A data-informatics method to quantitatively represent ternary eutectic microstructures View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Irmak Sargin, Scott P. Beckman

ABSTRACT

Many of the useful properties of modern engineering materials are determined by the material's microstructure. Controlling the microstructure requires an understanding of the complex dynamics underlying its evolution during processing. Investigating the thermal and mass transport phenomena responsible for a structure requires establishing a common language to quantitatively represent the microstructures being examined. Although such a common language exists for some of the simple structures, which has allowed these materials to be engineered, there has yet to be a method to represent complex systems, such as the ternary microstructures, which are important for many technologies. Here we show how stereological and data science methods can be combined to quantitatively represent ternary eutectic microstructures relative to a set of exemplars that span the stereological attribute space. Our method uniquely describes ternary eutectic microstructures, allowing images from different studies, with different compositions and processing histories, to be quantitatively compared. By overcoming this long-standing challenge, it becomes possible to begin to make progress toward a quantitatively predictive theory of ternary eutectic growth. We anticipate that the method of quantifying instances of an object relative to a set of exemplars spanning attribute-space will be broadly applied to classify materials structures, and may also find uses in other fields. More... »

PAGES

1591

Journal

TITLE

Scientific Reports

ISSUE

1

VOLUME

9

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-018-37794-y

DOI

http://dx.doi.org/10.1038/s41598-018-37794-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111977050

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30733484


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Washington State University", 
          "id": "https://www.grid.ac/institutes/grid.30064.31", 
          "name": [
            "School of Mechanical and Materials Engineering, Washington State University, 99164, Pullman, Washington, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sargin", 
        "givenName": "Irmak", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Washington State University", 
          "id": "https://www.grid.ac/institutes/grid.30064.31", 
          "name": [
            "School of Mechanical and Materials Engineering, Washington State University, 99164, Pullman, Washington, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Beckman", 
        "givenName": "Scott P.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11837-011-0057-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000354578", 
          "https://doi.org/10.1007/s11837-011-0057-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jpowsour.2013.06.100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005816020"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.91.135503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008140028"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.91.135503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008140028"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.msea.2003.10.187", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008731681"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-0248(01)01873-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013320388"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scriptamat.2007.11.030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014272321"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2015.02.045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015211689"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11664-002-0163-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016282857", 
          "https://doi.org/10.1007/s11664-002-0163-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11664-002-0163-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016282857", 
          "https://doi.org/10.1007/s11664-002-0163-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11669-015-0439-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017112989", 
          "https://doi.org/10.1007/s11669-015-0439-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.msea.2007.08.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017378587"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2320/matertrans1989.40.665", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018159251"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/0295-5075/90/26010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019726497"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matchar.2007.05.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021913677"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rspa.2010.0543", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023523719"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11661-007-9163-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027150643", 
          "https://doi.org/10.1007/s11661-007-9163-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02658416", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030781886", 
          "https://doi.org/10.1007/bf02658416"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02658416", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030781886", 
          "https://doi.org/10.1007/bf02658416"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2015.09.047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031083589"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.pmatsci.2009.08.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033045094"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2011.06.051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034679351"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1179/mst.1997.13.1.5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037851541"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2481/dsj.1.19", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038226124"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2355/isijinternational.39.1015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038903820"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2004.05.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039659707"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.commatsci.2004.07.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043707656"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2016.03.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048758707"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2016.03.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048758707"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12666-012-0172-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049692586", 
          "https://doi.org/10.1007/s12666-012-0172-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/2193-9772-2-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051353116", 
          "https://doi.org/10.1186/2193-9772-2-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sam.10017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051921396"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3139/146.110652", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071031753"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "Many of the useful properties of modern engineering materials are determined by the material's microstructure. Controlling the microstructure requires an understanding of the complex dynamics underlying its evolution during processing. Investigating the thermal and mass transport phenomena responsible for a structure requires establishing a common language to quantitatively represent the microstructures being examined. Although such a common language exists for some of the simple structures, which has allowed these materials to be engineered, there has yet to be a method to represent complex systems, such as the ternary microstructures, which are important for many technologies. Here we show how stereological and data science methods can be combined to quantitatively represent ternary eutectic microstructures relative to a set of exemplars that span the stereological attribute space. Our method uniquely describes ternary eutectic microstructures, allowing images from different studies, with different compositions and processing histories, to be quantitatively compared. By overcoming this long-standing challenge, it becomes possible to begin to make progress toward a quantitatively predictive theory of ternary eutectic growth. We anticipate that the method of quantifying instances of an object relative to a set of exemplars spanning attribute-space will be broadly applied to classify materials structures, and may also find uses in other fields.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-018-37794-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "A data-informatics method to quantitatively represent ternary eutectic microstructures", 
    "pagination": "1591", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "108db6b459e3bfc8af12b058c79f8b10d62a1c68e3d1e426a75c3ed7bdf627ac"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30733484"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-018-37794-y"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111977050"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-018-37794-y", 
      "https://app.dimensions.ai/details/publication/pub.1111977050"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:04", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000334_0000000334/records_127819_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-018-37794-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-37794-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-37794-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-37794-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-37794-y'


 

This table displays all metadata directly associated to this object as RDF triples.

167 TRIPLES      21 PREDICATES      58 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-018-37794-y schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Nb980e6e93ff8493f8fb2d4f11660e987
4 schema:citation sg:pub.10.1007/bf02658416
5 sg:pub.10.1007/s11661-007-9163-0
6 sg:pub.10.1007/s11664-002-0163-y
7 sg:pub.10.1007/s11669-015-0439-6
8 sg:pub.10.1007/s11837-011-0057-7
9 sg:pub.10.1007/s12666-012-0172-3
10 sg:pub.10.1186/2193-9772-2-3
11 https://doi.org/10.1002/sam.10017
12 https://doi.org/10.1016/j.actamat.2004.05.024
13 https://doi.org/10.1016/j.actamat.2011.06.051
14 https://doi.org/10.1016/j.actamat.2015.02.045
15 https://doi.org/10.1016/j.actamat.2015.09.047
16 https://doi.org/10.1016/j.actamat.2016.03.010
17 https://doi.org/10.1016/j.commatsci.2004.07.004
18 https://doi.org/10.1016/j.jpowsour.2013.06.100
19 https://doi.org/10.1016/j.matchar.2007.05.025
20 https://doi.org/10.1016/j.msea.2003.10.187
21 https://doi.org/10.1016/j.msea.2007.08.019
22 https://doi.org/10.1016/j.pmatsci.2009.08.002
23 https://doi.org/10.1016/j.scriptamat.2007.11.030
24 https://doi.org/10.1016/s0022-0248(01)01873-5
25 https://doi.org/10.1098/rspa.2010.0543
26 https://doi.org/10.1103/physrevlett.91.135503
27 https://doi.org/10.1179/mst.1997.13.1.5
28 https://doi.org/10.1209/0295-5075/90/26010
29 https://doi.org/10.2320/matertrans1989.40.665
30 https://doi.org/10.2355/isijinternational.39.1015
31 https://doi.org/10.2481/dsj.1.19
32 https://doi.org/10.3139/146.110652
33 schema:datePublished 2019-12
34 schema:datePublishedReg 2019-12-01
35 schema:description Many of the useful properties of modern engineering materials are determined by the material's microstructure. Controlling the microstructure requires an understanding of the complex dynamics underlying its evolution during processing. Investigating the thermal and mass transport phenomena responsible for a structure requires establishing a common language to quantitatively represent the microstructures being examined. Although such a common language exists for some of the simple structures, which has allowed these materials to be engineered, there has yet to be a method to represent complex systems, such as the ternary microstructures, which are important for many technologies. Here we show how stereological and data science methods can be combined to quantitatively represent ternary eutectic microstructures relative to a set of exemplars that span the stereological attribute space. Our method uniquely describes ternary eutectic microstructures, allowing images from different studies, with different compositions and processing histories, to be quantitatively compared. By overcoming this long-standing challenge, it becomes possible to begin to make progress toward a quantitatively predictive theory of ternary eutectic growth. We anticipate that the method of quantifying instances of an object relative to a set of exemplars spanning attribute-space will be broadly applied to classify materials structures, and may also find uses in other fields.
36 schema:genre research_article
37 schema:inLanguage en
38 schema:isAccessibleForFree true
39 schema:isPartOf N3a4c8e73409e4fb7a90be354589cd16e
40 Nd6a093b22bee440b8900e6e553f255e9
41 sg:journal.1045337
42 schema:name A data-informatics method to quantitatively represent ternary eutectic microstructures
43 schema:pagination 1591
44 schema:productId N1fe5f1fcba5e4f17b43f48d47242a1a7
45 N3d7f4d62c3764f728edc46eb32d7e404
46 N70dafc08c5ee4a0ca9f49205a4182c16
47 N99e74081560049cebad8cf52033cef91
48 Nb8c8e206617d4d7eac921ef496809f0c
49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111977050
50 https://doi.org/10.1038/s41598-018-37794-y
51 schema:sdDatePublished 2019-04-11T09:04
52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
53 schema:sdPublisher Na0deb008f6734ab5947c4c34adbb7f65
54 schema:url https://www.nature.com/articles/s41598-018-37794-y
55 sgo:license sg:explorer/license/
56 sgo:sdDataset articles
57 rdf:type schema:ScholarlyArticle
58 N1fe5f1fcba5e4f17b43f48d47242a1a7 schema:name readcube_id
59 schema:value 108db6b459e3bfc8af12b058c79f8b10d62a1c68e3d1e426a75c3ed7bdf627ac
60 rdf:type schema:PropertyValue
61 N3a4c8e73409e4fb7a90be354589cd16e schema:issueNumber 1
62 rdf:type schema:PublicationIssue
63 N3d7f4d62c3764f728edc46eb32d7e404 schema:name doi
64 schema:value 10.1038/s41598-018-37794-y
65 rdf:type schema:PropertyValue
66 N4e416254fbb148aaad81eabf71208c15 schema:affiliation https://www.grid.ac/institutes/grid.30064.31
67 schema:familyName Beckman
68 schema:givenName Scott P.
69 rdf:type schema:Person
70 N56461daf3c2f4b67a05276c6507d22c4 schema:affiliation https://www.grid.ac/institutes/grid.30064.31
71 schema:familyName Sargin
72 schema:givenName Irmak
73 rdf:type schema:Person
74 N70dafc08c5ee4a0ca9f49205a4182c16 schema:name pubmed_id
75 schema:value 30733484
76 rdf:type schema:PropertyValue
77 N93ee179895a44e19b4e9f97af62ddea6 rdf:first N4e416254fbb148aaad81eabf71208c15
78 rdf:rest rdf:nil
79 N99e74081560049cebad8cf52033cef91 schema:name nlm_unique_id
80 schema:value 101563288
81 rdf:type schema:PropertyValue
82 Na0deb008f6734ab5947c4c34adbb7f65 schema:name Springer Nature - SN SciGraph project
83 rdf:type schema:Organization
84 Nb8c8e206617d4d7eac921ef496809f0c schema:name dimensions_id
85 schema:value pub.1111977050
86 rdf:type schema:PropertyValue
87 Nb980e6e93ff8493f8fb2d4f11660e987 rdf:first N56461daf3c2f4b67a05276c6507d22c4
88 rdf:rest N93ee179895a44e19b4e9f97af62ddea6
89 Nd6a093b22bee440b8900e6e553f255e9 schema:volumeNumber 9
90 rdf:type schema:PublicationVolume
91 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
92 schema:name Engineering
93 rdf:type schema:DefinedTerm
94 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
95 schema:name Materials Engineering
96 rdf:type schema:DefinedTerm
97 sg:journal.1045337 schema:issn 2045-2322
98 schema:name Scientific Reports
99 rdf:type schema:Periodical
100 sg:pub.10.1007/bf02658416 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030781886
101 https://doi.org/10.1007/bf02658416
102 rdf:type schema:CreativeWork
103 sg:pub.10.1007/s11661-007-9163-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027150643
104 https://doi.org/10.1007/s11661-007-9163-0
105 rdf:type schema:CreativeWork
106 sg:pub.10.1007/s11664-002-0163-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1016282857
107 https://doi.org/10.1007/s11664-002-0163-y
108 rdf:type schema:CreativeWork
109 sg:pub.10.1007/s11669-015-0439-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017112989
110 https://doi.org/10.1007/s11669-015-0439-6
111 rdf:type schema:CreativeWork
112 sg:pub.10.1007/s11837-011-0057-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000354578
113 https://doi.org/10.1007/s11837-011-0057-7
114 rdf:type schema:CreativeWork
115 sg:pub.10.1007/s12666-012-0172-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049692586
116 https://doi.org/10.1007/s12666-012-0172-3
117 rdf:type schema:CreativeWork
118 sg:pub.10.1186/2193-9772-2-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051353116
119 https://doi.org/10.1186/2193-9772-2-3
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1002/sam.10017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051921396
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/j.actamat.2004.05.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039659707
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/j.actamat.2011.06.051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034679351
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/j.actamat.2015.02.045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015211689
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/j.actamat.2015.09.047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031083589
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/j.actamat.2016.03.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048758707
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/j.commatsci.2004.07.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043707656
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.jpowsour.2013.06.100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005816020
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.matchar.2007.05.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021913677
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/j.msea.2003.10.187 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008731681
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.msea.2007.08.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017378587
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.pmatsci.2009.08.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033045094
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.scriptamat.2007.11.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014272321
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/s0022-0248(01)01873-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013320388
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1098/rspa.2010.0543 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023523719
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1103/physrevlett.91.135503 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008140028
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1179/mst.1997.13.1.5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037851541
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1209/0295-5075/90/26010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019726497
156 rdf:type schema:CreativeWork
157 https://doi.org/10.2320/matertrans1989.40.665 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018159251
158 rdf:type schema:CreativeWork
159 https://doi.org/10.2355/isijinternational.39.1015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038903820
160 rdf:type schema:CreativeWork
161 https://doi.org/10.2481/dsj.1.19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038226124
162 rdf:type schema:CreativeWork
163 https://doi.org/10.3139/146.110652 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071031753
164 rdf:type schema:CreativeWork
165 https://www.grid.ac/institutes/grid.30064.31 schema:alternateName Washington State University
166 schema:name School of Mechanical and Materials Engineering, Washington State University, 99164, Pullman, Washington, USA
167 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...