Differentiating between cancer and normal tissue samples using multi-hit combinations of genetic mutations View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-01-30

AUTHORS

Sajal Dash, Nicholas A. Kinney, Robin T. Varghese, Harold R. Garner, Wu-chun Feng, Ramu Anandakrishnan

ABSTRACT

Cancer is known to result from a combination of a small number of genetic defects. However, the specific combinations of mutations responsible for the vast majority of cancers have not been identified. Current computational approaches focus on identifying driver genes and mutations. Although individually these mutations can increase the risk of cancer they do not result in cancer without additional mutations. We present a fundamentally different approach for identifying the cause of individual instances of cancer: we search for combinations of genes with carcinogenic mutations (multi-hit combinations) instead of individual driver genes or mutations. We developed an algorithm that identified a set of multi-hit combinations that differentiate between tumor and normal tissue samples with 91% sensitivity (95% Confidence Interval (CI) = 89-92%) and 93% specificity (95% CI = 91-94%) on average for seventeen cancer types. We then present an approach based on mutational profile that can be used to distinguish between driver and passenger mutations within these genes. These combinations, with experimental validation, can aid in better diagnosis, provide insights into the etiology of cancer, and provide a rational basis for designing targeted combination therapies. More... »

PAGES

1005

References to SciGraph publications

  • 2018-01-02. Evaluation and comparison of bioinformatic tools for the enrichment analysis of metabolomics data in BMC BIOINFORMATICS
  • 2017-02-24. Evaluating Variant Calling Tools for Non-Matched Next-Generation Sequencing Data in SCIENTIFIC REPORTS
  • 2008-11-03. Increased nucleotide polymorphic changes in the 5′-untranslated region of δ-catenin (CTNND2) gene in prostate cancer in ONCOGENE
  • 2017-03-03. Tissue-specific tumorigenesis: context matters in NATURE REVIEWS CANCER
  • 2007-04-30. Epigenetic regulation (DNA methylation, histone modifications) of the 11p15 mucin genes (MUC2, MUC5AC, MUC5B, MUC6) in epithelial cancer cells in ONCOGENE
  • 1969-06. The two "hit" and multiple "hit" theories of carcinogenesis. in BRITISH JOURNAL OF CANCER
  • 2012-06-22. Hornerin, an S100 family protein, is functional in breast cells and aberrantly expressed in breast cancer in BMC CANCER
  • 2012-07-10. Combinatorial drug therapy for cancer in the post-genomic era in NATURE BIOTECHNOLOGY
  • 1954-03. The Age Distribution of Cancer and a Multi-stage Theory of Carcinogenesis in BRITISH JOURNAL OF CANCER
  • 2004-06-17. Association of HLA Class I and Class II genes with bcr-abl transcripts in leukemia patients with t(9;22) (q34;q11) in BMC CANCER
  • 2009-12-16. A comprehensive catalogue of somatic mutations from a human cancer genome in NATURE
  • 2014-09-19. Distinguishing between driver and passenger mutations in individual cancer genomes by network enrichment analysis in BMC BIOINFORMATICS
  • 2005-05. Estimating the number of rate limiting genomic changes for human breast cancer in BREAST CANCER RESEARCH AND TREATMENT
  • 2012-11-02. Suppression of IGHG1 gene expression by siRNA leads to growth inhibition and apoptosis induction in human prostate cancer cell in MOLECULAR BIOLOGY REPORTS
  • 2016-09-12. Unsupervised detection of cancer driver mutations with parsimony-guided learning in NATURE GENETICS
  • 2018-06-05. Discovering mutated driver genes through a robust and sparse co-regularized matrix factorization framework with prior information from mRNA expression patterns and interaction network in BMC BIOINFORMATICS
  • 1953-03. A New Theory on the Cancer-inducing Mechanism in BRITISH JOURNAL OF CANCER
  • 2018-09-12. Ivosidenib: First Global Approval in DRUGS
  • 2016-04-13. Cocktails for cancer with a measure of immunotherapy in NATURE
  • 2008-10-08. Role of the inhibitory KIR ligand HLA-Bw4 and HLA-C expression levels in the recognition of leukemic cells by Natural Killer cells in CANCER IMMUNOLOGY, IMMUNOTHERAPY
  • 2013-08-10. RCircos: an R package for Circos 2D track plots in BMC BIOINFORMATICS
  • 2016-12-03. IgG silencing induces apoptosis and suppresses proliferation, migration and invasion in LNCaP prostate cancer cells in CELLULAR & MOLECULAR BIOLOGY LETTERS
  • 2008-07-09. Role of p53 Codon 72 Arginine Allele in Cell Survival in vitro and in the Clinical Outcome of Patients with Advanced Breast Cancer in TUMOR BIOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41598-018-37835-6

    DOI

    http://dx.doi.org/10.1038/s41598-018-37835-6

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1111778471

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30700767


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Oncology and Carcinogenesis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Algorithms", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Carcinogenesis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Computational Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Databases, Genetic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Models, Genetic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Mutation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Neoplasms", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Computer Science, Virginia Tech, Blacksburg, VA USA", 
              "id": "http://www.grid.ac/institutes/grid.438526.e", 
              "name": [
                "Department of Computer Science, Virginia Tech, Blacksburg, VA USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Dash", 
            "givenName": "Sajal", 
            "id": "sg:person.012722222247.55", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012722222247.55"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Gibbs Cancer Center and Research Institute, Spartanburg, SC USA", 
              "id": "http://www.grid.ac/institutes/grid.416226.5", 
              "name": [
                "Biomedical Sciences, Edward Via College of Osteopathic Medicine, Blacksburg, VA USA", 
                "Gibbs Cancer Center and Research Institute, Spartanburg, SC USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kinney", 
            "givenName": "Nicholas A.", 
            "id": "sg:person.01263373160.29", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01263373160.29"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Gibbs Cancer Center and Research Institute, Spartanburg, SC USA", 
              "id": "http://www.grid.ac/institutes/grid.416226.5", 
              "name": [
                "Biomedical Sciences, Edward Via College of Osteopathic Medicine, Blacksburg, VA USA", 
                "Gibbs Cancer Center and Research Institute, Spartanburg, SC USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Varghese", 
            "givenName": "Robin T.", 
            "id": "sg:person.015000421417.64", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015000421417.64"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Gibbs Cancer Center and Research Institute, Spartanburg, SC USA", 
              "id": "http://www.grid.ac/institutes/grid.416226.5", 
              "name": [
                "Biomedical Sciences, Edward Via College of Osteopathic Medicine, Blacksburg, VA USA", 
                "Gibbs Cancer Center and Research Institute, Spartanburg, SC USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Garner", 
            "givenName": "Harold R.", 
            "id": "sg:person.0613230631.83", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0613230631.83"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA USA", 
              "id": "http://www.grid.ac/institutes/grid.438526.e", 
              "name": [
                "Department of Computer Science, Virginia Tech, Blacksburg, VA USA", 
                "Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Feng", 
            "givenName": "Wu-chun", 
            "id": "sg:person.016541463041.09", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016541463041.09"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Gibbs Cancer Center and Research Institute, Spartanburg, SC USA", 
              "id": "http://www.grid.ac/institutes/grid.416226.5", 
              "name": [
                "Biomedical Sciences, Edward Via College of Osteopathic Medicine, Blacksburg, VA USA", 
                "Gibbs Cancer Center and Research Institute, Spartanburg, SC USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Anandakrishnan", 
            "givenName": "Ramu", 
            "id": "sg:person.01146510157.11", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01146510157.11"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/bjc.1954.1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053357442", 
              "https://doi.org/10.1038/bjc.1954.1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/onc.2008.399", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034636056", 
              "https://doi.org/10.1038/onc.2008.399"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep43169", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083863112", 
              "https://doi.org/10.1038/srep43169"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/bjc.1969.41", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022030401", 
              "https://doi.org/10.1038/bjc.1969.41"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10549-004-5782-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006358501", 
              "https://doi.org/10.1007/s10549-004-5782-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11033-012-1944-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013202173", 
              "https://doi.org/10.1007/s11033-012-1944-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/532162a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009196446", 
              "https://doi.org/10.1038/532162a"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2407-4-25", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020527756", 
              "https://doi.org/10.1186/1471-2407-4-25"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12859-017-2006-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100151850", 
              "https://doi.org/10.1186/s12859-017-2006-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-15-308", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050814702", 
              "https://doi.org/10.1186/1471-2105-15-308"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s40265-018-0978-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106943878", 
              "https://doi.org/10.1007/s40265-018-0978-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.onc.1210479", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024933355", 
              "https://doi.org/10.1038/sj.onc.1210479"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/bjc.1953.8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020348244", 
              "https://doi.org/10.1038/bjc.1953.8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.3658", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040178863", 
              "https://doi.org/10.1038/ng.3658"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1159/000143400", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051828485", 
              "https://doi.org/10.1159/000143400"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrc.2017.5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084129565", 
              "https://doi.org/10.1038/nrc.2017.5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00262-008-0601-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018332705", 
              "https://doi.org/10.1007/s00262-008-0601-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2407-12-266", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050850156", 
              "https://doi.org/10.1186/1471-2407-12-266"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature08658", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014288207", 
              "https://doi.org/10.1038/nature08658"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.2284", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012514299", 
              "https://doi.org/10.1038/nbt.2284"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12859-018-2218-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1104403428", 
              "https://doi.org/10.1186/s12859-018-2218-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s11658-016-0029-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040398223", 
              "https://doi.org/10.1186/s11658-016-0029-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-14-244", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009266519", 
              "https://doi.org/10.1186/1471-2105-14-244"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-01-30", 
        "datePublishedReg": "2019-01-30", 
        "description": "Cancer is known to result from a combination of a small number of genetic defects. However, the specific combinations of mutations responsible for the vast majority of cancers have not been identified. Current computational approaches focus on identifying driver genes and mutations. Although individually these mutations can increase the risk of cancer they do not result in cancer without additional mutations. We present a fundamentally different approach for identifying the cause of individual instances of cancer: we search for combinations of genes with carcinogenic mutations (multi-hit combinations) instead of individual driver genes or mutations. We developed an algorithm that identified a set of multi-hit combinations that differentiate between tumor and normal tissue samples with 91% sensitivity (95% Confidence Interval (CI)\u2009=\u200989-92%) and 93% specificity (95% CI\u2009=\u200991-94%) on average for seventeen cancer types. We then present an approach based on mutational profile that can be used to distinguish between driver and passenger mutations within these genes. These combinations, with experimental validation, can aid in better diagnosis, provide insights into the etiology of cancer, and provide a rational basis for designing targeted combination therapies.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/s41598-018-37835-6", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1045337", 
            "issn": [
              "2045-2322"
            ], 
            "name": "Scientific Reports", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "9"
          }
        ], 
        "keywords": [
          "driver genes", 
          "individual driver genes", 
          "normal tissue samples", 
          "combination of genes", 
          "passenger mutations", 
          "current computational approaches", 
          "genes", 
          "carcinogenic mutations", 
          "mutations", 
          "additional mutations", 
          "genetic defects", 
          "etiology of cancer", 
          "genetic mutations", 
          "mutational profile", 
          "tissue samples", 
          "cancer types", 
          "computational approach", 
          "specific combinations", 
          "vast majority", 
          "cancer", 
          "rational basis", 
          "small number", 
          "insights", 
          "specificity", 
          "combination", 
          "defects", 
          "risk of cancer", 
          "experimental validation", 
          "drivers", 
          "better diagnosis", 
          "basis", 
          "profile", 
          "number", 
          "majority", 
          "types", 
          "approach", 
          "samples", 
          "tumors", 
          "different approaches", 
          "sensitivity", 
          "set", 
          "etiology", 
          "combination therapy", 
          "cause", 
          "validation", 
          "instances", 
          "individual instances", 
          "therapy", 
          "diagnosis", 
          "risk", 
          "algorithm", 
          "multi-hit combinations"
        ], 
        "name": "Differentiating between cancer and normal tissue samples using multi-hit combinations of genetic mutations", 
        "pagination": "1005", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1111778471"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41598-018-37835-6"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30700767"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41598-018-37835-6", 
          "https://app.dimensions.ai/details/publication/pub.1111778471"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:52", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_801.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/s41598-018-37835-6"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-37835-6'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-37835-6'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-37835-6'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-37835-6'


     

    This table displays all metadata directly associated to this object as RDF triples.

    286 TRIPLES      22 PREDICATES      111 URIs      78 LITERALS      15 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41598-018-37835-6 schema:about N03e2e529d1ed42a2accd51077b80a4fe
    2 N413f915358384118a48a692e563472ff
    3 N5f3b700f20204625967fd0817519302d
    4 N9126a413b2c24157a05a3071b8cf1a5b
    5 Na86bc753dfa0437fa689802e574400af
    6 Nacb0a1751a984b12b0a0a39ae27047d6
    7 Nc123fc6b102647e3a052a8d7086afb4d
    8 Need98fc29fc747189e191468d35cd7c5
    9 anzsrc-for:06
    10 anzsrc-for:0604
    11 anzsrc-for:11
    12 anzsrc-for:1112
    13 schema:author Nd4df69cd4f4040ee92e39152d19160b4
    14 schema:citation sg:pub.10.1007/s00262-008-0601-7
    15 sg:pub.10.1007/s10549-004-5782-y
    16 sg:pub.10.1007/s11033-012-1944-x
    17 sg:pub.10.1007/s40265-018-0978-3
    18 sg:pub.10.1038/532162a
    19 sg:pub.10.1038/bjc.1953.8
    20 sg:pub.10.1038/bjc.1954.1
    21 sg:pub.10.1038/bjc.1969.41
    22 sg:pub.10.1038/nature08658
    23 sg:pub.10.1038/nbt.2284
    24 sg:pub.10.1038/ng.3658
    25 sg:pub.10.1038/nrc.2017.5
    26 sg:pub.10.1038/onc.2008.399
    27 sg:pub.10.1038/sj.onc.1210479
    28 sg:pub.10.1038/srep43169
    29 sg:pub.10.1159/000143400
    30 sg:pub.10.1186/1471-2105-14-244
    31 sg:pub.10.1186/1471-2105-15-308
    32 sg:pub.10.1186/1471-2407-12-266
    33 sg:pub.10.1186/1471-2407-4-25
    34 sg:pub.10.1186/s11658-016-0029-6
    35 sg:pub.10.1186/s12859-017-2006-0
    36 sg:pub.10.1186/s12859-018-2218-y
    37 schema:datePublished 2019-01-30
    38 schema:datePublishedReg 2019-01-30
    39 schema:description Cancer is known to result from a combination of a small number of genetic defects. However, the specific combinations of mutations responsible for the vast majority of cancers have not been identified. Current computational approaches focus on identifying driver genes and mutations. Although individually these mutations can increase the risk of cancer they do not result in cancer without additional mutations. We present a fundamentally different approach for identifying the cause of individual instances of cancer: we search for combinations of genes with carcinogenic mutations (multi-hit combinations) instead of individual driver genes or mutations. We developed an algorithm that identified a set of multi-hit combinations that differentiate between tumor and normal tissue samples with 91% sensitivity (95% Confidence Interval (CI) = 89-92%) and 93% specificity (95% CI = 91-94%) on average for seventeen cancer types. We then present an approach based on mutational profile that can be used to distinguish between driver and passenger mutations within these genes. These combinations, with experimental validation, can aid in better diagnosis, provide insights into the etiology of cancer, and provide a rational basis for designing targeted combination therapies.
    40 schema:genre article
    41 schema:inLanguage en
    42 schema:isAccessibleForFree true
    43 schema:isPartOf N08512a338fda4edc80263ceb77529b2f
    44 Ndbce2c357cb8453ca349530dfc2ffcdb
    45 sg:journal.1045337
    46 schema:keywords additional mutations
    47 algorithm
    48 approach
    49 basis
    50 better diagnosis
    51 cancer
    52 cancer types
    53 carcinogenic mutations
    54 cause
    55 combination
    56 combination of genes
    57 combination therapy
    58 computational approach
    59 current computational approaches
    60 defects
    61 diagnosis
    62 different approaches
    63 driver genes
    64 drivers
    65 etiology
    66 etiology of cancer
    67 experimental validation
    68 genes
    69 genetic defects
    70 genetic mutations
    71 individual driver genes
    72 individual instances
    73 insights
    74 instances
    75 majority
    76 multi-hit combinations
    77 mutational profile
    78 mutations
    79 normal tissue samples
    80 number
    81 passenger mutations
    82 profile
    83 rational basis
    84 risk
    85 risk of cancer
    86 samples
    87 sensitivity
    88 set
    89 small number
    90 specific combinations
    91 specificity
    92 therapy
    93 tissue samples
    94 tumors
    95 types
    96 validation
    97 vast majority
    98 schema:name Differentiating between cancer and normal tissue samples using multi-hit combinations of genetic mutations
    99 schema:pagination 1005
    100 schema:productId N088a60e289114c69876c2455c68dd7e5
    101 N50c9597dd5f2441b83cec733f6df25f3
    102 Ncfea072d64a540278a325a659d0a93be
    103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111778471
    104 https://doi.org/10.1038/s41598-018-37835-6
    105 schema:sdDatePublished 2022-01-01T18:52
    106 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    107 schema:sdPublisher N67f521304ca749a6ba4543aa6d061592
    108 schema:url https://doi.org/10.1038/s41598-018-37835-6
    109 sgo:license sg:explorer/license/
    110 sgo:sdDataset articles
    111 rdf:type schema:ScholarlyArticle
    112 N03e2e529d1ed42a2accd51077b80a4fe schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    113 schema:name Carcinogenesis
    114 rdf:type schema:DefinedTerm
    115 N08512a338fda4edc80263ceb77529b2f schema:issueNumber 1
    116 rdf:type schema:PublicationIssue
    117 N088a60e289114c69876c2455c68dd7e5 schema:name doi
    118 schema:value 10.1038/s41598-018-37835-6
    119 rdf:type schema:PropertyValue
    120 N0a48a6e3729b46e08877cf0eaecb7b0a rdf:first sg:person.0613230631.83
    121 rdf:rest Nfe69eb4c1851463781c46a9715cfed6b
    122 N413f915358384118a48a692e563472ff schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    123 schema:name Models, Genetic
    124 rdf:type schema:DefinedTerm
    125 N42ae63f5ddf84da1a34be644e6ec4659 rdf:first sg:person.01146510157.11
    126 rdf:rest rdf:nil
    127 N50c9597dd5f2441b83cec733f6df25f3 schema:name dimensions_id
    128 schema:value pub.1111778471
    129 rdf:type schema:PropertyValue
    130 N5f3b700f20204625967fd0817519302d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    131 schema:name Algorithms
    132 rdf:type schema:DefinedTerm
    133 N67f521304ca749a6ba4543aa6d061592 schema:name Springer Nature - SN SciGraph project
    134 rdf:type schema:Organization
    135 N9126a413b2c24157a05a3071b8cf1a5b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    136 schema:name Neoplasms
    137 rdf:type schema:DefinedTerm
    138 Na86bc753dfa0437fa689802e574400af schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    139 schema:name Mutation
    140 rdf:type schema:DefinedTerm
    141 Nacb0a1751a984b12b0a0a39ae27047d6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    142 schema:name Databases, Genetic
    143 rdf:type schema:DefinedTerm
    144 Nc123fc6b102647e3a052a8d7086afb4d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    145 schema:name Humans
    146 rdf:type schema:DefinedTerm
    147 Ncfea072d64a540278a325a659d0a93be schema:name pubmed_id
    148 schema:value 30700767
    149 rdf:type schema:PropertyValue
    150 Nd4df69cd4f4040ee92e39152d19160b4 rdf:first sg:person.012722222247.55
    151 rdf:rest Nd7ccc6cbcb8a46a988db05e319c40731
    152 Nd7ccc6cbcb8a46a988db05e319c40731 rdf:first sg:person.01263373160.29
    153 rdf:rest Nf1bbc8d870c74cb384c3dac4d9d4bcc3
    154 Ndbce2c357cb8453ca349530dfc2ffcdb schema:volumeNumber 9
    155 rdf:type schema:PublicationVolume
    156 Need98fc29fc747189e191468d35cd7c5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    157 schema:name Computational Biology
    158 rdf:type schema:DefinedTerm
    159 Nf1bbc8d870c74cb384c3dac4d9d4bcc3 rdf:first sg:person.015000421417.64
    160 rdf:rest N0a48a6e3729b46e08877cf0eaecb7b0a
    161 Nfe69eb4c1851463781c46a9715cfed6b rdf:first sg:person.016541463041.09
    162 rdf:rest N42ae63f5ddf84da1a34be644e6ec4659
    163 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    164 schema:name Biological Sciences
    165 rdf:type schema:DefinedTerm
    166 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    167 schema:name Genetics
    168 rdf:type schema:DefinedTerm
    169 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    170 schema:name Medical and Health Sciences
    171 rdf:type schema:DefinedTerm
    172 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
    173 schema:name Oncology and Carcinogenesis
    174 rdf:type schema:DefinedTerm
    175 sg:journal.1045337 schema:issn 2045-2322
    176 schema:name Scientific Reports
    177 schema:publisher Springer Nature
    178 rdf:type schema:Periodical
    179 sg:person.01146510157.11 schema:affiliation grid-institutes:grid.416226.5
    180 schema:familyName Anandakrishnan
    181 schema:givenName Ramu
    182 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01146510157.11
    183 rdf:type schema:Person
    184 sg:person.01263373160.29 schema:affiliation grid-institutes:grid.416226.5
    185 schema:familyName Kinney
    186 schema:givenName Nicholas A.
    187 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01263373160.29
    188 rdf:type schema:Person
    189 sg:person.012722222247.55 schema:affiliation grid-institutes:grid.438526.e
    190 schema:familyName Dash
    191 schema:givenName Sajal
    192 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012722222247.55
    193 rdf:type schema:Person
    194 sg:person.015000421417.64 schema:affiliation grid-institutes:grid.416226.5
    195 schema:familyName Varghese
    196 schema:givenName Robin T.
    197 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015000421417.64
    198 rdf:type schema:Person
    199 sg:person.016541463041.09 schema:affiliation grid-institutes:grid.438526.e
    200 schema:familyName Feng
    201 schema:givenName Wu-chun
    202 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016541463041.09
    203 rdf:type schema:Person
    204 sg:person.0613230631.83 schema:affiliation grid-institutes:grid.416226.5
    205 schema:familyName Garner
    206 schema:givenName Harold R.
    207 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0613230631.83
    208 rdf:type schema:Person
    209 sg:pub.10.1007/s00262-008-0601-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018332705
    210 https://doi.org/10.1007/s00262-008-0601-7
    211 rdf:type schema:CreativeWork
    212 sg:pub.10.1007/s10549-004-5782-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1006358501
    213 https://doi.org/10.1007/s10549-004-5782-y
    214 rdf:type schema:CreativeWork
    215 sg:pub.10.1007/s11033-012-1944-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1013202173
    216 https://doi.org/10.1007/s11033-012-1944-x
    217 rdf:type schema:CreativeWork
    218 sg:pub.10.1007/s40265-018-0978-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106943878
    219 https://doi.org/10.1007/s40265-018-0978-3
    220 rdf:type schema:CreativeWork
    221 sg:pub.10.1038/532162a schema:sameAs https://app.dimensions.ai/details/publication/pub.1009196446
    222 https://doi.org/10.1038/532162a
    223 rdf:type schema:CreativeWork
    224 sg:pub.10.1038/bjc.1953.8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020348244
    225 https://doi.org/10.1038/bjc.1953.8
    226 rdf:type schema:CreativeWork
    227 sg:pub.10.1038/bjc.1954.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053357442
    228 https://doi.org/10.1038/bjc.1954.1
    229 rdf:type schema:CreativeWork
    230 sg:pub.10.1038/bjc.1969.41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022030401
    231 https://doi.org/10.1038/bjc.1969.41
    232 rdf:type schema:CreativeWork
    233 sg:pub.10.1038/nature08658 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014288207
    234 https://doi.org/10.1038/nature08658
    235 rdf:type schema:CreativeWork
    236 sg:pub.10.1038/nbt.2284 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012514299
    237 https://doi.org/10.1038/nbt.2284
    238 rdf:type schema:CreativeWork
    239 sg:pub.10.1038/ng.3658 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040178863
    240 https://doi.org/10.1038/ng.3658
    241 rdf:type schema:CreativeWork
    242 sg:pub.10.1038/nrc.2017.5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084129565
    243 https://doi.org/10.1038/nrc.2017.5
    244 rdf:type schema:CreativeWork
    245 sg:pub.10.1038/onc.2008.399 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034636056
    246 https://doi.org/10.1038/onc.2008.399
    247 rdf:type schema:CreativeWork
    248 sg:pub.10.1038/sj.onc.1210479 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024933355
    249 https://doi.org/10.1038/sj.onc.1210479
    250 rdf:type schema:CreativeWork
    251 sg:pub.10.1038/srep43169 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083863112
    252 https://doi.org/10.1038/srep43169
    253 rdf:type schema:CreativeWork
    254 sg:pub.10.1159/000143400 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051828485
    255 https://doi.org/10.1159/000143400
    256 rdf:type schema:CreativeWork
    257 sg:pub.10.1186/1471-2105-14-244 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009266519
    258 https://doi.org/10.1186/1471-2105-14-244
    259 rdf:type schema:CreativeWork
    260 sg:pub.10.1186/1471-2105-15-308 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050814702
    261 https://doi.org/10.1186/1471-2105-15-308
    262 rdf:type schema:CreativeWork
    263 sg:pub.10.1186/1471-2407-12-266 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050850156
    264 https://doi.org/10.1186/1471-2407-12-266
    265 rdf:type schema:CreativeWork
    266 sg:pub.10.1186/1471-2407-4-25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020527756
    267 https://doi.org/10.1186/1471-2407-4-25
    268 rdf:type schema:CreativeWork
    269 sg:pub.10.1186/s11658-016-0029-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040398223
    270 https://doi.org/10.1186/s11658-016-0029-6
    271 rdf:type schema:CreativeWork
    272 sg:pub.10.1186/s12859-017-2006-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100151850
    273 https://doi.org/10.1186/s12859-017-2006-0
    274 rdf:type schema:CreativeWork
    275 sg:pub.10.1186/s12859-018-2218-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1104403428
    276 https://doi.org/10.1186/s12859-018-2218-y
    277 rdf:type schema:CreativeWork
    278 grid-institutes:grid.416226.5 schema:alternateName Gibbs Cancer Center and Research Institute, Spartanburg, SC USA
    279 schema:name Biomedical Sciences, Edward Via College of Osteopathic Medicine, Blacksburg, VA USA
    280 Gibbs Cancer Center and Research Institute, Spartanburg, SC USA
    281 rdf:type schema:Organization
    282 grid-institutes:grid.438526.e schema:alternateName Department of Computer Science, Virginia Tech, Blacksburg, VA USA
    283 Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA USA
    284 schema:name Department of Computer Science, Virginia Tech, Blacksburg, VA USA
    285 Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA USA
    286 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...