Mathematical Structures in Group Decision-Making on Resource Allocation Distributions View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Noah E. Friedkin, Anton V. Proskurnikov, Wenjun Mei, Francesco Bullo

ABSTRACT

Optimal decisions on the distribution of finite resources are explicitly structured by mathematical models that specify relevant variables, constraints, and objectives. Here we report analysis and evidence that implicit mathematical structures are also involved in group decision-making on resource allocation distributions under conditions of uncertainty that disallow formal optimization. A group's array of initial distribution preferences automatically sets up a geometric decision space of alternative resource distributions. Weighted averaging mechanisms of interpersonal influence reduce the heterogeneity of the group's initial preferences on a suitable distribution. A model of opinion formation based on weighted averaging predicts a distribution that is a feasible point in the group's implicit initial decision space. More... »

PAGES

1377

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-018-37847-2

DOI

http://dx.doi.org/10.1038/s41598-018-37847-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111917721

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30718652


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of California, Santa Barbara", 
          "id": "https://www.grid.ac/institutes/grid.133342.4", 
          "name": [
            "University of California Santa Barbara, Department of Sociology and Center for Control, Dynamical-Systems and Computation, 93106, Santa Barbara, California, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Friedkin", 
        "givenName": "Noah E.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Problems of Mechanical Engineering", 
          "id": "https://www.grid.ac/institutes/grid.462405.1", 
          "name": [
            "Delft University of Technology, Delft Center for Systems and Control, 2628 CD, Delft, Netherlands", 
            "Institute for Problems in Mechanical Engineering of the Russian Academy of Sciences, 199178, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Proskurnikov", 
        "givenName": "Anton V.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Swiss Federal Institute of Technology in Zurich", 
          "id": "https://www.grid.ac/institutes/grid.5801.c", 
          "name": [
            "ETH Z\u00fcrich, Automatic Control Laboratory, 8092, Zurich, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mei", 
        "givenName": "Wenjun", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California, Santa Barbara", 
          "id": "https://www.grid.ac/institutes/grid.133342.4", 
          "name": [
            "University of California Santa Barbara, Department of Mechanical Engineering and Center for Control, Dynamical-Systems and Computation, 93106, Santa Barbara, California, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bullo", 
        "givenName": "Francesco", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-540-75261-5_15", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004776897", 
          "https://doi.org/10.1007/978-3-540-75261-5_15"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-75261-5_15", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004776897", 
          "https://doi.org/10.1007/978-3-540-75261-5_15"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1185718", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009338801"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1185718", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009338801"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3182/20130925-2-de-4044.00024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010157692"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-88908-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010323691", 
          "https://doi.org/10.1007/978-3-540-88908-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-88908-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010323691", 
          "https://doi.org/10.1007/978-3-540-88908-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/973677", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016713822"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1421692112", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017584933"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0003122411428153", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023995387"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0003122411428153", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023995387"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/xhp0000101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025381097"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1217220110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028216569"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4018/jkss.2011100106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028408166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4018/jkss.2011100106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028408166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.geb.2014.06.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031575831"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.geb.2014.06.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031575831"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.geb.2014.06.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031575831"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.geb.2014.06.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031575831"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/976178", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041444410"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/h0046123", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047400062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0081195", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049728105"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1974.10480137", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058301222"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.81.036109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060740267"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.81.036109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060740267"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.81.591", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839683"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.81.591", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839683"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tac.2016.2613905", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061480280"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcns.2014.2367571", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061549124"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.aag2624", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062668361"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.15195/v3.a20", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067606338"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1917768", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069643935"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2657407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070049033"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.arcontrol.2017.03.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084059832"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41562-017-0117", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085600463", 
          "https://doi.org/10.1038/s41562-017-0117"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41562-017-0117", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085600463", 
          "https://doi.org/10.1038/s41562-017-0117"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1710603114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092153453"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ifacol.2017.08.1424", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092294121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1201/9781315183176", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095906961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511976735", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098712058"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41562-017-0273-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100320508", 
          "https://doi.org/10.1038/s41562-017-0273-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1231810", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1102648418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.arcontrol.2018.03.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103191515"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "Optimal decisions on the distribution of finite resources are explicitly structured by mathematical models that specify relevant variables, constraints, and objectives. Here we report analysis and evidence that implicit mathematical structures are also involved in group decision-making on resource allocation distributions under conditions of uncertainty that disallow formal optimization. A group's array of initial distribution preferences automatically sets up a geometric decision space of alternative resource distributions. Weighted averaging mechanisms of interpersonal influence reduce the heterogeneity of the group's initial preferences on a suitable distribution. A model of opinion formation based on weighted averaging predicts a distribution that is a feasible point in the group's implicit initial decision space.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-018-37847-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "Mathematical Structures in Group Decision-Making on Resource Allocation Distributions", 
    "pagination": "1377", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "dfb16e3139025660e26cd74afcf290d80a7d54f98b48d894cfdefd6da5cfe7eb"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30718652"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-018-37847-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111917721"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-018-37847-2", 
      "https://app.dimensions.ai/details/publication/pub.1111917721"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:01", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000330_0000000330/records_116355_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-018-37847-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-37847-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-37847-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-37847-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-37847-2'


 

This table displays all metadata directly associated to this object as RDF triples.

193 TRIPLES      21 PREDICATES      61 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-018-37847-2 schema:about anzsrc-for:01
2 anzsrc-for:0102
3 schema:author N20c69de9fa2542dcb73c31bfa850b6f0
4 schema:citation sg:pub.10.1007/978-3-540-75261-5_15
5 sg:pub.10.1007/978-3-540-88908-3
6 sg:pub.10.1038/s41562-017-0117
7 sg:pub.10.1038/s41562-017-0273-4
8 https://doi.org/10.1016/j.arcontrol.2017.03.002
9 https://doi.org/10.1016/j.arcontrol.2018.03.005
10 https://doi.org/10.1016/j.geb.2014.06.004
11 https://doi.org/10.1016/j.ifacol.2017.08.1424
12 https://doi.org/10.1017/cbo9780511976735
13 https://doi.org/10.1037/h0046123
14 https://doi.org/10.1037/xhp0000101
15 https://doi.org/10.1073/pnas.1217220110
16 https://doi.org/10.1073/pnas.1421692112
17 https://doi.org/10.1073/pnas.1710603114
18 https://doi.org/10.1080/01621459.1974.10480137
19 https://doi.org/10.1103/physreve.81.036109
20 https://doi.org/10.1103/revmodphys.81.591
21 https://doi.org/10.1109/tac.2016.2613905
22 https://doi.org/10.1109/tcns.2014.2367571
23 https://doi.org/10.1126/science.1185718
24 https://doi.org/10.1126/science.aag2624
25 https://doi.org/10.1177/0003122411428153
26 https://doi.org/10.1201/9781315183176
27 https://doi.org/10.1371/journal.pone.0081195
28 https://doi.org/10.15195/v3.a20
29 https://doi.org/10.2307/1231810
30 https://doi.org/10.2307/1917768
31 https://doi.org/10.2307/2657407
32 https://doi.org/10.2307/973677
33 https://doi.org/10.2307/976178
34 https://doi.org/10.3182/20130925-2-de-4044.00024
35 https://doi.org/10.4018/jkss.2011100106
36 schema:datePublished 2019-12
37 schema:datePublishedReg 2019-12-01
38 schema:description Optimal decisions on the distribution of finite resources are explicitly structured by mathematical models that specify relevant variables, constraints, and objectives. Here we report analysis and evidence that implicit mathematical structures are also involved in group decision-making on resource allocation distributions under conditions of uncertainty that disallow formal optimization. A group's array of initial distribution preferences automatically sets up a geometric decision space of alternative resource distributions. Weighted averaging mechanisms of interpersonal influence reduce the heterogeneity of the group's initial preferences on a suitable distribution. A model of opinion formation based on weighted averaging predicts a distribution that is a feasible point in the group's implicit initial decision space.
39 schema:genre research_article
40 schema:inLanguage en
41 schema:isAccessibleForFree true
42 schema:isPartOf N06c0e403fac940b9ae3dd2ee5c9ab3e5
43 N0fcf8eae7c45463aaaea84ce30b6d0df
44 sg:journal.1045337
45 schema:name Mathematical Structures in Group Decision-Making on Resource Allocation Distributions
46 schema:pagination 1377
47 schema:productId N25118e7f1a164a6399def97e8545c1b0
48 N626f9e1018424b57a27737f09df40452
49 N9c104e35a6ee4529817d15499f731bed
50 Nc69f3b2472ac4cafa01204724d43b001
51 Nfdf220b7d4254a9ba5cccb4198116aaa
52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111917721
53 https://doi.org/10.1038/s41598-018-37847-2
54 schema:sdDatePublished 2019-04-11T09:01
55 schema:sdLicense https://scigraph.springernature.com/explorer/license/
56 schema:sdPublisher N95f408a2d0ff45f0b21c241dfcf5e0bc
57 schema:url https://www.nature.com/articles/s41598-018-37847-2
58 sgo:license sg:explorer/license/
59 sgo:sdDataset articles
60 rdf:type schema:ScholarlyArticle
61 N06c0e403fac940b9ae3dd2ee5c9ab3e5 schema:issueNumber 1
62 rdf:type schema:PublicationIssue
63 N0fcf8eae7c45463aaaea84ce30b6d0df schema:volumeNumber 9
64 rdf:type schema:PublicationVolume
65 N18d0efa576b54d82896cdf2029b96040 schema:affiliation https://www.grid.ac/institutes/grid.133342.4
66 schema:familyName Friedkin
67 schema:givenName Noah E.
68 rdf:type schema:Person
69 N20c69de9fa2542dcb73c31bfa850b6f0 rdf:first N18d0efa576b54d82896cdf2029b96040
70 rdf:rest Ne898962a4ce54f50ad732af6c2f732ae
71 N25118e7f1a164a6399def97e8545c1b0 schema:name pubmed_id
72 schema:value 30718652
73 rdf:type schema:PropertyValue
74 N39316d42dac6424685a9ae949ae0187f schema:affiliation https://www.grid.ac/institutes/grid.133342.4
75 schema:familyName Bullo
76 schema:givenName Francesco
77 rdf:type schema:Person
78 N626f9e1018424b57a27737f09df40452 schema:name readcube_id
79 schema:value dfb16e3139025660e26cd74afcf290d80a7d54f98b48d894cfdefd6da5cfe7eb
80 rdf:type schema:PropertyValue
81 N6a54bde6f55448b7bf3d23a37d5dcd0a rdf:first N39316d42dac6424685a9ae949ae0187f
82 rdf:rest rdf:nil
83 N8240a35d064c4b92a88d75092a6131fe schema:affiliation https://www.grid.ac/institutes/grid.462405.1
84 schema:familyName Proskurnikov
85 schema:givenName Anton V.
86 rdf:type schema:Person
87 N95f408a2d0ff45f0b21c241dfcf5e0bc schema:name Springer Nature - SN SciGraph project
88 rdf:type schema:Organization
89 N9c104e35a6ee4529817d15499f731bed schema:name dimensions_id
90 schema:value pub.1111917721
91 rdf:type schema:PropertyValue
92 Nc5e0d50ec2a64da89bd420af629f7fff schema:affiliation https://www.grid.ac/institutes/grid.5801.c
93 schema:familyName Mei
94 schema:givenName Wenjun
95 rdf:type schema:Person
96 Nc69f3b2472ac4cafa01204724d43b001 schema:name nlm_unique_id
97 schema:value 101563288
98 rdf:type schema:PropertyValue
99 Ne898962a4ce54f50ad732af6c2f732ae rdf:first N8240a35d064c4b92a88d75092a6131fe
100 rdf:rest Nf825e98faf254d9f9d266a9b03ad77a9
101 Nf825e98faf254d9f9d266a9b03ad77a9 rdf:first Nc5e0d50ec2a64da89bd420af629f7fff
102 rdf:rest N6a54bde6f55448b7bf3d23a37d5dcd0a
103 Nfdf220b7d4254a9ba5cccb4198116aaa schema:name doi
104 schema:value 10.1038/s41598-018-37847-2
105 rdf:type schema:PropertyValue
106 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
107 schema:name Mathematical Sciences
108 rdf:type schema:DefinedTerm
109 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
110 schema:name Applied Mathematics
111 rdf:type schema:DefinedTerm
112 sg:journal.1045337 schema:issn 2045-2322
113 schema:name Scientific Reports
114 rdf:type schema:Periodical
115 sg:pub.10.1007/978-3-540-75261-5_15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004776897
116 https://doi.org/10.1007/978-3-540-75261-5_15
117 rdf:type schema:CreativeWork
118 sg:pub.10.1007/978-3-540-88908-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010323691
119 https://doi.org/10.1007/978-3-540-88908-3
120 rdf:type schema:CreativeWork
121 sg:pub.10.1038/s41562-017-0117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085600463
122 https://doi.org/10.1038/s41562-017-0117
123 rdf:type schema:CreativeWork
124 sg:pub.10.1038/s41562-017-0273-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100320508
125 https://doi.org/10.1038/s41562-017-0273-4
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/j.arcontrol.2017.03.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084059832
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/j.arcontrol.2018.03.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103191515
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/j.geb.2014.06.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031575831
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/j.ifacol.2017.08.1424 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092294121
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1017/cbo9780511976735 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098712058
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1037/h0046123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047400062
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1037/xhp0000101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025381097
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1073/pnas.1217220110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028216569
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1073/pnas.1421692112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017584933
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1073/pnas.1710603114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092153453
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1080/01621459.1974.10480137 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058301222
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1103/physreve.81.036109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060740267
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1103/revmodphys.81.591 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839683
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1109/tac.2016.2613905 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061480280
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1109/tcns.2014.2367571 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061549124
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1126/science.1185718 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009338801
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1126/science.aag2624 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062668361
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1177/0003122411428153 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023995387
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1201/9781315183176 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095906961
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1371/journal.pone.0081195 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049728105
166 rdf:type schema:CreativeWork
167 https://doi.org/10.15195/v3.a20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067606338
168 rdf:type schema:CreativeWork
169 https://doi.org/10.2307/1231810 schema:sameAs https://app.dimensions.ai/details/publication/pub.1102648418
170 rdf:type schema:CreativeWork
171 https://doi.org/10.2307/1917768 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069643935
172 rdf:type schema:CreativeWork
173 https://doi.org/10.2307/2657407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070049033
174 rdf:type schema:CreativeWork
175 https://doi.org/10.2307/973677 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016713822
176 rdf:type schema:CreativeWork
177 https://doi.org/10.2307/976178 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041444410
178 rdf:type schema:CreativeWork
179 https://doi.org/10.3182/20130925-2-de-4044.00024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010157692
180 rdf:type schema:CreativeWork
181 https://doi.org/10.4018/jkss.2011100106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028408166
182 rdf:type schema:CreativeWork
183 https://www.grid.ac/institutes/grid.133342.4 schema:alternateName University of California, Santa Barbara
184 schema:name University of California Santa Barbara, Department of Mechanical Engineering and Center for Control, Dynamical-Systems and Computation, 93106, Santa Barbara, California, USA
185 University of California Santa Barbara, Department of Sociology and Center for Control, Dynamical-Systems and Computation, 93106, Santa Barbara, California, USA
186 rdf:type schema:Organization
187 https://www.grid.ac/institutes/grid.462405.1 schema:alternateName Institute of Problems of Mechanical Engineering
188 schema:name Delft University of Technology, Delft Center for Systems and Control, 2628 CD, Delft, Netherlands
189 Institute for Problems in Mechanical Engineering of the Russian Academy of Sciences, 199178, St. Petersburg, Russia
190 rdf:type schema:Organization
191 https://www.grid.ac/institutes/grid.5801.c schema:alternateName Swiss Federal Institute of Technology in Zurich
192 schema:name ETH Zürich, Automatic Control Laboratory, 8092, Zurich, Switzerland
193 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...