Smart bone plates can monitor fracture healing View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Monica C. Lin, Diane Hu, Meir Marmor, Safa T. Herfat, Chelsea S. Bahney, Michel M. Maharbiz

ABSTRACT

There are currently no standardized methods for assessing fracture healing, with physicians relying on X-rays which are only useful at later stages of repair. Using in vivo mouse fracture models, we present the first evidence that microscale instrumented implants provide a route for post-operative fracture monitoring, utilizing electrical impedance spectroscopy (EIS) to track the healing tissue with high sensitivity. In this study, we fixed mouse long bone fractures with external fixators and bone plates. EIS measurements taken across two microelectrodes within the fracture gap were able to track longitudinal differences between individual mice with good versus poor healing. We additionally present an equivalent circuit model that combines the EIS data to classify fracture repair states. Lastly, we show that EIS measurements strongly correlated with standard quantitative µCT values and that these correlations validate clinically-relevant operating frequencies for implementation of this technique. These results demonstrate that EIS can be integrated into current fracture management strategies such as bone plating, providing physicians with quantitative information about the state of fracture repair to guide clinical decision-making for patients. More... »

PAGES

2122

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-018-37784-0

DOI

http://dx.doi.org/10.1038/s41598-018-37784-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112133630

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30765721


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of California, Berkeley", 
          "id": "https://www.grid.ac/institutes/grid.47840.3f", 
          "name": [
            "Department of Bioengineering, University of California, 94720, Berkeley, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lin", 
        "givenName": "Monica C.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "San Francisco General Hospital", 
          "id": "https://www.grid.ac/institutes/grid.416732.5", 
          "name": [
            "UCSF Orthopaedic Trauma Institute, Zuckerberg San Francisco General Hospital, 94110, San Francisco, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hu", 
        "givenName": "Diane", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "San Francisco General Hospital", 
          "id": "https://www.grid.ac/institutes/grid.416732.5", 
          "name": [
            "UCSF Orthopaedic Trauma Institute, Zuckerberg San Francisco General Hospital, 94110, San Francisco, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Marmor", 
        "givenName": "Meir", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "San Francisco General Hospital", 
          "id": "https://www.grid.ac/institutes/grid.416732.5", 
          "name": [
            "UCSF Orthopaedic Trauma Institute, Zuckerberg San Francisco General Hospital, 94110, San Francisco, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Herfat", 
        "givenName": "Safa T.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Steadman Philippon Research Institute", 
          "id": "https://www.grid.ac/institutes/grid.419649.7", 
          "name": [
            "Department of Bioengineering, University of California, 94720, Berkeley, CA, USA", 
            "UCSF Orthopaedic Trauma Institute, Zuckerberg San Francisco General Hospital, 94110, San Francisco, CA, USA", 
            "Center for Regenerative Sports Medicine, Steadman Philippon Research Institute, 81657, Vail, CO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bahney", 
        "givenName": "Chelsea S.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California, Berkeley", 
          "id": "https://www.grid.ac/institutes/grid.47840.3f", 
          "name": [
            "Department of Bioengineering, University of California, 94720, Berkeley, CA, USA", 
            "Department of Electrical Engineering and Computer Science, University of California, 94720, Berkeley, CA, USA", 
            "Chan Zuckerberg Biohub, 94158, San Francisco, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Maharbiz", 
        "givenName": "Michel M.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/ar.1091010404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000730109"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3109/17453674.2010.519910", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002711239"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0165-9936(90)87042-k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007719914"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c5tb02707a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007900613"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s007760050010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009233637", 
          "https://doi.org/10.1007/s007760050010"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0141-0229(99)00008-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009608447"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1114/1.103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009779511", 
          "https://doi.org/10.1114/1.103"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3109/17453679308993640", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009850405"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jbmr.2148", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013680782"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pbio.1000412", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013958828"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.injury.2010.11.048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015104681"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.semcdb.2008.07.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015482844"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0736-0266(02)00017-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018636236"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.injury.2009.10.044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018874495"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9780471740360.ebs0128", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020336916"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4103/0019-5413.97260", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024595200"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bone.2012.03.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028958837"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0736-0266(00)00006-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029518291"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1699-0463.1988.tb05320.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032732758"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1699-0463.1988.tb05320.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032732758"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jor.22918", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037669702"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.enzmictec.2008.09.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038018200"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/bot.0000000000000390", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040398541"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/bot.0000000000000390", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040398541"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jbm.820270609", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042818128"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jbm.820270609", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042818128"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00774-013-0429-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043468656", 
          "https://doi.org/10.1007/s00774-013-0429-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fendo.2015.00004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044453259"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1359/jbmr.081003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044603734"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2474-8-72", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046219797", 
          "https://doi.org/10.1186/1471-2474-8-72"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0720-048x(94)90329-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047173126"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jor.21341", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047473972"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.elstat.2007.11.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049065006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.mlg.0000233540.26519.ba", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051333557"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.mlg.0000233540.26519.ba", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051333557"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2014/708574", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052841818"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0031-9155/27/4/002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059020860"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0031-9155/41/11/002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059022903"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0031-9155/54/10/007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059027609"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0031-9155/54/10/007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059027609"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/ten.teb.2009.0687", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059316978"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tbme.2015.2496237", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061530050"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tuffc.2008.787", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061809415"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.13172/2050-2303-2-1-316", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065007294"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2106/jbjs.g.01580", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068900804"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2106/jbjs.g.01580", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068900804"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2106/jbjs.g.01580", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068900804"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2106/jbjs.k.01344", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068902717"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2106/jbjs.k.01344", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068902717"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2106/jbjs.k.01344", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068902717"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3791/3552", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071423057"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3928/01477447-20090101-10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071719928"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1079033354", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/embc.2015.7319548", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079206118"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1242/dev.130807", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079394213"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1615/critrevbiomedeng.v24.i4-6.20", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083107124"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jor.23570", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084516213"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/embc.2017.8037175", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092356496"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icsens.2012.6411170", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093609148"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fbioe.2018.00058", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103989492"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/c2012-0-06951-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109637772"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "There are currently no standardized methods for assessing fracture healing, with physicians relying on X-rays which are only useful at later stages of repair. Using in vivo mouse fracture models, we present the first evidence that microscale instrumented implants provide a route for post-operative fracture monitoring, utilizing electrical impedance spectroscopy (EIS) to track the healing tissue with high sensitivity. In this study, we fixed mouse long bone fractures with external fixators and bone plates. EIS measurements taken across two microelectrodes within the fracture gap were able to track longitudinal differences between individual mice with good versus poor healing. We additionally present an equivalent circuit model that combines the EIS data to classify fracture repair states. Lastly, we show that EIS measurements strongly correlated with standard quantitative \u00b5CT values and that these correlations validate clinically-relevant operating frequencies for implementation of this technique. These results demonstrate that EIS can be integrated into current fracture management strategies such as bone plating, providing physicians with quantitative information about the state of fracture repair to guide clinical decision-making for patients.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-018-37784-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3144545", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3494507", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "Smart bone plates can monitor fracture healing", 
    "pagination": "2122", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2352b4fc6afbff3b057860161f967be66ea756eaf02947575fd0f072a322790a"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30765721"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-018-37784-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112133630"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-018-37784-0", 
      "https://app.dimensions.ai/details/publication/pub.1112133630"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:13", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000338_0000000338/records_47994_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-018-37784-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-37784-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-37784-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-37784-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-37784-0'


 

This table displays all metadata directly associated to this object as RDF triples.

270 TRIPLES      21 PREDICATES      81 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-018-37784-0 schema:about anzsrc-for:11
2 anzsrc-for:1103
3 schema:author N94d2d4c80bf1429898580d26d36b1b30
4 schema:citation sg:pub.10.1007/s00774-013-0429-x
5 sg:pub.10.1007/s007760050010
6 sg:pub.10.1114/1.103
7 sg:pub.10.1186/1471-2474-8-72
8 https://app.dimensions.ai/details/publication/pub.1079033354
9 https://doi.org/10.1002/9780471740360.ebs0128
10 https://doi.org/10.1002/ar.1091010404
11 https://doi.org/10.1002/jbm.820270609
12 https://doi.org/10.1002/jbmr.2148
13 https://doi.org/10.1002/jor.21341
14 https://doi.org/10.1002/jor.22918
15 https://doi.org/10.1002/jor.23570
16 https://doi.org/10.1016/0165-9936(90)87042-k
17 https://doi.org/10.1016/0720-048x(94)90329-8
18 https://doi.org/10.1016/c2012-0-06951-7
19 https://doi.org/10.1016/j.bone.2012.03.008
20 https://doi.org/10.1016/j.elstat.2007.11.005
21 https://doi.org/10.1016/j.enzmictec.2008.09.005
22 https://doi.org/10.1016/j.injury.2009.10.044
23 https://doi.org/10.1016/j.injury.2010.11.048
24 https://doi.org/10.1016/j.semcdb.2008.07.004
25 https://doi.org/10.1016/s0141-0229(99)00008-3
26 https://doi.org/10.1016/s0736-0266(00)00006-1
27 https://doi.org/10.1016/s0736-0266(02)00017-7
28 https://doi.org/10.1039/c5tb02707a
29 https://doi.org/10.1088/0031-9155/27/4/002
30 https://doi.org/10.1088/0031-9155/41/11/002
31 https://doi.org/10.1088/0031-9155/54/10/007
32 https://doi.org/10.1089/ten.teb.2009.0687
33 https://doi.org/10.1097/01.mlg.0000233540.26519.ba
34 https://doi.org/10.1097/bot.0000000000000390
35 https://doi.org/10.1109/embc.2015.7319548
36 https://doi.org/10.1109/embc.2017.8037175
37 https://doi.org/10.1109/icsens.2012.6411170
38 https://doi.org/10.1109/tbme.2015.2496237
39 https://doi.org/10.1109/tuffc.2008.787
40 https://doi.org/10.1111/j.1699-0463.1988.tb05320.x
41 https://doi.org/10.1155/2014/708574
42 https://doi.org/10.1242/dev.130807
43 https://doi.org/10.13172/2050-2303-2-1-316
44 https://doi.org/10.1359/jbmr.081003
45 https://doi.org/10.1371/journal.pbio.1000412
46 https://doi.org/10.1615/critrevbiomedeng.v24.i4-6.20
47 https://doi.org/10.2106/jbjs.g.01580
48 https://doi.org/10.2106/jbjs.k.01344
49 https://doi.org/10.3109/17453674.2010.519910
50 https://doi.org/10.3109/17453679308993640
51 https://doi.org/10.3389/fbioe.2018.00058
52 https://doi.org/10.3389/fendo.2015.00004
53 https://doi.org/10.3791/3552
54 https://doi.org/10.3928/01477447-20090101-10
55 https://doi.org/10.4103/0019-5413.97260
56 schema:datePublished 2019-12
57 schema:datePublishedReg 2019-12-01
58 schema:description There are currently no standardized methods for assessing fracture healing, with physicians relying on X-rays which are only useful at later stages of repair. Using in vivo mouse fracture models, we present the first evidence that microscale instrumented implants provide a route for post-operative fracture monitoring, utilizing electrical impedance spectroscopy (EIS) to track the healing tissue with high sensitivity. In this study, we fixed mouse long bone fractures with external fixators and bone plates. EIS measurements taken across two microelectrodes within the fracture gap were able to track longitudinal differences between individual mice with good versus poor healing. We additionally present an equivalent circuit model that combines the EIS data to classify fracture repair states. Lastly, we show that EIS measurements strongly correlated with standard quantitative µCT values and that these correlations validate clinically-relevant operating frequencies for implementation of this technique. These results demonstrate that EIS can be integrated into current fracture management strategies such as bone plating, providing physicians with quantitative information about the state of fracture repair to guide clinical decision-making for patients.
59 schema:genre research_article
60 schema:inLanguage en
61 schema:isAccessibleForFree true
62 schema:isPartOf N921078d5adb14edf8f224ffcd0fc610b
63 Nf3c48ee48562401fb2be2f5c3a977ae1
64 sg:journal.1045337
65 schema:name Smart bone plates can monitor fracture healing
66 schema:pagination 2122
67 schema:productId N5e23ab654f054359bea018b2c674197e
68 N5f9aa681d82944e0b9013e9ae8b9d71c
69 N8c8ad031023a4ef8b18b2e4aae187277
70 Nb7180ce9696945738b3a8cae884c20a0
71 Nd865c706ce2e45c8bf9f0452bbe53950
72 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112133630
73 https://doi.org/10.1038/s41598-018-37784-0
74 schema:sdDatePublished 2019-04-11T09:13
75 schema:sdLicense https://scigraph.springernature.com/explorer/license/
76 schema:sdPublisher N4a24ee92bf3f435cbfa052e1f5f18c82
77 schema:url https://www.nature.com/articles/s41598-018-37784-0
78 sgo:license sg:explorer/license/
79 sgo:sdDataset articles
80 rdf:type schema:ScholarlyArticle
81 N4a24ee92bf3f435cbfa052e1f5f18c82 schema:name Springer Nature - SN SciGraph project
82 rdf:type schema:Organization
83 N5b90618a955042d3b7fe05482c7ab19c rdf:first Nc6d388708e4540fc8c9f4600713a04f3
84 rdf:rest Nc10d7920e3194f19b3ec2dccecd312d8
85 N5d50a6035c4c46ee99a5651177cd14b1 schema:affiliation https://www.grid.ac/institutes/grid.47840.3f
86 schema:familyName Maharbiz
87 schema:givenName Michel M.
88 rdf:type schema:Person
89 N5e23ab654f054359bea018b2c674197e schema:name pubmed_id
90 schema:value 30765721
91 rdf:type schema:PropertyValue
92 N5f9aa681d82944e0b9013e9ae8b9d71c schema:name nlm_unique_id
93 schema:value 101563288
94 rdf:type schema:PropertyValue
95 N60bf787159d94cd98f4be12e22b9e21f schema:affiliation https://www.grid.ac/institutes/grid.47840.3f
96 schema:familyName Lin
97 schema:givenName Monica C.
98 rdf:type schema:Person
99 N684200486df841a69d4cec1048efda90 schema:affiliation https://www.grid.ac/institutes/grid.416732.5
100 schema:familyName Marmor
101 schema:givenName Meir
102 rdf:type schema:Person
103 N7c556a91a58c4b808c60615258b42e08 rdf:first N9c8bae4c3b0c4548bdb1a68e798765ec
104 rdf:rest Na90c54b15d1f40e3986f60864cdd6bbc
105 N8c8ad031023a4ef8b18b2e4aae187277 schema:name doi
106 schema:value 10.1038/s41598-018-37784-0
107 rdf:type schema:PropertyValue
108 N921078d5adb14edf8f224ffcd0fc610b schema:issueNumber 1
109 rdf:type schema:PublicationIssue
110 N94d2d4c80bf1429898580d26d36b1b30 rdf:first N60bf787159d94cd98f4be12e22b9e21f
111 rdf:rest N5b90618a955042d3b7fe05482c7ab19c
112 N9c8bae4c3b0c4548bdb1a68e798765ec schema:affiliation https://www.grid.ac/institutes/grid.419649.7
113 schema:familyName Bahney
114 schema:givenName Chelsea S.
115 rdf:type schema:Person
116 Na90c54b15d1f40e3986f60864cdd6bbc rdf:first N5d50a6035c4c46ee99a5651177cd14b1
117 rdf:rest rdf:nil
118 Nb7180ce9696945738b3a8cae884c20a0 schema:name readcube_id
119 schema:value 2352b4fc6afbff3b057860161f967be66ea756eaf02947575fd0f072a322790a
120 rdf:type schema:PropertyValue
121 Nc10d7920e3194f19b3ec2dccecd312d8 rdf:first N684200486df841a69d4cec1048efda90
122 rdf:rest Nf8f42ec78ccb4565baa1e24d4d6d9a16
123 Nc6d388708e4540fc8c9f4600713a04f3 schema:affiliation https://www.grid.ac/institutes/grid.416732.5
124 schema:familyName Hu
125 schema:givenName Diane
126 rdf:type schema:Person
127 Nd3f2ba6c5f2c4a0a91cead34de866870 schema:affiliation https://www.grid.ac/institutes/grid.416732.5
128 schema:familyName Herfat
129 schema:givenName Safa T.
130 rdf:type schema:Person
131 Nd865c706ce2e45c8bf9f0452bbe53950 schema:name dimensions_id
132 schema:value pub.1112133630
133 rdf:type schema:PropertyValue
134 Nf3c48ee48562401fb2be2f5c3a977ae1 schema:volumeNumber 9
135 rdf:type schema:PublicationVolume
136 Nf8f42ec78ccb4565baa1e24d4d6d9a16 rdf:first Nd3f2ba6c5f2c4a0a91cead34de866870
137 rdf:rest N7c556a91a58c4b808c60615258b42e08
138 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
139 schema:name Medical and Health Sciences
140 rdf:type schema:DefinedTerm
141 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
142 schema:name Clinical Sciences
143 rdf:type schema:DefinedTerm
144 sg:grant.3144545 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-018-37784-0
145 rdf:type schema:MonetaryGrant
146 sg:grant.3494507 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-018-37784-0
147 rdf:type schema:MonetaryGrant
148 sg:journal.1045337 schema:issn 2045-2322
149 schema:name Scientific Reports
150 rdf:type schema:Periodical
151 sg:pub.10.1007/s00774-013-0429-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1043468656
152 https://doi.org/10.1007/s00774-013-0429-x
153 rdf:type schema:CreativeWork
154 sg:pub.10.1007/s007760050010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009233637
155 https://doi.org/10.1007/s007760050010
156 rdf:type schema:CreativeWork
157 sg:pub.10.1114/1.103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009779511
158 https://doi.org/10.1114/1.103
159 rdf:type schema:CreativeWork
160 sg:pub.10.1186/1471-2474-8-72 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046219797
161 https://doi.org/10.1186/1471-2474-8-72
162 rdf:type schema:CreativeWork
163 https://app.dimensions.ai/details/publication/pub.1079033354 schema:CreativeWork
164 https://doi.org/10.1002/9780471740360.ebs0128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020336916
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1002/ar.1091010404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000730109
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1002/jbm.820270609 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042818128
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1002/jbmr.2148 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013680782
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1002/jor.21341 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047473972
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1002/jor.22918 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037669702
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1002/jor.23570 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084516213
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1016/0165-9936(90)87042-k schema:sameAs https://app.dimensions.ai/details/publication/pub.1007719914
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1016/0720-048x(94)90329-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047173126
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1016/c2012-0-06951-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109637772
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1016/j.bone.2012.03.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028958837
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1016/j.elstat.2007.11.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049065006
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1016/j.enzmictec.2008.09.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038018200
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1016/j.injury.2009.10.044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018874495
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1016/j.injury.2010.11.048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015104681
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1016/j.semcdb.2008.07.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015482844
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1016/s0141-0229(99)00008-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009608447
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1016/s0736-0266(00)00006-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029518291
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1016/s0736-0266(02)00017-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018636236
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1039/c5tb02707a schema:sameAs https://app.dimensions.ai/details/publication/pub.1007900613
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1088/0031-9155/27/4/002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059020860
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1088/0031-9155/41/11/002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059022903
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1088/0031-9155/54/10/007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059027609
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1089/ten.teb.2009.0687 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059316978
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1097/01.mlg.0000233540.26519.ba schema:sameAs https://app.dimensions.ai/details/publication/pub.1051333557
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1097/bot.0000000000000390 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040398541
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1109/embc.2015.7319548 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079206118
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1109/embc.2017.8037175 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092356496
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1109/icsens.2012.6411170 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093609148
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1109/tbme.2015.2496237 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061530050
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1109/tuffc.2008.787 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061809415
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1111/j.1699-0463.1988.tb05320.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1032732758
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1155/2014/708574 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052841818
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1242/dev.130807 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079394213
231 rdf:type schema:CreativeWork
232 https://doi.org/10.13172/2050-2303-2-1-316 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065007294
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1359/jbmr.081003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044603734
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1371/journal.pbio.1000412 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013958828
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1615/critrevbiomedeng.v24.i4-6.20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083107124
239 rdf:type schema:CreativeWork
240 https://doi.org/10.2106/jbjs.g.01580 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068900804
241 rdf:type schema:CreativeWork
242 https://doi.org/10.2106/jbjs.k.01344 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068902717
243 rdf:type schema:CreativeWork
244 https://doi.org/10.3109/17453674.2010.519910 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002711239
245 rdf:type schema:CreativeWork
246 https://doi.org/10.3109/17453679308993640 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009850405
247 rdf:type schema:CreativeWork
248 https://doi.org/10.3389/fbioe.2018.00058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103989492
249 rdf:type schema:CreativeWork
250 https://doi.org/10.3389/fendo.2015.00004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044453259
251 rdf:type schema:CreativeWork
252 https://doi.org/10.3791/3552 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071423057
253 rdf:type schema:CreativeWork
254 https://doi.org/10.3928/01477447-20090101-10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071719928
255 rdf:type schema:CreativeWork
256 https://doi.org/10.4103/0019-5413.97260 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024595200
257 rdf:type schema:CreativeWork
258 https://www.grid.ac/institutes/grid.416732.5 schema:alternateName San Francisco General Hospital
259 schema:name UCSF Orthopaedic Trauma Institute, Zuckerberg San Francisco General Hospital, 94110, San Francisco, CA, USA
260 rdf:type schema:Organization
261 https://www.grid.ac/institutes/grid.419649.7 schema:alternateName Steadman Philippon Research Institute
262 schema:name Center for Regenerative Sports Medicine, Steadman Philippon Research Institute, 81657, Vail, CO, USA
263 Department of Bioengineering, University of California, 94720, Berkeley, CA, USA
264 UCSF Orthopaedic Trauma Institute, Zuckerberg San Francisco General Hospital, 94110, San Francisco, CA, USA
265 rdf:type schema:Organization
266 https://www.grid.ac/institutes/grid.47840.3f schema:alternateName University of California, Berkeley
267 schema:name Chan Zuckerberg Biohub, 94158, San Francisco, CA, USA
268 Department of Bioengineering, University of California, 94720, Berkeley, CA, USA
269 Department of Electrical Engineering and Computer Science, University of California, 94720, Berkeley, CA, USA
270 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...