Ontology type: schema:ScholarlyArticle Open Access: True
2019-12
AUTHORSNoah E. Friedkin, Anton V. Proskurnikov, Wenjun Mei, Francesco Bullo
ABSTRACTOptimal decisions on the distribution of finite resources are explicitly structured by mathematical models that specify relevant variables, constraints, and objectives. Here we report analysis and evidence that implicit mathematical structures are also involved in group decision-making on resource allocation distributions under conditions of uncertainty that disallow formal optimization. A group's array of initial distribution preferences automatically sets up a geometric decision space of alternative resource distributions. Weighted averaging mechanisms of interpersonal influence reduce the heterogeneity of the group's initial preferences on a suitable distribution. A model of opinion formation based on weighted averaging predicts a distribution that is a feasible point in the group's implicit initial decision space. More... »
PAGES1377
http://scigraph.springernature.com/pub.10.1038/s41598-018-37847-2
DOIhttp://dx.doi.org/10.1038/s41598-018-37847-2
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1111917721
PUBMEDhttps://www.ncbi.nlm.nih.gov/pubmed/30718652
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Applied Mathematics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "University of California, Santa Barbara",
"id": "https://www.grid.ac/institutes/grid.133342.4",
"name": [
"University of California Santa Barbara, Department of Sociology and Center for Control, Dynamical-Systems and Computation, 93106, Santa Barbara, California, USA"
],
"type": "Organization"
},
"familyName": "Friedkin",
"givenName": "Noah E.",
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institute of Problems of Mechanical Engineering",
"id": "https://www.grid.ac/institutes/grid.462405.1",
"name": [
"Delft University of Technology, Delft Center for Systems and Control, 2628 CD, Delft, Netherlands",
"Institute for Problems in Mechanical Engineering of the Russian Academy of Sciences, 199178, St. Petersburg, Russia"
],
"type": "Organization"
},
"familyName": "Proskurnikov",
"givenName": "Anton V.",
"type": "Person"
},
{
"affiliation": {
"alternateName": "Swiss Federal Institute of Technology in Zurich",
"id": "https://www.grid.ac/institutes/grid.5801.c",
"name": [
"ETH Z\u00fcrich, Automatic Control Laboratory, 8092, Zurich, Switzerland"
],
"type": "Organization"
},
"familyName": "Mei",
"givenName": "Wenjun",
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of California, Santa Barbara",
"id": "https://www.grid.ac/institutes/grid.133342.4",
"name": [
"University of California Santa Barbara, Department of Mechanical Engineering and Center for Control, Dynamical-Systems and Computation, 93106, Santa Barbara, California, USA"
],
"type": "Organization"
},
"familyName": "Bullo",
"givenName": "Francesco",
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/978-3-540-75261-5_15",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1004776897",
"https://doi.org/10.1007/978-3-540-75261-5_15"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-540-75261-5_15",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1004776897",
"https://doi.org/10.1007/978-3-540-75261-5_15"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1126/science.1185718",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1009338801"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1126/science.1185718",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1009338801"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.3182/20130925-2-de-4044.00024",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1010157692"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-540-88908-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1010323691",
"https://doi.org/10.1007/978-3-540-88908-3"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-540-88908-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1010323691",
"https://doi.org/10.1007/978-3-540-88908-3"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.2307/973677",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1016713822"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1073/pnas.1421692112",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1017584933"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1177/0003122411428153",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1023995387"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1177/0003122411428153",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1023995387"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1037/xhp0000101",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1025381097"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1073/pnas.1217220110",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1028216569"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.4018/jkss.2011100106",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1028408166"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.4018/jkss.2011100106",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1028408166"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.geb.2014.06.004",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1031575831"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.geb.2014.06.004",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1031575831"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.geb.2014.06.004",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1031575831"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.geb.2014.06.004",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1031575831"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.2307/976178",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1041444410"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1037/h0046123",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1047400062"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1371/journal.pone.0081195",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1049728105"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1080/01621459.1974.10480137",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1058301222"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physreve.81.036109",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060740267"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physreve.81.036109",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060740267"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/revmodphys.81.591",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060839683"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/revmodphys.81.591",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060839683"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/tac.2016.2613905",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061480280"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/tcns.2014.2367571",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061549124"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1126/science.aag2624",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1062668361"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.15195/v3.a20",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1067606338"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.2307/1917768",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1069643935"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.2307/2657407",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1070049033"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.arcontrol.2017.03.002",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1084059832"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/s41562-017-0117",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1085600463",
"https://doi.org/10.1038/s41562-017-0117"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/s41562-017-0117",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1085600463",
"https://doi.org/10.1038/s41562-017-0117"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1073/pnas.1710603114",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1092153453"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.ifacol.2017.08.1424",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1092294121"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1201/9781315183176",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1095906961"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1017/cbo9780511976735",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1098712058"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/s41562-017-0273-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1100320508",
"https://doi.org/10.1038/s41562-017-0273-4"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.2307/1231810",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1102648418"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.arcontrol.2018.03.005",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1103191515"
],
"type": "CreativeWork"
}
],
"datePublished": "2019-12",
"datePublishedReg": "2019-12-01",
"description": "Optimal decisions on the distribution of finite resources are explicitly structured by mathematical models that specify relevant variables, constraints, and objectives. Here we report analysis and evidence that implicit mathematical structures are also involved in group decision-making on resource allocation distributions under conditions of uncertainty that disallow formal optimization. A group's array of initial distribution preferences automatically sets up a geometric decision space of alternative resource distributions. Weighted averaging mechanisms of interpersonal influence reduce the heterogeneity of the group's initial preferences on a suitable distribution. A model of opinion formation based on weighted averaging predicts a distribution that is a feasible point in the group's implicit initial decision space.",
"genre": "research_article",
"id": "sg:pub.10.1038/s41598-018-37847-2",
"inLanguage": [
"en"
],
"isAccessibleForFree": true,
"isPartOf": [
{
"id": "sg:journal.1045337",
"issn": [
"2045-2322"
],
"name": "Scientific Reports",
"type": "Periodical"
},
{
"issueNumber": "1",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "9"
}
],
"name": "Mathematical Structures in Group Decision-Making on Resource Allocation Distributions",
"pagination": "1377",
"productId": [
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"dfb16e3139025660e26cd74afcf290d80a7d54f98b48d894cfdefd6da5cfe7eb"
]
},
{
"name": "pubmed_id",
"type": "PropertyValue",
"value": [
"30718652"
]
},
{
"name": "nlm_unique_id",
"type": "PropertyValue",
"value": [
"101563288"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1038/s41598-018-37847-2"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1111917721"
]
}
],
"sameAs": [
"https://doi.org/10.1038/s41598-018-37847-2",
"https://app.dimensions.ai/details/publication/pub.1111917721"
],
"sdDataset": "articles",
"sdDatePublished": "2019-04-11T09:01",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000330_0000000330/records_116355_00000000.jsonl",
"type": "ScholarlyArticle",
"url": "https://www.nature.com/articles/s41598-018-37847-2"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-37847-2'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-37847-2'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-37847-2'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-37847-2'
This table displays all metadata directly associated to this object as RDF triples.
193 TRIPLES
21 PREDICATES
61 URIs
21 LITERALS
9 BLANK NODES