Segmented Echo Planar Imaging Improves Detection of Subcortical Functional Connectivity Networks in the Rat Brain View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Stefano Tambalo, Giulia Scuppa, Angelo Bifone

ABSTRACT

Susceptibility artifacts in the vicinity of aural and nasal cavities result in significant signal drop-out and image distortion in echo planar imaging of the rat brain. These effects may limit the study of resting state functional connectivity in deep brain regions. Here, we explore the use of segmented EPI for resting state fMRI studies in the rat, and assess the relative merits of this method compared to single shot EPI. Sequences were evaluated in terms of signal-to-noise ratio, geometric distortions, data driven detection of resting state networks and group level correlations of time series. Multishot imaging provided improved SNR, temporal SNR and reduced geometric distortion in deep areas, while maintaining acceptable overall image quality in cortical regions. Resting state networks identified by independent component analysis were consistent across methods, but multishot EPI provided a more robust and accurate delineation of connectivity patterns involving deep regions typically affected by susceptibility artifacts. Importantly, segmented EPI showed reduced between-subject variability and stronger statistical significance of pairwise correlations at group level over the whole brain and in particular in subcortical regions. Multishot EPI may represent a valid alternative to snapshot methods in functional connectivity studies, particularly for the investigation of subcortical regions and deep gray matter nuclei. More... »

PAGES

1397

References to SciGraph publications

  • 2008-03. High resolution single-shot EPI at 7T in MAGNETIC RESONANCE MATERIALS IN PHYSICS, BIOLOGY AND MEDICINE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41598-018-37863-2

    DOI

    http://dx.doi.org/10.1038/s41598-018-37863-2

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1111911857

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30718628


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Neurosciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Italian Institute of Technology", 
              "id": "https://www.grid.ac/institutes/grid.25786.3e", 
              "name": [
                "Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, Corso Bettini 31, 38068, Rovereto, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tambalo", 
            "givenName": "Stefano", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Italian Institute of Technology", 
              "id": "https://www.grid.ac/institutes/grid.25786.3e", 
              "name": [
                "Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, Corso Bettini 31, 38068, Rovereto, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Scuppa", 
            "givenName": "Giulia", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Turin", 
              "id": "https://www.grid.ac/institutes/grid.7605.4", 
              "name": [
                "Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, Corso Bettini 31, 38068, Rovereto, Italy", 
                "Department of Molecular Biotechnologies and Health Sciences, University of Torino, Via Nizza 52, 10126, Torino, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bifone", 
            "givenName": "Angelo", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1002/mrm.1910340409", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007471430"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0119450", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008696819"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neuroimage.2011.09.088", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011106926"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10334-007-0087-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011170997", 
              "https://doi.org/10.1007/s10334-007-0087-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10334-007-0087-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011170997", 
              "https://doi.org/10.1007/s10334-007-0087-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.mri.2008.01.012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012159164"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0166-2236(02)02264-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014993915"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0166-2236(02)02264-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014993915"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/(sici)1099-1492(199706/08)10:4/5<179::aid-nbm463>3.0.co;2-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017395621"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/mrm.1910380414", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018509237"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/mrm.1910390415", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019030412"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/mrm.10655", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021901514"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neuroimage.2013.11.046", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024056730"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0730-725x(00)00127-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024460832"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/nimg.2001.1054", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025186982"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0106156", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025297109"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neuroimage.2009.03.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026480462"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1523/jneurosci.0540-15.2015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028746760"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/(sici)1522-2594(199911)42:5<952::aid-mrm16>3.0.co;2-s", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029323697"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neuroimage.2014.03.034", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035261200"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.87.24.9868", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036416873"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4103/0976-500x.72351", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042746170"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neuroimage.2006.04.214", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043297620"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1053-8119(03)00080-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044714057"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1053-8119(03)00080-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044714057"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/nimg.2002.1281", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044756117"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/nimg.2002.1281", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044756117"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/nbm.1009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049066419"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/nbm.1009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049066419"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0034626", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050495026"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/1522-2594(200012)44:6<925::aid-mrm14>3.0.co;2-m", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051474598"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/(sici)1522-2594(199902)41:2<368::aid-mrm22>3.0.co;2-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052841052"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3389/fnins.2017.00115", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084433823"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-12", 
        "datePublishedReg": "2019-12-01", 
        "description": "Susceptibility artifacts in the vicinity of aural and nasal cavities result in significant signal drop-out and image distortion in echo planar imaging of the rat brain. These effects may limit the study of resting state functional connectivity in deep brain regions. Here, we explore the use of segmented EPI for resting state fMRI studies in the rat, and assess the relative merits of this method compared to single shot EPI. Sequences were evaluated in terms of signal-to-noise ratio, geometric distortions, data driven detection of resting state networks and group level correlations of time series. Multishot imaging provided improved SNR, temporal SNR and reduced geometric distortion in deep areas, while maintaining acceptable overall image quality in cortical regions. Resting state networks identified by independent component analysis were consistent across methods, but multishot EPI provided a more robust and accurate delineation of connectivity patterns involving deep regions typically affected by susceptibility artifacts. Importantly, segmented EPI showed reduced between-subject variability and stronger statistical significance of pairwise correlations at group level over the whole brain and in particular in subcortical regions. Multishot EPI may represent a valid alternative to snapshot methods in functional connectivity studies, particularly for the investigation of subcortical regions and deep gray matter nuclei.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/s41598-018-37863-2", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.5050979", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1045337", 
            "issn": [
              "2045-2322"
            ], 
            "name": "Scientific Reports", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "9"
          }
        ], 
        "name": "Segmented Echo Planar Imaging Improves Detection of Subcortical Functional Connectivity Networks in the Rat Brain", 
        "pagination": "1397", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "6b5188c130577d5b7ca87668ba78715c6f4d64f7e93b6d16fedd1e2dc16b30ed"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30718628"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101563288"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41598-018-37863-2"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1111911857"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41598-018-37863-2", 
          "https://app.dimensions.ai/details/publication/pub.1111911857"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T09:01", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000330_0000000330/records_116350_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://www.nature.com/articles/s41598-018-37863-2"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-37863-2'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-37863-2'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-37863-2'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-37863-2'


     

    This table displays all metadata directly associated to this object as RDF triples.

    170 TRIPLES      21 PREDICATES      57 URIs      21 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41598-018-37863-2 schema:about anzsrc-for:11
    2 anzsrc-for:1109
    3 schema:author Nf02de453116949a58c9552d017b3abb0
    4 schema:citation sg:pub.10.1007/s10334-007-0087-x
    5 https://doi.org/10.1002/(sici)1099-1492(199706/08)10:4/5<179::aid-nbm463>3.0.co;2-x
    6 https://doi.org/10.1002/(sici)1522-2594(199902)41:2<368::aid-mrm22>3.0.co;2-1
    7 https://doi.org/10.1002/(sici)1522-2594(199911)42:5<952::aid-mrm16>3.0.co;2-s
    8 https://doi.org/10.1002/1522-2594(200012)44:6<925::aid-mrm14>3.0.co;2-m
    9 https://doi.org/10.1002/mrm.10655
    10 https://doi.org/10.1002/mrm.1910340409
    11 https://doi.org/10.1002/mrm.1910380414
    12 https://doi.org/10.1002/mrm.1910390415
    13 https://doi.org/10.1002/nbm.1009
    14 https://doi.org/10.1006/nimg.2001.1054
    15 https://doi.org/10.1006/nimg.2002.1281
    16 https://doi.org/10.1016/j.mri.2008.01.012
    17 https://doi.org/10.1016/j.neuroimage.2006.04.214
    18 https://doi.org/10.1016/j.neuroimage.2009.03.004
    19 https://doi.org/10.1016/j.neuroimage.2011.09.088
    20 https://doi.org/10.1016/j.neuroimage.2013.11.046
    21 https://doi.org/10.1016/j.neuroimage.2014.03.034
    22 https://doi.org/10.1016/s0166-2236(02)02264-6
    23 https://doi.org/10.1016/s0730-725x(00)00127-2
    24 https://doi.org/10.1016/s1053-8119(03)00080-6
    25 https://doi.org/10.1073/pnas.87.24.9868
    26 https://doi.org/10.1371/journal.pone.0034626
    27 https://doi.org/10.1371/journal.pone.0106156
    28 https://doi.org/10.1371/journal.pone.0119450
    29 https://doi.org/10.1523/jneurosci.0540-15.2015
    30 https://doi.org/10.3389/fnins.2017.00115
    31 https://doi.org/10.4103/0976-500x.72351
    32 schema:datePublished 2019-12
    33 schema:datePublishedReg 2019-12-01
    34 schema:description Susceptibility artifacts in the vicinity of aural and nasal cavities result in significant signal drop-out and image distortion in echo planar imaging of the rat brain. These effects may limit the study of resting state functional connectivity in deep brain regions. Here, we explore the use of segmented EPI for resting state fMRI studies in the rat, and assess the relative merits of this method compared to single shot EPI. Sequences were evaluated in terms of signal-to-noise ratio, geometric distortions, data driven detection of resting state networks and group level correlations of time series. Multishot imaging provided improved SNR, temporal SNR and reduced geometric distortion in deep areas, while maintaining acceptable overall image quality in cortical regions. Resting state networks identified by independent component analysis were consistent across methods, but multishot EPI provided a more robust and accurate delineation of connectivity patterns involving deep regions typically affected by susceptibility artifacts. Importantly, segmented EPI showed reduced between-subject variability and stronger statistical significance of pairwise correlations at group level over the whole brain and in particular in subcortical regions. Multishot EPI may represent a valid alternative to snapshot methods in functional connectivity studies, particularly for the investigation of subcortical regions and deep gray matter nuclei.
    35 schema:genre research_article
    36 schema:inLanguage en
    37 schema:isAccessibleForFree true
    38 schema:isPartOf N06774b2df2d74958a604ec62a84b96e5
    39 Nade685f26c4442a29c09dcd2c449188a
    40 sg:journal.1045337
    41 schema:name Segmented Echo Planar Imaging Improves Detection of Subcortical Functional Connectivity Networks in the Rat Brain
    42 schema:pagination 1397
    43 schema:productId N059f55d0550543d0a45641521005d87c
    44 N2255879150954160963853b759df6e4b
    45 N23095359ce3e4eaeb95075308c6ee8ef
    46 Na2895170701543d3988b501c685f3896
    47 Nbe42b7fa67fe4dec8e589739c864d075
    48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111911857
    49 https://doi.org/10.1038/s41598-018-37863-2
    50 schema:sdDatePublished 2019-04-11T09:01
    51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    52 schema:sdPublisher N9104084bee8142559cc2462f44048605
    53 schema:url https://www.nature.com/articles/s41598-018-37863-2
    54 sgo:license sg:explorer/license/
    55 sgo:sdDataset articles
    56 rdf:type schema:ScholarlyArticle
    57 N059f55d0550543d0a45641521005d87c schema:name nlm_unique_id
    58 schema:value 101563288
    59 rdf:type schema:PropertyValue
    60 N06774b2df2d74958a604ec62a84b96e5 schema:issueNumber 1
    61 rdf:type schema:PublicationIssue
    62 N2255879150954160963853b759df6e4b schema:name pubmed_id
    63 schema:value 30718628
    64 rdf:type schema:PropertyValue
    65 N23095359ce3e4eaeb95075308c6ee8ef schema:name doi
    66 schema:value 10.1038/s41598-018-37863-2
    67 rdf:type schema:PropertyValue
    68 N3a1a10022cee4969adc18377ce96d921 schema:affiliation https://www.grid.ac/institutes/grid.25786.3e
    69 schema:familyName Tambalo
    70 schema:givenName Stefano
    71 rdf:type schema:Person
    72 N786c60a978254bea87f1f9821c108b08 rdf:first Nf39c493bf40d4a06bb6db37268fed792
    73 rdf:rest Nbad77d8eb4a34f0c9276d41a30fd715c
    74 N9104084bee8142559cc2462f44048605 schema:name Springer Nature - SN SciGraph project
    75 rdf:type schema:Organization
    76 Na2895170701543d3988b501c685f3896 schema:name dimensions_id
    77 schema:value pub.1111911857
    78 rdf:type schema:PropertyValue
    79 Nade685f26c4442a29c09dcd2c449188a schema:volumeNumber 9
    80 rdf:type schema:PublicationVolume
    81 Nbad77d8eb4a34f0c9276d41a30fd715c rdf:first Nd2346328b4c04511986dbca5e44b07c5
    82 rdf:rest rdf:nil
    83 Nbe42b7fa67fe4dec8e589739c864d075 schema:name readcube_id
    84 schema:value 6b5188c130577d5b7ca87668ba78715c6f4d64f7e93b6d16fedd1e2dc16b30ed
    85 rdf:type schema:PropertyValue
    86 Nd2346328b4c04511986dbca5e44b07c5 schema:affiliation https://www.grid.ac/institutes/grid.7605.4
    87 schema:familyName Bifone
    88 schema:givenName Angelo
    89 rdf:type schema:Person
    90 Nf02de453116949a58c9552d017b3abb0 rdf:first N3a1a10022cee4969adc18377ce96d921
    91 rdf:rest N786c60a978254bea87f1f9821c108b08
    92 Nf39c493bf40d4a06bb6db37268fed792 schema:affiliation https://www.grid.ac/institutes/grid.25786.3e
    93 schema:familyName Scuppa
    94 schema:givenName Giulia
    95 rdf:type schema:Person
    96 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    97 schema:name Medical and Health Sciences
    98 rdf:type schema:DefinedTerm
    99 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
    100 schema:name Neurosciences
    101 rdf:type schema:DefinedTerm
    102 sg:grant.5050979 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-018-37863-2
    103 rdf:type schema:MonetaryGrant
    104 sg:journal.1045337 schema:issn 2045-2322
    105 schema:name Scientific Reports
    106 rdf:type schema:Periodical
    107 sg:pub.10.1007/s10334-007-0087-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1011170997
    108 https://doi.org/10.1007/s10334-007-0087-x
    109 rdf:type schema:CreativeWork
    110 https://doi.org/10.1002/(sici)1099-1492(199706/08)10:4/5<179::aid-nbm463>3.0.co;2-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1017395621
    111 rdf:type schema:CreativeWork
    112 https://doi.org/10.1002/(sici)1522-2594(199902)41:2<368::aid-mrm22>3.0.co;2-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052841052
    113 rdf:type schema:CreativeWork
    114 https://doi.org/10.1002/(sici)1522-2594(199911)42:5<952::aid-mrm16>3.0.co;2-s schema:sameAs https://app.dimensions.ai/details/publication/pub.1029323697
    115 rdf:type schema:CreativeWork
    116 https://doi.org/10.1002/1522-2594(200012)44:6<925::aid-mrm14>3.0.co;2-m schema:sameAs https://app.dimensions.ai/details/publication/pub.1051474598
    117 rdf:type schema:CreativeWork
    118 https://doi.org/10.1002/mrm.10655 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021901514
    119 rdf:type schema:CreativeWork
    120 https://doi.org/10.1002/mrm.1910340409 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007471430
    121 rdf:type schema:CreativeWork
    122 https://doi.org/10.1002/mrm.1910380414 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018509237
    123 rdf:type schema:CreativeWork
    124 https://doi.org/10.1002/mrm.1910390415 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019030412
    125 rdf:type schema:CreativeWork
    126 https://doi.org/10.1002/nbm.1009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049066419
    127 rdf:type schema:CreativeWork
    128 https://doi.org/10.1006/nimg.2001.1054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025186982
    129 rdf:type schema:CreativeWork
    130 https://doi.org/10.1006/nimg.2002.1281 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044756117
    131 rdf:type schema:CreativeWork
    132 https://doi.org/10.1016/j.mri.2008.01.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012159164
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.1016/j.neuroimage.2006.04.214 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043297620
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.1016/j.neuroimage.2009.03.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026480462
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1016/j.neuroimage.2011.09.088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011106926
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.1016/j.neuroimage.2013.11.046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024056730
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.1016/j.neuroimage.2014.03.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035261200
    143 rdf:type schema:CreativeWork
    144 https://doi.org/10.1016/s0166-2236(02)02264-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014993915
    145 rdf:type schema:CreativeWork
    146 https://doi.org/10.1016/s0730-725x(00)00127-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024460832
    147 rdf:type schema:CreativeWork
    148 https://doi.org/10.1016/s1053-8119(03)00080-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044714057
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.1073/pnas.87.24.9868 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036416873
    151 rdf:type schema:CreativeWork
    152 https://doi.org/10.1371/journal.pone.0034626 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050495026
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.1371/journal.pone.0106156 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025297109
    155 rdf:type schema:CreativeWork
    156 https://doi.org/10.1371/journal.pone.0119450 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008696819
    157 rdf:type schema:CreativeWork
    158 https://doi.org/10.1523/jneurosci.0540-15.2015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028746760
    159 rdf:type schema:CreativeWork
    160 https://doi.org/10.3389/fnins.2017.00115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084433823
    161 rdf:type schema:CreativeWork
    162 https://doi.org/10.4103/0976-500x.72351 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042746170
    163 rdf:type schema:CreativeWork
    164 https://www.grid.ac/institutes/grid.25786.3e schema:alternateName Italian Institute of Technology
    165 schema:name Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, Corso Bettini 31, 38068, Rovereto, Italy
    166 rdf:type schema:Organization
    167 https://www.grid.ac/institutes/grid.7605.4 schema:alternateName University of Turin
    168 schema:name Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, Corso Bettini 31, 38068, Rovereto, Italy
    169 Department of Molecular Biotechnologies and Health Sciences, University of Torino, Via Nizza 52, 10126, Torino, Italy
    170 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...