Mathematical Structures in Group Decision-Making on Resource Allocation Distributions View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Noah E. Friedkin, Anton V. Proskurnikov, Wenjun Mei, Francesco Bullo

ABSTRACT

Optimal decisions on the distribution of finite resources are explicitly structured by mathematical models that specify relevant variables, constraints, and objectives. Here we report analysis and evidence that implicit mathematical structures are also involved in group decision-making on resource allocation distributions under conditions of uncertainty that disallow formal optimization. A group's array of initial distribution preferences automatically sets up a geometric decision space of alternative resource distributions. Weighted averaging mechanisms of interpersonal influence reduce the heterogeneity of the group's initial preferences on a suitable distribution. A model of opinion formation based on weighted averaging predicts a distribution that is a feasible point in the group's implicit initial decision space. More... »

PAGES

1377

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-018-37847-2

DOI

http://dx.doi.org/10.1038/s41598-018-37847-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111917721

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30718652


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of California, Santa Barbara", 
          "id": "https://www.grid.ac/institutes/grid.133342.4", 
          "name": [
            "University of California Santa Barbara, Department of Sociology and Center for Control, Dynamical-Systems and Computation, 93106, Santa Barbara, California, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Friedkin", 
        "givenName": "Noah E.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Problems of Mechanical Engineering", 
          "id": "https://www.grid.ac/institutes/grid.462405.1", 
          "name": [
            "Delft University of Technology, Delft Center for Systems and Control, 2628 CD, Delft, Netherlands", 
            "Institute for Problems in Mechanical Engineering of the Russian Academy of Sciences, 199178, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Proskurnikov", 
        "givenName": "Anton V.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Swiss Federal Institute of Technology in Zurich", 
          "id": "https://www.grid.ac/institutes/grid.5801.c", 
          "name": [
            "ETH Z\u00fcrich, Automatic Control Laboratory, 8092, Zurich, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mei", 
        "givenName": "Wenjun", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California, Santa Barbara", 
          "id": "https://www.grid.ac/institutes/grid.133342.4", 
          "name": [
            "University of California Santa Barbara, Department of Mechanical Engineering and Center for Control, Dynamical-Systems and Computation, 93106, Santa Barbara, California, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bullo", 
        "givenName": "Francesco", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-540-75261-5_15", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004776897", 
          "https://doi.org/10.1007/978-3-540-75261-5_15"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-75261-5_15", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004776897", 
          "https://doi.org/10.1007/978-3-540-75261-5_15"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1185718", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009338801"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1185718", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009338801"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3182/20130925-2-de-4044.00024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010157692"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-88908-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010323691", 
          "https://doi.org/10.1007/978-3-540-88908-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-88908-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010323691", 
          "https://doi.org/10.1007/978-3-540-88908-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/973677", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016713822"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1421692112", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017584933"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0003122411428153", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023995387"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0003122411428153", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023995387"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/xhp0000101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025381097"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1217220110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028216569"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4018/jkss.2011100106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028408166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4018/jkss.2011100106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028408166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.geb.2014.06.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031575831"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.geb.2014.06.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031575831"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.geb.2014.06.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031575831"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.geb.2014.06.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031575831"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/976178", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041444410"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/h0046123", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047400062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0081195", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049728105"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1974.10480137", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058301222"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.81.036109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060740267"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.81.036109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060740267"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.81.591", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839683"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.81.591", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839683"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tac.2016.2613905", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061480280"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcns.2014.2367571", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061549124"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.aag2624", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062668361"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.15195/v3.a20", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067606338"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1917768", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069643935"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2657407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070049033"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.arcontrol.2017.03.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084059832"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41562-017-0117", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085600463", 
          "https://doi.org/10.1038/s41562-017-0117"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41562-017-0117", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085600463", 
          "https://doi.org/10.1038/s41562-017-0117"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1710603114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092153453"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ifacol.2017.08.1424", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092294121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1201/9781315183176", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095906961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511976735", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098712058"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41562-017-0273-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100320508", 
          "https://doi.org/10.1038/s41562-017-0273-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1231810", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1102648418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.arcontrol.2018.03.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103191515"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "Optimal decisions on the distribution of finite resources are explicitly structured by mathematical models that specify relevant variables, constraints, and objectives. Here we report analysis and evidence that implicit mathematical structures are also involved in group decision-making on resource allocation distributions under conditions of uncertainty that disallow formal optimization. A group's array of initial distribution preferences automatically sets up a geometric decision space of alternative resource distributions. Weighted averaging mechanisms of interpersonal influence reduce the heterogeneity of the group's initial preferences on a suitable distribution. A model of opinion formation based on weighted averaging predicts a distribution that is a feasible point in the group's implicit initial decision space.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-018-37847-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "Mathematical Structures in Group Decision-Making on Resource Allocation Distributions", 
    "pagination": "1377", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "dfb16e3139025660e26cd74afcf290d80a7d54f98b48d894cfdefd6da5cfe7eb"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30718652"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-018-37847-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111917721"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-018-37847-2", 
      "https://app.dimensions.ai/details/publication/pub.1111917721"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:01", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000330_0000000330/records_116355_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-018-37847-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-37847-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-37847-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-37847-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-37847-2'


 

This table displays all metadata directly associated to this object as RDF triples.

193 TRIPLES      21 PREDICATES      61 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-018-37847-2 schema:about anzsrc-for:01
2 anzsrc-for:0102
3 schema:author Ne2fee4cebbcd49b093e44a83b53a324f
4 schema:citation sg:pub.10.1007/978-3-540-75261-5_15
5 sg:pub.10.1007/978-3-540-88908-3
6 sg:pub.10.1038/s41562-017-0117
7 sg:pub.10.1038/s41562-017-0273-4
8 https://doi.org/10.1016/j.arcontrol.2017.03.002
9 https://doi.org/10.1016/j.arcontrol.2018.03.005
10 https://doi.org/10.1016/j.geb.2014.06.004
11 https://doi.org/10.1016/j.ifacol.2017.08.1424
12 https://doi.org/10.1017/cbo9780511976735
13 https://doi.org/10.1037/h0046123
14 https://doi.org/10.1037/xhp0000101
15 https://doi.org/10.1073/pnas.1217220110
16 https://doi.org/10.1073/pnas.1421692112
17 https://doi.org/10.1073/pnas.1710603114
18 https://doi.org/10.1080/01621459.1974.10480137
19 https://doi.org/10.1103/physreve.81.036109
20 https://doi.org/10.1103/revmodphys.81.591
21 https://doi.org/10.1109/tac.2016.2613905
22 https://doi.org/10.1109/tcns.2014.2367571
23 https://doi.org/10.1126/science.1185718
24 https://doi.org/10.1126/science.aag2624
25 https://doi.org/10.1177/0003122411428153
26 https://doi.org/10.1201/9781315183176
27 https://doi.org/10.1371/journal.pone.0081195
28 https://doi.org/10.15195/v3.a20
29 https://doi.org/10.2307/1231810
30 https://doi.org/10.2307/1917768
31 https://doi.org/10.2307/2657407
32 https://doi.org/10.2307/973677
33 https://doi.org/10.2307/976178
34 https://doi.org/10.3182/20130925-2-de-4044.00024
35 https://doi.org/10.4018/jkss.2011100106
36 schema:datePublished 2019-12
37 schema:datePublishedReg 2019-12-01
38 schema:description Optimal decisions on the distribution of finite resources are explicitly structured by mathematical models that specify relevant variables, constraints, and objectives. Here we report analysis and evidence that implicit mathematical structures are also involved in group decision-making on resource allocation distributions under conditions of uncertainty that disallow formal optimization. A group's array of initial distribution preferences automatically sets up a geometric decision space of alternative resource distributions. Weighted averaging mechanisms of interpersonal influence reduce the heterogeneity of the group's initial preferences on a suitable distribution. A model of opinion formation based on weighted averaging predicts a distribution that is a feasible point in the group's implicit initial decision space.
39 schema:genre research_article
40 schema:inLanguage en
41 schema:isAccessibleForFree true
42 schema:isPartOf N232918f935d44fc1a8c08bf910ea8a1a
43 Naecfce9d8e114e05804880eae303ea6a
44 sg:journal.1045337
45 schema:name Mathematical Structures in Group Decision-Making on Resource Allocation Distributions
46 schema:pagination 1377
47 schema:productId N012b37d961964610a3792ffbc5af17d0
48 N676091c656124f9397b542aef0f69441
49 Na2964265970d42c5ab1656d4a17b4fbd
50 Na36d13c1168f4b9eb1e3bf672dcf00c6
51 Nc8e4bafaf1404c8aa465541b18407231
52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111917721
53 https://doi.org/10.1038/s41598-018-37847-2
54 schema:sdDatePublished 2019-04-11T09:01
55 schema:sdLicense https://scigraph.springernature.com/explorer/license/
56 schema:sdPublisher N98202f729b1a4b828b215003bfce841f
57 schema:url https://www.nature.com/articles/s41598-018-37847-2
58 sgo:license sg:explorer/license/
59 sgo:sdDataset articles
60 rdf:type schema:ScholarlyArticle
61 N012b37d961964610a3792ffbc5af17d0 schema:name doi
62 schema:value 10.1038/s41598-018-37847-2
63 rdf:type schema:PropertyValue
64 N0cd195af47c3446d8698f9bcef842ecd rdf:first N3d1edde78a4c4229b63972ed1d42d903
65 rdf:rest N7e196817b8d9402790448c2ef98243a9
66 N232918f935d44fc1a8c08bf910ea8a1a schema:issueNumber 1
67 rdf:type schema:PublicationIssue
68 N27ae16cd72c745d7b66e1e80a28b30b5 schema:affiliation https://www.grid.ac/institutes/grid.133342.4
69 schema:familyName Bullo
70 schema:givenName Francesco
71 rdf:type schema:Person
72 N3d1edde78a4c4229b63972ed1d42d903 schema:affiliation https://www.grid.ac/institutes/grid.462405.1
73 schema:familyName Proskurnikov
74 schema:givenName Anton V.
75 rdf:type schema:Person
76 N676091c656124f9397b542aef0f69441 schema:name pubmed_id
77 schema:value 30718652
78 rdf:type schema:PropertyValue
79 N7e196817b8d9402790448c2ef98243a9 rdf:first Nfd5dd5b6340e42ef8ca01e493d32700a
80 rdf:rest Neb3b999bde444c058278f9fc362a6a3c
81 N98202f729b1a4b828b215003bfce841f schema:name Springer Nature - SN SciGraph project
82 rdf:type schema:Organization
83 Na2964265970d42c5ab1656d4a17b4fbd schema:name nlm_unique_id
84 schema:value 101563288
85 rdf:type schema:PropertyValue
86 Na36d13c1168f4b9eb1e3bf672dcf00c6 schema:name dimensions_id
87 schema:value pub.1111917721
88 rdf:type schema:PropertyValue
89 Na4d521605858438ba2d47f763252cd31 schema:affiliation https://www.grid.ac/institutes/grid.133342.4
90 schema:familyName Friedkin
91 schema:givenName Noah E.
92 rdf:type schema:Person
93 Naecfce9d8e114e05804880eae303ea6a schema:volumeNumber 9
94 rdf:type schema:PublicationVolume
95 Nc8e4bafaf1404c8aa465541b18407231 schema:name readcube_id
96 schema:value dfb16e3139025660e26cd74afcf290d80a7d54f98b48d894cfdefd6da5cfe7eb
97 rdf:type schema:PropertyValue
98 Ne2fee4cebbcd49b093e44a83b53a324f rdf:first Na4d521605858438ba2d47f763252cd31
99 rdf:rest N0cd195af47c3446d8698f9bcef842ecd
100 Neb3b999bde444c058278f9fc362a6a3c rdf:first N27ae16cd72c745d7b66e1e80a28b30b5
101 rdf:rest rdf:nil
102 Nfd5dd5b6340e42ef8ca01e493d32700a schema:affiliation https://www.grid.ac/institutes/grid.5801.c
103 schema:familyName Mei
104 schema:givenName Wenjun
105 rdf:type schema:Person
106 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
107 schema:name Mathematical Sciences
108 rdf:type schema:DefinedTerm
109 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
110 schema:name Applied Mathematics
111 rdf:type schema:DefinedTerm
112 sg:journal.1045337 schema:issn 2045-2322
113 schema:name Scientific Reports
114 rdf:type schema:Periodical
115 sg:pub.10.1007/978-3-540-75261-5_15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004776897
116 https://doi.org/10.1007/978-3-540-75261-5_15
117 rdf:type schema:CreativeWork
118 sg:pub.10.1007/978-3-540-88908-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010323691
119 https://doi.org/10.1007/978-3-540-88908-3
120 rdf:type schema:CreativeWork
121 sg:pub.10.1038/s41562-017-0117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085600463
122 https://doi.org/10.1038/s41562-017-0117
123 rdf:type schema:CreativeWork
124 sg:pub.10.1038/s41562-017-0273-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100320508
125 https://doi.org/10.1038/s41562-017-0273-4
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/j.arcontrol.2017.03.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084059832
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/j.arcontrol.2018.03.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103191515
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/j.geb.2014.06.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031575831
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/j.ifacol.2017.08.1424 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092294121
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1017/cbo9780511976735 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098712058
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1037/h0046123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047400062
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1037/xhp0000101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025381097
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1073/pnas.1217220110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028216569
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1073/pnas.1421692112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017584933
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1073/pnas.1710603114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092153453
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1080/01621459.1974.10480137 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058301222
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1103/physreve.81.036109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060740267
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1103/revmodphys.81.591 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839683
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1109/tac.2016.2613905 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061480280
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1109/tcns.2014.2367571 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061549124
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1126/science.1185718 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009338801
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1126/science.aag2624 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062668361
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1177/0003122411428153 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023995387
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1201/9781315183176 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095906961
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1371/journal.pone.0081195 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049728105
166 rdf:type schema:CreativeWork
167 https://doi.org/10.15195/v3.a20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067606338
168 rdf:type schema:CreativeWork
169 https://doi.org/10.2307/1231810 schema:sameAs https://app.dimensions.ai/details/publication/pub.1102648418
170 rdf:type schema:CreativeWork
171 https://doi.org/10.2307/1917768 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069643935
172 rdf:type schema:CreativeWork
173 https://doi.org/10.2307/2657407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070049033
174 rdf:type schema:CreativeWork
175 https://doi.org/10.2307/973677 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016713822
176 rdf:type schema:CreativeWork
177 https://doi.org/10.2307/976178 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041444410
178 rdf:type schema:CreativeWork
179 https://doi.org/10.3182/20130925-2-de-4044.00024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010157692
180 rdf:type schema:CreativeWork
181 https://doi.org/10.4018/jkss.2011100106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028408166
182 rdf:type schema:CreativeWork
183 https://www.grid.ac/institutes/grid.133342.4 schema:alternateName University of California, Santa Barbara
184 schema:name University of California Santa Barbara, Department of Mechanical Engineering and Center for Control, Dynamical-Systems and Computation, 93106, Santa Barbara, California, USA
185 University of California Santa Barbara, Department of Sociology and Center for Control, Dynamical-Systems and Computation, 93106, Santa Barbara, California, USA
186 rdf:type schema:Organization
187 https://www.grid.ac/institutes/grid.462405.1 schema:alternateName Institute of Problems of Mechanical Engineering
188 schema:name Delft University of Technology, Delft Center for Systems and Control, 2628 CD, Delft, Netherlands
189 Institute for Problems in Mechanical Engineering of the Russian Academy of Sciences, 199178, St. Petersburg, Russia
190 rdf:type schema:Organization
191 https://www.grid.ac/institutes/grid.5801.c schema:alternateName Swiss Federal Institute of Technology in Zurich
192 schema:name ETH Zürich, Automatic Control Laboratory, 8092, Zurich, Switzerland
193 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...