Differentiating between cancer and normal tissue samples using multi-hit combinations of genetic mutations View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Sajal Dash, Nicholas A. Kinney, Robin T. Varghese, Harold R. Garner, Wu-chun Feng, Ramu Anandakrishnan

ABSTRACT

Cancer is known to result from a combination of a small number of genetic defects. However, the specific combinations of mutations responsible for the vast majority of cancers have not been identified. Current computational approaches focus on identifying driver genes and mutations. Although individually these mutations can increase the risk of cancer they do not result in cancer without additional mutations. We present a fundamentally different approach for identifying the cause of individual instances of cancer: we search for combinations of genes with carcinogenic mutations (multi-hit combinations) instead of individual driver genes or mutations. We developed an algorithm that identified a set of multi-hit combinations that differentiate between tumor and normal tissue samples with 91% sensitivity (95% Confidence Interval (CI) = 89-92%) and 93% specificity (95% CI = 91-94%) on average for seventeen cancer types. We then present an approach based on mutational profile that can be used to distinguish between driver and passenger mutations within these genes. These combinations, with experimental validation, can aid in better diagnosis, provide insights into the etiology of cancer, and provide a rational basis for designing targeted combination therapies. More... »

PAGES

1005

References to SciGraph publications

  • 2017-12. Evaluating Variant Calling Tools for Non-Matched Next-Generation Sequencing Data in SCIENTIFIC REPORTS
  • 2009-01. Increased nucleotide polymorphic changes in the 5′-untranslated region of δ-catenin (CTNND2) gene in prostate cancer in ONCOGENE
  • 2017-04. Tissue-specific tumorigenesis: context matters in NATURE REVIEWS CANCER
  • 2007-10. Epigenetic regulation (DNA methylation, histone modifications) of the 11p15 mucin genes (MUC2, MUC5AC, MUC5B, MUC6) in epithelial cancer cells in ONCOGENE
  • 1969-06. The two “hit” and multiple “hit” theories of carcinogenesis. in BRITISH JOURNAL OF CANCER
  • 2012-12. Hornerin, an S100 family protein, is functional in breast cells and aberrantly expressed in breast cancer in BMC CANCER
  • 2012-07. Combinatorial drug therapy for cancer in the post-genomic era in NATURE BIOTECHNOLOGY
  • 1954-03. The Age Distribution of Cancer and a Multi-stage Theory of Carcinogenesis in BRITISH JOURNAL OF CANCER
  • 2004-12. Association of HLA Class I and Class II genes with bcr-abl transcripts in leukemia patients with t(9;22) (q34;q11) in BMC CANCER
  • 2010-01. A comprehensive catalogue of somatic mutations from a human cancer genome in NATURE
  • 2014-12. Distinguishing between driver and passenger mutations in individual cancer genomes by network enrichment analysis in BMC BIOINFORMATICS
  • 2005-05. Estimating the number of rate limiting genomic changes for human breast cancer in BREAST CANCER RESEARCH AND TREATMENT
  • 2013-01. Suppression of IGHG1 gene expression by siRNA leads to growth inhibition and apoptosis induction in human prostate cancer cell in MOLECULAR BIOLOGY REPORTS
  • 2016-10. Unsupervised detection of cancer driver mutations with parsimony-guided learning in NATURE GENETICS
  • 2018-12. Discovering mutated driver genes through a robust and sparse co-regularized matrix factorization framework with prior information from mRNA expression patterns and interaction network in BMC BIOINFORMATICS
  • 1953-03. A New Theory on the Cancer-inducing Mechanism in BRITISH JOURNAL OF CANCER
  • 2018-09. Ivosidenib: First Global Approval in DRUGS
  • 2016-04-13. Cocktails for cancer with a measure of immunotherapy in NATURE
  • 2009-06. Role of the inhibitory KIR ligand HLA-Bw4 and HLA-C expression levels in the recognition of leukemic cells by Natural Killer cells in CANCER IMMUNOLOGY, IMMUNOTHERAPY
  • 2013-12. RCircos: an R package for Circos 2D track plots in BMC BIOINFORMATICS
  • 2016-12. IgG silencing induces apoptosis and suppresses proliferation, migration and invasion in LNCaP prostate cancer cells in CELLULAR & MOLECULAR BIOLOGY LETTERS
  • 2008. Role of p53 Codon 72 Arginine Allele in Cell Survival in vitro and in the Clinical Outcome of Patients with Advanced Breast Cancer in TUMOR BIOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41598-018-37835-6

    DOI

    http://dx.doi.org/10.1038/s41598-018-37835-6

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1111778471

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30700767


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Oncology and Carcinogenesis", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Virginia Tech", 
              "id": "https://www.grid.ac/institutes/grid.438526.e", 
              "name": [
                "Department of Computer Science, Virginia Tech, Blacksburg, VA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Dash", 
            "givenName": "Sajal", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Edward Via College of Osteopathic Medicine", 
              "id": "https://www.grid.ac/institutes/grid.418737.e", 
              "name": [
                "Biomedical Sciences, Edward Via College of Osteopathic Medicine, Blacksburg, VA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kinney", 
            "givenName": "Nicholas A.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Edward Via College of Osteopathic Medicine", 
              "id": "https://www.grid.ac/institutes/grid.418737.e", 
              "name": [
                "Biomedical Sciences, Edward Via College of Osteopathic Medicine, Blacksburg, VA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Varghese", 
            "givenName": "Robin T.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Edward Via College of Osteopathic Medicine", 
              "id": "https://www.grid.ac/institutes/grid.418737.e", 
              "name": [
                "Biomedical Sciences, Edward Via College of Osteopathic Medicine, Blacksburg, VA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Garner", 
            "givenName": "Harold R.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Virginia Tech", 
              "id": "https://www.grid.ac/institutes/grid.438526.e", 
              "name": [
                "Department of Computer Science, Virginia Tech, Blacksburg, VA, USA", 
                "Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Feng", 
            "givenName": "Wu-chun", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Edward Via College of Osteopathic Medicine", 
              "id": "https://www.grid.ac/institutes/grid.418737.e", 
              "name": [
                "Biomedical Sciences, Edward Via College of Osteopathic Medicine, Blacksburg, VA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Anandakrishnan", 
            "givenName": "Ramu", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.biocel.2013.02.018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001945489"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1152/ajpcell.00238.2005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004329678"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3324/haematol.2008.002808", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005167700"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10549-004-5782-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006358501", 
              "https://doi.org/10.1007/s10549-004-5782-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10549-004-5782-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006358501", 
              "https://doi.org/10.1007/s10549-004-5782-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.1421839112", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006621195"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pgen.1006193", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007214530"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/532162a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009196446", 
              "https://doi.org/10.1038/532162a"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-14-244", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009266519", 
              "https://doi.org/10.1186/1471-2105-14-244"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ccr.2009.02.012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010691376"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0025-5564(03)00040-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010788843"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0025-5564(03)00040-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010788843"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1158/2159-8290.cd-12-0095", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011831914"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1053/j.gastro.2014.11.042", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012290043"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.2284", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012514299", 
              "https://doi.org/10.1038/nbt.2284"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11033-012-1944-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013202173", 
              "https://doi.org/10.1007/s11033-012-1944-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jmoldx.2013.09.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014168451"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jmoldx.2013.09.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014168451"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature08658", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014288207", 
              "https://doi.org/10.1038/nature08658"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature08658", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014288207", 
              "https://doi.org/10.1038/nature08658"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0092-8674(00)81333-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014745301"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1158/0008-5472.can-16-0585", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015628021"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1158/1078-0432.ccr-06-1567", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017926996"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00262-008-0601-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018332705", 
              "https://doi.org/10.1007/s00262-008-0601-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3727/096504015x14410238486766", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019081951"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/bjc.1953.8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020348244", 
              "https://doi.org/10.1038/bjc.1953.8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/bjc.1953.8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020348244", 
              "https://doi.org/10.1038/bjc.1953.8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2407-4-25", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020527756", 
              "https://doi.org/10.1186/1471-2407-4-25"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/bjc.1969.41", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022030401", 
              "https://doi.org/10.1038/bjc.1969.41"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/bjc.1969.41", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022030401", 
              "https://doi.org/10.1038/bjc.1969.41"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1309/ajcp7fo2vaxivstp", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022714534"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3332/ecancer.2015.541", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023197193"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1098/rsta.1896.0007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024609968"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.onc.1210479", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024933355", 
              "https://doi.org/10.1038/sj.onc.1210479"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1158/0008-5472.can-07-5680", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025954069"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btt395", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030283572"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0301-2115(99)00054-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031917092"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.222118199", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033035198"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/scisignal.2004088", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033807182"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/onc.2008.399", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034636056", 
              "https://doi.org/10.1038/onc.2008.399"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1235122", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035954369"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/ijc.25256", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036200243"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/ijc.25256", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036200243"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/285055.285059", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037698707"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.3658", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040178863", 
              "https://doi.org/10.1038/ng.3658"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s11658-016-0029-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040398223", 
              "https://doi.org/10.1186/s11658-016-0029-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s11658-016-0029-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040398223", 
              "https://doi.org/10.1186/s11658-016-0029-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1083/jcb.201502040", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040628874"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btu466", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042601808"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3389/fonc.2015.00288", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043125003"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.134635.111", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044550376"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cancergen.2012.06.008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046744101"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-15-308", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050814702", 
              "https://doi.org/10.1186/1471-2105-15-308"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-15-308", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050814702", 
              "https://doi.org/10.1186/1471-2105-15-308"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2407-12-266", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050850156", 
              "https://doi.org/10.1186/1471-2407-12-266"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ccell.2016.06.022", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050906445"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ccell.2016.06.022", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050906445"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0014-5793(03)00009-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051521528"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1159/000143400", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051828485", 
              "https://doi.org/10.1159/000143400"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1399-0039.2007.00975.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052581504"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/bjc.1954.1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053357442", 
              "https://doi.org/10.1038/bjc.1954.1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/bjc.1954.1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053357442", 
              "https://doi.org/10.1038/bjc.1954.1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1089/thy.2016.0101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059322227"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btw462", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059414864"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1287/moor.4.3.233", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064724457"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1077531317", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.14670/hh-11-643", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1079113299"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1083339601", 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep43169", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083863112", 
              "https://doi.org/10.1038/srep43169"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrc.2017.5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084129565", 
              "https://doi.org/10.1038/nrc.2017.5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/cshperspect.a026187", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084197361"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/cshperspect.a026187", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084197361"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/cshperspect.a026187", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084197361"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1001/jama.2017.7112", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1086082777"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1001/jama.2017.7112", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1086082777"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/cco.0000000000000423", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092391536"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/cco.0000000000000423", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092391536"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1470-2045(17)30891-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100318118"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1470-2045(17)30891-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100318118"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1470-2045(17)30891-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100318118"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12859-018-2218-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1104403428", 
              "https://doi.org/10.1186/s12859-018-2218-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s40265-018-0978-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106943878", 
              "https://doi.org/10.1007/s40265-018-0978-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s40265-018-0978-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106943878", 
              "https://doi.org/10.1007/s40265-018-0978-3"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-12", 
        "datePublishedReg": "2019-12-01", 
        "description": "Cancer is known to result from a combination of a small number of genetic defects. However, the specific combinations of mutations responsible for the vast majority of cancers have not been identified. Current computational approaches focus on identifying driver genes and mutations. Although individually these mutations can increase the risk of cancer they do not result in cancer without additional mutations. We present a fundamentally different approach for identifying the cause of individual instances of cancer: we search for combinations of genes with carcinogenic mutations (multi-hit combinations) instead of individual driver genes or mutations. We developed an algorithm that identified a set of multi-hit combinations that differentiate between tumor and normal tissue samples with 91% sensitivity (95% Confidence Interval (CI)\u2009=\u200989-92%) and 93% specificity (95% CI\u2009=\u200991-94%) on average for seventeen cancer types. We then present an approach based on mutational profile that can be used to distinguish between driver and passenger mutations within these genes. These combinations, with experimental validation, can aid in better diagnosis, provide insights into the etiology of cancer, and provide a rational basis for designing targeted combination therapies.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/s41598-018-37835-6", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1045337", 
            "issn": [
              "2045-2322"
            ], 
            "name": "Scientific Reports", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "9"
          }
        ], 
        "name": "Differentiating between cancer and normal tissue samples using multi-hit combinations of genetic mutations", 
        "pagination": "1005", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "c9a9b3c040d640887b973fe0eb41bae6c4cac843e9b131e037783b08e834e586"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30700767"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101563288"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41598-018-37835-6"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1111778471"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41598-018-37835-6", 
          "https://app.dimensions.ai/details/publication/pub.1111778471"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T08:59", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000327_0000000327/records_114961_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://www.nature.com/articles/s41598-018-37835-6"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-37835-6'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-37835-6'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-37835-6'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-37835-6'


     

    This table displays all metadata directly associated to this object as RDF triples.

    316 TRIPLES      21 PREDICATES      94 URIs      21 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41598-018-37835-6 schema:about anzsrc-for:11
    2 anzsrc-for:1112
    3 schema:author Nc8448e2415a2494297f2c1a98eeff4e1
    4 schema:citation sg:pub.10.1007/s00262-008-0601-7
    5 sg:pub.10.1007/s10549-004-5782-y
    6 sg:pub.10.1007/s11033-012-1944-x
    7 sg:pub.10.1007/s40265-018-0978-3
    8 sg:pub.10.1038/532162a
    9 sg:pub.10.1038/bjc.1953.8
    10 sg:pub.10.1038/bjc.1954.1
    11 sg:pub.10.1038/bjc.1969.41
    12 sg:pub.10.1038/nature08658
    13 sg:pub.10.1038/nbt.2284
    14 sg:pub.10.1038/ng.3658
    15 sg:pub.10.1038/nrc.2017.5
    16 sg:pub.10.1038/onc.2008.399
    17 sg:pub.10.1038/sj.onc.1210479
    18 sg:pub.10.1038/srep43169
    19 sg:pub.10.1159/000143400
    20 sg:pub.10.1186/1471-2105-14-244
    21 sg:pub.10.1186/1471-2105-15-308
    22 sg:pub.10.1186/1471-2407-12-266
    23 sg:pub.10.1186/1471-2407-4-25
    24 sg:pub.10.1186/s11658-016-0029-6
    25 sg:pub.10.1186/s12859-018-2218-y
    26 https://app.dimensions.ai/details/publication/pub.1077531317
    27 https://app.dimensions.ai/details/publication/pub.1083339601
    28 https://doi.org/10.1001/jama.2017.7112
    29 https://doi.org/10.1002/ijc.25256
    30 https://doi.org/10.1016/j.biocel.2013.02.018
    31 https://doi.org/10.1016/j.cancergen.2012.06.008
    32 https://doi.org/10.1016/j.ccell.2016.06.022
    33 https://doi.org/10.1016/j.ccr.2009.02.012
    34 https://doi.org/10.1016/j.jmoldx.2013.09.003
    35 https://doi.org/10.1016/s0014-5793(03)00009-7
    36 https://doi.org/10.1016/s0025-5564(03)00040-3
    37 https://doi.org/10.1016/s0092-8674(00)81333-1
    38 https://doi.org/10.1016/s0301-2115(99)00054-8
    39 https://doi.org/10.1016/s1470-2045(17)30891-4
    40 https://doi.org/10.1053/j.gastro.2014.11.042
    41 https://doi.org/10.1073/pnas.1421839112
    42 https://doi.org/10.1073/pnas.222118199
    43 https://doi.org/10.1083/jcb.201502040
    44 https://doi.org/10.1089/thy.2016.0101
    45 https://doi.org/10.1093/bioinformatics/btt395
    46 https://doi.org/10.1093/bioinformatics/btu466
    47 https://doi.org/10.1093/bioinformatics/btw462
    48 https://doi.org/10.1097/cco.0000000000000423
    49 https://doi.org/10.1098/rsta.1896.0007
    50 https://doi.org/10.1101/cshperspect.a026187
    51 https://doi.org/10.1101/gr.134635.111
    52 https://doi.org/10.1111/j.1399-0039.2007.00975.x
    53 https://doi.org/10.1126/science.1235122
    54 https://doi.org/10.1126/scisignal.2004088
    55 https://doi.org/10.1145/285055.285059
    56 https://doi.org/10.1152/ajpcell.00238.2005
    57 https://doi.org/10.1158/0008-5472.can-07-5680
    58 https://doi.org/10.1158/0008-5472.can-16-0585
    59 https://doi.org/10.1158/1078-0432.ccr-06-1567
    60 https://doi.org/10.1158/2159-8290.cd-12-0095
    61 https://doi.org/10.1287/moor.4.3.233
    62 https://doi.org/10.1309/ajcp7fo2vaxivstp
    63 https://doi.org/10.1371/journal.pgen.1006193
    64 https://doi.org/10.14670/hh-11-643
    65 https://doi.org/10.3324/haematol.2008.002808
    66 https://doi.org/10.3332/ecancer.2015.541
    67 https://doi.org/10.3389/fonc.2015.00288
    68 https://doi.org/10.3727/096504015x14410238486766
    69 schema:datePublished 2019-12
    70 schema:datePublishedReg 2019-12-01
    71 schema:description Cancer is known to result from a combination of a small number of genetic defects. However, the specific combinations of mutations responsible for the vast majority of cancers have not been identified. Current computational approaches focus on identifying driver genes and mutations. Although individually these mutations can increase the risk of cancer they do not result in cancer without additional mutations. We present a fundamentally different approach for identifying the cause of individual instances of cancer: we search for combinations of genes with carcinogenic mutations (multi-hit combinations) instead of individual driver genes or mutations. We developed an algorithm that identified a set of multi-hit combinations that differentiate between tumor and normal tissue samples with 91% sensitivity (95% Confidence Interval (CI) = 89-92%) and 93% specificity (95% CI = 91-94%) on average for seventeen cancer types. We then present an approach based on mutational profile that can be used to distinguish between driver and passenger mutations within these genes. These combinations, with experimental validation, can aid in better diagnosis, provide insights into the etiology of cancer, and provide a rational basis for designing targeted combination therapies.
    72 schema:genre research_article
    73 schema:inLanguage en
    74 schema:isAccessibleForFree true
    75 schema:isPartOf N13aaf34b7486481d8464d3b55bb94fe2
    76 Nd1e250a502b54a4aae78d480cfda2eec
    77 sg:journal.1045337
    78 schema:name Differentiating between cancer and normal tissue samples using multi-hit combinations of genetic mutations
    79 schema:pagination 1005
    80 schema:productId N0314d12ffe234e20b66b463216a51f00
    81 N077a5ba385b246729cba76a90602926b
    82 N29325094dacc4ecebcddeeba1199ccc9
    83 N3da0b58320704941b61b864ed24d4615
    84 N420cae76c46f47efb6cb81f7669a3461
    85 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111778471
    86 https://doi.org/10.1038/s41598-018-37835-6
    87 schema:sdDatePublished 2019-04-11T08:59
    88 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    89 schema:sdPublisher N0a72f1510b964fc0b314668a9e061c10
    90 schema:url https://www.nature.com/articles/s41598-018-37835-6
    91 sgo:license sg:explorer/license/
    92 sgo:sdDataset articles
    93 rdf:type schema:ScholarlyArticle
    94 N025d5f433711499ba581ab327ca8ceb5 rdf:first N08c4437578334dc5adf1cbdb9c572214
    95 rdf:rest Ndb77aadbe2544525af28e3595a60aa21
    96 N0314d12ffe234e20b66b463216a51f00 schema:name readcube_id
    97 schema:value c9a9b3c040d640887b973fe0eb41bae6c4cac843e9b131e037783b08e834e586
    98 rdf:type schema:PropertyValue
    99 N06b3447803104dff9966d545513efaa4 rdf:first Nebf27162520b484e98c5142f6ad04c98
    100 rdf:rest N0cc730c6ae154e14b5ad92c7d5cdc83b
    101 N077a5ba385b246729cba76a90602926b schema:name pubmed_id
    102 schema:value 30700767
    103 rdf:type schema:PropertyValue
    104 N08c4437578334dc5adf1cbdb9c572214 schema:affiliation https://www.grid.ac/institutes/grid.418737.e
    105 schema:familyName Kinney
    106 schema:givenName Nicholas A.
    107 rdf:type schema:Person
    108 N0a72f1510b964fc0b314668a9e061c10 schema:name Springer Nature - SN SciGraph project
    109 rdf:type schema:Organization
    110 N0cc730c6ae154e14b5ad92c7d5cdc83b rdf:first N9bb6ccbcfeef46588dfe2eea768f046d
    111 rdf:rest rdf:nil
    112 N13aaf34b7486481d8464d3b55bb94fe2 schema:issueNumber 1
    113 rdf:type schema:PublicationIssue
    114 N29325094dacc4ecebcddeeba1199ccc9 schema:name doi
    115 schema:value 10.1038/s41598-018-37835-6
    116 rdf:type schema:PropertyValue
    117 N3affb8092d934d2cbc950290288b8e57 schema:affiliation https://www.grid.ac/institutes/grid.438526.e
    118 schema:familyName Dash
    119 schema:givenName Sajal
    120 rdf:type schema:Person
    121 N3da0b58320704941b61b864ed24d4615 schema:name dimensions_id
    122 schema:value pub.1111778471
    123 rdf:type schema:PropertyValue
    124 N420cae76c46f47efb6cb81f7669a3461 schema:name nlm_unique_id
    125 schema:value 101563288
    126 rdf:type schema:PropertyValue
    127 N5daa8992f7144352a1ef76f8c1e75f9e schema:affiliation https://www.grid.ac/institutes/grid.418737.e
    128 schema:familyName Garner
    129 schema:givenName Harold R.
    130 rdf:type schema:Person
    131 N857018cefafe4c4e9b5699f152146ba0 rdf:first N5daa8992f7144352a1ef76f8c1e75f9e
    132 rdf:rest N06b3447803104dff9966d545513efaa4
    133 N9bb6ccbcfeef46588dfe2eea768f046d schema:affiliation https://www.grid.ac/institutes/grid.418737.e
    134 schema:familyName Anandakrishnan
    135 schema:givenName Ramu
    136 rdf:type schema:Person
    137 Nc8448e2415a2494297f2c1a98eeff4e1 rdf:first N3affb8092d934d2cbc950290288b8e57
    138 rdf:rest N025d5f433711499ba581ab327ca8ceb5
    139 Ncbe7a4c1ae234342bf08167f82772423 schema:affiliation https://www.grid.ac/institutes/grid.418737.e
    140 schema:familyName Varghese
    141 schema:givenName Robin T.
    142 rdf:type schema:Person
    143 Nd1e250a502b54a4aae78d480cfda2eec schema:volumeNumber 9
    144 rdf:type schema:PublicationVolume
    145 Ndb77aadbe2544525af28e3595a60aa21 rdf:first Ncbe7a4c1ae234342bf08167f82772423
    146 rdf:rest N857018cefafe4c4e9b5699f152146ba0
    147 Nebf27162520b484e98c5142f6ad04c98 schema:affiliation https://www.grid.ac/institutes/grid.438526.e
    148 schema:familyName Feng
    149 schema:givenName Wu-chun
    150 rdf:type schema:Person
    151 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    152 schema:name Medical and Health Sciences
    153 rdf:type schema:DefinedTerm
    154 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
    155 schema:name Oncology and Carcinogenesis
    156 rdf:type schema:DefinedTerm
    157 sg:journal.1045337 schema:issn 2045-2322
    158 schema:name Scientific Reports
    159 rdf:type schema:Periodical
    160 sg:pub.10.1007/s00262-008-0601-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018332705
    161 https://doi.org/10.1007/s00262-008-0601-7
    162 rdf:type schema:CreativeWork
    163 sg:pub.10.1007/s10549-004-5782-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1006358501
    164 https://doi.org/10.1007/s10549-004-5782-y
    165 rdf:type schema:CreativeWork
    166 sg:pub.10.1007/s11033-012-1944-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1013202173
    167 https://doi.org/10.1007/s11033-012-1944-x
    168 rdf:type schema:CreativeWork
    169 sg:pub.10.1007/s40265-018-0978-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106943878
    170 https://doi.org/10.1007/s40265-018-0978-3
    171 rdf:type schema:CreativeWork
    172 sg:pub.10.1038/532162a schema:sameAs https://app.dimensions.ai/details/publication/pub.1009196446
    173 https://doi.org/10.1038/532162a
    174 rdf:type schema:CreativeWork
    175 sg:pub.10.1038/bjc.1953.8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020348244
    176 https://doi.org/10.1038/bjc.1953.8
    177 rdf:type schema:CreativeWork
    178 sg:pub.10.1038/bjc.1954.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053357442
    179 https://doi.org/10.1038/bjc.1954.1
    180 rdf:type schema:CreativeWork
    181 sg:pub.10.1038/bjc.1969.41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022030401
    182 https://doi.org/10.1038/bjc.1969.41
    183 rdf:type schema:CreativeWork
    184 sg:pub.10.1038/nature08658 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014288207
    185 https://doi.org/10.1038/nature08658
    186 rdf:type schema:CreativeWork
    187 sg:pub.10.1038/nbt.2284 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012514299
    188 https://doi.org/10.1038/nbt.2284
    189 rdf:type schema:CreativeWork
    190 sg:pub.10.1038/ng.3658 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040178863
    191 https://doi.org/10.1038/ng.3658
    192 rdf:type schema:CreativeWork
    193 sg:pub.10.1038/nrc.2017.5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084129565
    194 https://doi.org/10.1038/nrc.2017.5
    195 rdf:type schema:CreativeWork
    196 sg:pub.10.1038/onc.2008.399 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034636056
    197 https://doi.org/10.1038/onc.2008.399
    198 rdf:type schema:CreativeWork
    199 sg:pub.10.1038/sj.onc.1210479 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024933355
    200 https://doi.org/10.1038/sj.onc.1210479
    201 rdf:type schema:CreativeWork
    202 sg:pub.10.1038/srep43169 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083863112
    203 https://doi.org/10.1038/srep43169
    204 rdf:type schema:CreativeWork
    205 sg:pub.10.1159/000143400 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051828485
    206 https://doi.org/10.1159/000143400
    207 rdf:type schema:CreativeWork
    208 sg:pub.10.1186/1471-2105-14-244 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009266519
    209 https://doi.org/10.1186/1471-2105-14-244
    210 rdf:type schema:CreativeWork
    211 sg:pub.10.1186/1471-2105-15-308 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050814702
    212 https://doi.org/10.1186/1471-2105-15-308
    213 rdf:type schema:CreativeWork
    214 sg:pub.10.1186/1471-2407-12-266 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050850156
    215 https://doi.org/10.1186/1471-2407-12-266
    216 rdf:type schema:CreativeWork
    217 sg:pub.10.1186/1471-2407-4-25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020527756
    218 https://doi.org/10.1186/1471-2407-4-25
    219 rdf:type schema:CreativeWork
    220 sg:pub.10.1186/s11658-016-0029-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040398223
    221 https://doi.org/10.1186/s11658-016-0029-6
    222 rdf:type schema:CreativeWork
    223 sg:pub.10.1186/s12859-018-2218-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1104403428
    224 https://doi.org/10.1186/s12859-018-2218-y
    225 rdf:type schema:CreativeWork
    226 https://app.dimensions.ai/details/publication/pub.1077531317 schema:CreativeWork
    227 https://app.dimensions.ai/details/publication/pub.1083339601 schema:CreativeWork
    228 https://doi.org/10.1001/jama.2017.7112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086082777
    229 rdf:type schema:CreativeWork
    230 https://doi.org/10.1002/ijc.25256 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036200243
    231 rdf:type schema:CreativeWork
    232 https://doi.org/10.1016/j.biocel.2013.02.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001945489
    233 rdf:type schema:CreativeWork
    234 https://doi.org/10.1016/j.cancergen.2012.06.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046744101
    235 rdf:type schema:CreativeWork
    236 https://doi.org/10.1016/j.ccell.2016.06.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050906445
    237 rdf:type schema:CreativeWork
    238 https://doi.org/10.1016/j.ccr.2009.02.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010691376
    239 rdf:type schema:CreativeWork
    240 https://doi.org/10.1016/j.jmoldx.2013.09.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014168451
    241 rdf:type schema:CreativeWork
    242 https://doi.org/10.1016/s0014-5793(03)00009-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051521528
    243 rdf:type schema:CreativeWork
    244 https://doi.org/10.1016/s0025-5564(03)00040-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010788843
    245 rdf:type schema:CreativeWork
    246 https://doi.org/10.1016/s0092-8674(00)81333-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014745301
    247 rdf:type schema:CreativeWork
    248 https://doi.org/10.1016/s0301-2115(99)00054-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031917092
    249 rdf:type schema:CreativeWork
    250 https://doi.org/10.1016/s1470-2045(17)30891-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100318118
    251 rdf:type schema:CreativeWork
    252 https://doi.org/10.1053/j.gastro.2014.11.042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012290043
    253 rdf:type schema:CreativeWork
    254 https://doi.org/10.1073/pnas.1421839112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006621195
    255 rdf:type schema:CreativeWork
    256 https://doi.org/10.1073/pnas.222118199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033035198
    257 rdf:type schema:CreativeWork
    258 https://doi.org/10.1083/jcb.201502040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040628874
    259 rdf:type schema:CreativeWork
    260 https://doi.org/10.1089/thy.2016.0101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059322227
    261 rdf:type schema:CreativeWork
    262 https://doi.org/10.1093/bioinformatics/btt395 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030283572
    263 rdf:type schema:CreativeWork
    264 https://doi.org/10.1093/bioinformatics/btu466 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042601808
    265 rdf:type schema:CreativeWork
    266 https://doi.org/10.1093/bioinformatics/btw462 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059414864
    267 rdf:type schema:CreativeWork
    268 https://doi.org/10.1097/cco.0000000000000423 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092391536
    269 rdf:type schema:CreativeWork
    270 https://doi.org/10.1098/rsta.1896.0007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024609968
    271 rdf:type schema:CreativeWork
    272 https://doi.org/10.1101/cshperspect.a026187 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084197361
    273 rdf:type schema:CreativeWork
    274 https://doi.org/10.1101/gr.134635.111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044550376
    275 rdf:type schema:CreativeWork
    276 https://doi.org/10.1111/j.1399-0039.2007.00975.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1052581504
    277 rdf:type schema:CreativeWork
    278 https://doi.org/10.1126/science.1235122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035954369
    279 rdf:type schema:CreativeWork
    280 https://doi.org/10.1126/scisignal.2004088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033807182
    281 rdf:type schema:CreativeWork
    282 https://doi.org/10.1145/285055.285059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037698707
    283 rdf:type schema:CreativeWork
    284 https://doi.org/10.1152/ajpcell.00238.2005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004329678
    285 rdf:type schema:CreativeWork
    286 https://doi.org/10.1158/0008-5472.can-07-5680 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025954069
    287 rdf:type schema:CreativeWork
    288 https://doi.org/10.1158/0008-5472.can-16-0585 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015628021
    289 rdf:type schema:CreativeWork
    290 https://doi.org/10.1158/1078-0432.ccr-06-1567 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017926996
    291 rdf:type schema:CreativeWork
    292 https://doi.org/10.1158/2159-8290.cd-12-0095 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011831914
    293 rdf:type schema:CreativeWork
    294 https://doi.org/10.1287/moor.4.3.233 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064724457
    295 rdf:type schema:CreativeWork
    296 https://doi.org/10.1309/ajcp7fo2vaxivstp schema:sameAs https://app.dimensions.ai/details/publication/pub.1022714534
    297 rdf:type schema:CreativeWork
    298 https://doi.org/10.1371/journal.pgen.1006193 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007214530
    299 rdf:type schema:CreativeWork
    300 https://doi.org/10.14670/hh-11-643 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079113299
    301 rdf:type schema:CreativeWork
    302 https://doi.org/10.3324/haematol.2008.002808 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005167700
    303 rdf:type schema:CreativeWork
    304 https://doi.org/10.3332/ecancer.2015.541 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023197193
    305 rdf:type schema:CreativeWork
    306 https://doi.org/10.3389/fonc.2015.00288 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043125003
    307 rdf:type schema:CreativeWork
    308 https://doi.org/10.3727/096504015x14410238486766 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019081951
    309 rdf:type schema:CreativeWork
    310 https://www.grid.ac/institutes/grid.418737.e schema:alternateName Edward Via College of Osteopathic Medicine
    311 schema:name Biomedical Sciences, Edward Via College of Osteopathic Medicine, Blacksburg, VA, USA
    312 rdf:type schema:Organization
    313 https://www.grid.ac/institutes/grid.438526.e schema:alternateName Virginia Tech
    314 schema:name Department of Computer Science, Virginia Tech, Blacksburg, VA, USA
    315 Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, USA
    316 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...