Effects of electrostatic environment on the electrically triggered production of entangled photon pairs from droplet epitaxial quantum dots View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-02-07

AUTHORS

Hanz Y. Ramírez, Ying-Lin Chou, Shun-Jen Cheng

ABSTRACT

Entangled photon pair generation is a crucial task for development of quantum information based technologies, and production of entangled pairs by biexciton cascade decays in semiconductor quantum dots is so far one of the most advanced techniques to achieve it. However, its scalability toward massive implementation requires further understanding and better tuning mechanisms to suppress the fine structure splitting between polarized exciton states, which persists as a major obstacle for entanglement generation from most quantum dot samples. In this work, the influence of electrostatic environment arising from electrically biased electrodes and/or charged impurities on the fine structure splitting of GaAs/AlGaAs droplet epitaxial quantum dots is studied, by means of numerical simulations considering a realistic quantum dot confining potential and electron-hole exchange interaction within a multiband k · p framework. We find that reduction of the fine structure splitting can be substantially optimized by tilting the field and seeding impurities along the droplet elongation axis. Furthermore, our results provide evidence of how the presence of charged impurities and in-plane bias components, may account for different degrees of splitting manipulation in dots with similar shape, size and growth conditions. More... »

PAGES

1547

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-018-38044-x

DOI

http://dx.doi.org/10.1038/s41598-018-38044-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111977314

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30733483


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Quantum Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Escuela de F\u00edsica, Universidad Pedag\u00f3gica y Tecnol\u00f3gica de Colombia (UPTC), Tunja, 150003 Boyac\u00e1 Colombia", 
          "id": "http://www.grid.ac/institutes/grid.442071.4", 
          "name": [
            "Escuela de F\u00edsica, Universidad Pedag\u00f3gica y Tecnol\u00f3gica de Colombia (UPTC), Tunja, 150003 Boyac\u00e1 Colombia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ram\u00edrez", 
        "givenName": "Hanz Y.", 
        "id": "sg:person.0657302077.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0657302077.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Electrophysics, National Chiao Tung University (NCTU), Hsinchu, 30050 Taiwan Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.260539.b", 
          "name": [
            "Department of Electrophysics, National Chiao Tung University (NCTU), Hsinchu, 30050 Taiwan Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chou", 
        "givenName": "Ying-Lin", 
        "id": "sg:person.010415766522.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010415766522.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Electrophysics, National Chiao Tung University (NCTU), Hsinchu, 30050 Taiwan Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.260539.b", 
          "name": [
            "Department of Electrophysics, National Chiao Tung University (NCTU), Hsinchu, 30050 Taiwan Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cheng", 
        "givenName": "Shun-Jen", 
        "id": "sg:person.01011210773.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01011210773.40"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nphoton.2013.128", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032310521", 
          "https://doi.org/10.1038/nphoton.2013.128"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys1780", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027825930", 
          "https://doi.org/10.1038/nphys1780"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys882", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035672815", 
          "https://doi.org/10.1038/nphys882"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2017.22", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084129421", 
          "https://doi.org/10.1038/nnano.2017.22"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms1657", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013256381", 
          "https://doi.org/10.1038/ncomms1657"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04446", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031585885", 
          "https://doi.org/10.1038/nature04446"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-02-07", 
    "datePublishedReg": "2019-02-07", 
    "description": "Entangled photon pair generation is a crucial task for development of quantum information based technologies, and production of entangled pairs by biexciton cascade decays in semiconductor quantum dots is so far one of the most advanced techniques to achieve it. However, its scalability toward massive implementation requires further understanding and better tuning mechanisms to suppress the fine structure splitting between polarized exciton states, which persists as a major obstacle for entanglement generation from most quantum dot samples. In this work, the influence of electrostatic environment arising from electrically biased electrodes and/or charged impurities on the fine structure splitting of GaAs/AlGaAs droplet epitaxial quantum dots is studied, by means of numerical simulations considering a realistic quantum dot confining potential and electron-hole exchange interaction within a multiband k\u2009\u00b7\u2009p framework. We find that reduction of the fine structure splitting can be substantially optimized by tilting the field and seeding impurities along the droplet elongation axis. Furthermore, our results provide evidence of how the presence of charged impurities and in-plane bias components, may account for different degrees of splitting manipulation in dots with similar shape, size and growth conditions.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/s41598-018-38044-x", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "keywords": [
      "fine-structure splitting", 
      "epitaxial quantum dots", 
      "structure splitting", 
      "quantum dots", 
      "electron-hole exchange interaction", 
      "photon pair generation", 
      "GaAs/AlGaAs", 
      "droplet epitaxial quantum dots", 
      "biexciton cascade decay", 
      "semiconductor quantum dots", 
      "quantum dot samples", 
      "electrostatic environment", 
      "quantum information", 
      "entanglement generation", 
      "photon pairs", 
      "pair generation", 
      "exciton states", 
      "confining potential", 
      "cascade decays", 
      "dot samples", 
      "exchange interaction", 
      "multiband k", 
      "dots", 
      "tuning mechanism", 
      "splitting", 
      "elongation axis", 
      "impurities", 
      "numerical simulations", 
      "AlGaAs", 
      "decay", 
      "growth conditions", 
      "similar shape", 
      "advanced techniques", 
      "field", 
      "pairs", 
      "generation", 
      "state", 
      "axis", 
      "simulations", 
      "interaction", 
      "shape", 
      "electrode", 
      "manipulation", 
      "technique", 
      "potential", 
      "further understanding", 
      "samples", 
      "means", 
      "work", 
      "components", 
      "size", 
      "bias component", 
      "effect", 
      "results", 
      "mechanism", 
      "technology", 
      "presence", 
      "major obstacle", 
      "massive implementation", 
      "influence", 
      "different degrees", 
      "environment", 
      "conditions", 
      "degree", 
      "production", 
      "information", 
      "understanding", 
      "framework", 
      "scalability", 
      "evidence", 
      "crucial task", 
      "implementation", 
      "obstacles", 
      "reduction", 
      "development", 
      "task", 
      "better tuning mechanisms", 
      "most quantum dot samples", 
      "realistic quantum dot confining potential", 
      "quantum dot confining potential", 
      "dot confining potential", 
      "droplet elongation axis", 
      "plane bias components", 
      "splitting manipulation"
    ], 
    "name": "Effects of electrostatic environment on the electrically triggered production of entangled photon pairs from droplet epitaxial quantum dots", 
    "pagination": "1547", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111977314"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-018-38044-x"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30733483"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-018-38044-x", 
      "https://app.dimensions.ai/details/publication/pub.1111977314"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:45", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_805.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/s41598-018-38044-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-38044-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-38044-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-38044-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-38044-x'


 

This table displays all metadata directly associated to this object as RDF triples.

186 TRIPLES      22 PREDICATES      116 URIs      102 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-018-38044-x schema:about anzsrc-for:02
2 anzsrc-for:0206
3 schema:author N27e57879fb2b45e5a3c2fb58dc41bffc
4 schema:citation sg:pub.10.1038/nature04446
5 sg:pub.10.1038/ncomms1657
6 sg:pub.10.1038/nnano.2017.22
7 sg:pub.10.1038/nphoton.2013.128
8 sg:pub.10.1038/nphys1780
9 sg:pub.10.1038/nphys882
10 schema:datePublished 2019-02-07
11 schema:datePublishedReg 2019-02-07
12 schema:description Entangled photon pair generation is a crucial task for development of quantum information based technologies, and production of entangled pairs by biexciton cascade decays in semiconductor quantum dots is so far one of the most advanced techniques to achieve it. However, its scalability toward massive implementation requires further understanding and better tuning mechanisms to suppress the fine structure splitting between polarized exciton states, which persists as a major obstacle for entanglement generation from most quantum dot samples. In this work, the influence of electrostatic environment arising from electrically biased electrodes and/or charged impurities on the fine structure splitting of GaAs/AlGaAs droplet epitaxial quantum dots is studied, by means of numerical simulations considering a realistic quantum dot confining potential and electron-hole exchange interaction within a multiband k · p framework. We find that reduction of the fine structure splitting can be substantially optimized by tilting the field and seeding impurities along the droplet elongation axis. Furthermore, our results provide evidence of how the presence of charged impurities and in-plane bias components, may account for different degrees of splitting manipulation in dots with similar shape, size and growth conditions.
13 schema:genre article
14 schema:inLanguage en
15 schema:isAccessibleForFree true
16 schema:isPartOf N78f8f2e3d9944e9b952987e78becb16f
17 N793b84d907f94da7b72484a58404896d
18 sg:journal.1045337
19 schema:keywords AlGaAs
20 GaAs/AlGaAs
21 advanced techniques
22 axis
23 better tuning mechanisms
24 bias component
25 biexciton cascade decay
26 cascade decays
27 components
28 conditions
29 confining potential
30 crucial task
31 decay
32 degree
33 development
34 different degrees
35 dot confining potential
36 dot samples
37 dots
38 droplet elongation axis
39 droplet epitaxial quantum dots
40 effect
41 electrode
42 electron-hole exchange interaction
43 electrostatic environment
44 elongation axis
45 entanglement generation
46 environment
47 epitaxial quantum dots
48 evidence
49 exchange interaction
50 exciton states
51 field
52 fine-structure splitting
53 framework
54 further understanding
55 generation
56 growth conditions
57 implementation
58 impurities
59 influence
60 information
61 interaction
62 major obstacle
63 manipulation
64 massive implementation
65 means
66 mechanism
67 most quantum dot samples
68 multiband k
69 numerical simulations
70 obstacles
71 pair generation
72 pairs
73 photon pair generation
74 photon pairs
75 plane bias components
76 potential
77 presence
78 production
79 quantum dot confining potential
80 quantum dot samples
81 quantum dots
82 quantum information
83 realistic quantum dot confining potential
84 reduction
85 results
86 samples
87 scalability
88 semiconductor quantum dots
89 shape
90 similar shape
91 simulations
92 size
93 splitting
94 splitting manipulation
95 state
96 structure splitting
97 task
98 technique
99 technology
100 tuning mechanism
101 understanding
102 work
103 schema:name Effects of electrostatic environment on the electrically triggered production of entangled photon pairs from droplet epitaxial quantum dots
104 schema:pagination 1547
105 schema:productId N5b8ca4858f364de7b12e89618209b25c
106 N81bbb19b7dc840f6a9ff24a17ae020cc
107 N8e4269aa4ec64eddaabc6b7e78300080
108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111977314
109 https://doi.org/10.1038/s41598-018-38044-x
110 schema:sdDatePublished 2021-12-01T19:45
111 schema:sdLicense https://scigraph.springernature.com/explorer/license/
112 schema:sdPublisher Nef6115a4fc86416eae5858d025d14964
113 schema:url https://doi.org/10.1038/s41598-018-38044-x
114 sgo:license sg:explorer/license/
115 sgo:sdDataset articles
116 rdf:type schema:ScholarlyArticle
117 N27e57879fb2b45e5a3c2fb58dc41bffc rdf:first sg:person.0657302077.21
118 rdf:rest N55ef7a66e7e446f8b521034b2f8648f4
119 N55ef7a66e7e446f8b521034b2f8648f4 rdf:first sg:person.010415766522.17
120 rdf:rest N6621c19db5dd4b468a8fe819269558c5
121 N5b8ca4858f364de7b12e89618209b25c schema:name pubmed_id
122 schema:value 30733483
123 rdf:type schema:PropertyValue
124 N6621c19db5dd4b468a8fe819269558c5 rdf:first sg:person.01011210773.40
125 rdf:rest rdf:nil
126 N78f8f2e3d9944e9b952987e78becb16f schema:issueNumber 1
127 rdf:type schema:PublicationIssue
128 N793b84d907f94da7b72484a58404896d schema:volumeNumber 9
129 rdf:type schema:PublicationVolume
130 N81bbb19b7dc840f6a9ff24a17ae020cc schema:name doi
131 schema:value 10.1038/s41598-018-38044-x
132 rdf:type schema:PropertyValue
133 N8e4269aa4ec64eddaabc6b7e78300080 schema:name dimensions_id
134 schema:value pub.1111977314
135 rdf:type schema:PropertyValue
136 Nef6115a4fc86416eae5858d025d14964 schema:name Springer Nature - SN SciGraph project
137 rdf:type schema:Organization
138 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
139 schema:name Physical Sciences
140 rdf:type schema:DefinedTerm
141 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
142 schema:name Quantum Physics
143 rdf:type schema:DefinedTerm
144 sg:journal.1045337 schema:issn 2045-2322
145 schema:name Scientific Reports
146 schema:publisher Springer Nature
147 rdf:type schema:Periodical
148 sg:person.01011210773.40 schema:affiliation grid-institutes:grid.260539.b
149 schema:familyName Cheng
150 schema:givenName Shun-Jen
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01011210773.40
152 rdf:type schema:Person
153 sg:person.010415766522.17 schema:affiliation grid-institutes:grid.260539.b
154 schema:familyName Chou
155 schema:givenName Ying-Lin
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010415766522.17
157 rdf:type schema:Person
158 sg:person.0657302077.21 schema:affiliation grid-institutes:grid.442071.4
159 schema:familyName Ramírez
160 schema:givenName Hanz Y.
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0657302077.21
162 rdf:type schema:Person
163 sg:pub.10.1038/nature04446 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031585885
164 https://doi.org/10.1038/nature04446
165 rdf:type schema:CreativeWork
166 sg:pub.10.1038/ncomms1657 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013256381
167 https://doi.org/10.1038/ncomms1657
168 rdf:type schema:CreativeWork
169 sg:pub.10.1038/nnano.2017.22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084129421
170 https://doi.org/10.1038/nnano.2017.22
171 rdf:type schema:CreativeWork
172 sg:pub.10.1038/nphoton.2013.128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032310521
173 https://doi.org/10.1038/nphoton.2013.128
174 rdf:type schema:CreativeWork
175 sg:pub.10.1038/nphys1780 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027825930
176 https://doi.org/10.1038/nphys1780
177 rdf:type schema:CreativeWork
178 sg:pub.10.1038/nphys882 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035672815
179 https://doi.org/10.1038/nphys882
180 rdf:type schema:CreativeWork
181 grid-institutes:grid.260539.b schema:alternateName Department of Electrophysics, National Chiao Tung University (NCTU), Hsinchu, 30050 Taiwan Republic of China
182 schema:name Department of Electrophysics, National Chiao Tung University (NCTU), Hsinchu, 30050 Taiwan Republic of China
183 rdf:type schema:Organization
184 grid-institutes:grid.442071.4 schema:alternateName Escuela de Física, Universidad Pedagógica y Tecnológica de Colombia (UPTC), Tunja, 150003 Boyacá Colombia
185 schema:name Escuela de Física, Universidad Pedagógica y Tecnológica de Colombia (UPTC), Tunja, 150003 Boyacá Colombia
186 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...