https://app.dimensions.ai/details/publication/pub.1013256140
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1006/aphy.2002.6254 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011814055
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/0003-4916(61)90115-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039019843
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/j.nuclphysb.2013.03.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029151315
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1070/1063-7869/44/10s/s29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036504866
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1080/00018730310001642086 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019117717
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1080/00268976.2011.552441 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046110412
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1088/1742-5468/2005/09/p09012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047474916
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1103/physrevapplied.9.044036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103695949
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1103/physrevb.43.3786 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060557485
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1103/physrevb.53.12373 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033643312
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1103/physrevb.55.1142 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021857649
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1103/physrevb.61.10267 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034267261
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1103/physrevb.83.075103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004349150
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1103/physrevb.96.195402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092484440
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1103/physreve.51.1004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060717473
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1103/physrevlett.110.147202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031336267
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1103/physrevlett.113.057003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011327318
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1103/physrevlett.115.197001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060764418
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1103/physrevlett.63.322 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060799892
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1103/physrevlett.71.3622 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038042267
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1103/physrevlett.86.268 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030223311
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1103/physrevx.3.041018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014376267
155 rdf:type schema:CreativeWork
156 https://www.grid.ac/institutes/grid.436090.8 schema:alternateName Landau Institute for Theoretical Physics
157 schema:name Condensed-matter physics Laboratory, National Research University Higher School of Economics, 101000, Moscow, Russia
158 Landau Institute for Theoretical Physics, acad. Semyonov av. 1a, 142432, Chernogolovka, Russia
159 rdf:type schema:Organization
160 https://www.grid.ac/institutes/grid.7892.4 schema:alternateName Karlsruhe Institute of Technology
161 schema:name Institut für Theorie der Kondensierten Materie, Karlsruhe Institute of Technology, D-76131, Karlsruhe, Germany
162 Institute of Nanotechnology, Karlsruhe Institute of Technology, D-76344, Eggenstein-Leopoldshafen, Germany
163 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...