Predicting Alzheimer’s disease progression using multi-modal deep learning approach View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Garam Lee, Kwangsik Nho, Byungkon Kang, Kyung-Ah Sohn, Dokyoon Kim,

ABSTRACT

Alzheimer's disease (AD) is a progressive neurodegenerative condition marked by a decline in cognitive functions with no validated disease modifying treatment. It is critical for timely treatment to detect AD in its earlier stage before clinical manifestation. Mild cognitive impairment (MCI) is an intermediate stage between cognitively normal older adults and AD. To predict conversion from MCI to probable AD, we applied a deep learning approach, multimodal recurrent neural network. We developed an integrative framework that combines not only cross-sectional neuroimaging biomarkers at baseline but also longitudinal cerebrospinal fluid (CSF) and cognitive performance biomarkers obtained from the Alzheimer's Disease Neuroimaging Initiative cohort (ADNI). The proposed framework integrated longitudinal multi-domain data. Our results showed that 1) our prediction model for MCI conversion to AD yielded up to 75% accuracy (area under the curve (AUC) = 0.83) when using only single modality of data separately; and 2) our prediction model achieved the best performance with 81% accuracy (AUC = 0.86) when incorporating longitudinal multi-domain data. A multi-modal deep learning approach has potential to identify persons at risk of developing AD who might benefit most from a clinical trial or as a stratification approach within clinical trials. More... »

PAGES

1952

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-018-37769-z

DOI

http://dx.doi.org/10.1038/s41598-018-37769-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112093901

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30760848


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Neurosciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Ajou University", 
          "id": "https://www.grid.ac/institutes/grid.251916.8", 
          "name": [
            "Department of Software and Computer Engineering, Ajou University, Suwon, South Korea", 
            "Biomedical & Translational Informatics Institute, Geisinger, Danville, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Garam", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Indiana University \u2013 Purdue University Indianapolis", 
          "id": "https://www.grid.ac/institutes/grid.257413.6", 
          "name": [
            "Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN USA", 
            "Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nho", 
        "givenName": "Kwangsik", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ajou University", 
          "id": "https://www.grid.ac/institutes/grid.251916.8", 
          "name": [
            "Department of Software and Computer Engineering, Ajou University, Suwon, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kang", 
        "givenName": "Byungkon", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ajou University", 
          "id": "https://www.grid.ac/institutes/grid.251916.8", 
          "name": [
            "Department of Software and Computer Engineering, Ajou University, Suwon, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sohn", 
        "givenName": "Kyung-Ah", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Pennsylvania State University", 
          "id": "https://www.grid.ac/institutes/grid.29857.31", 
          "name": [
            "Biomedical & Translational Informatics Institute, Geisinger, Danville, USA", 
            "The Huck Institute of the Life Sciences, Pennsylvania State University, University Park, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Dokyoon", 
        "type": "Person"
      }, 
      {}
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/srep39880", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005854479", 
          "https://doi.org/10.1038/srep39880"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2011.09.069", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007778081"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jamia/ocw112", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007784435"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/geriatrics1020011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009276284"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/geriatrics1020011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009276284"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature14539", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010020120", 
          "https://doi.org/10.1038/nature14539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10548-012-0246-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010581750", 
          "https://doi.org/10.1007/s10548-012-0246-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jalz.2015.02.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012338779"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2013.06.033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014761691"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jalz.2011.03.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015324218"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg3868", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017872565", 
          "https://doi.org/10.1038/nrg3868"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jalz.2011.03.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018411398"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00994018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025150743", 
          "https://doi.org/10.1007/bf00994018"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jalz.2011.03.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025279802"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hbm.22156", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026932483"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11682-012-9203-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027547946", 
          "https://doi.org/10.1007/s11682-012-9203-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11682-012-9203-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027547946", 
          "https://doi.org/10.1007/s11682-012-9203-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nicl.2013.05.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027936716"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/archneur.56.3.303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030365018"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0033182", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031408726"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-02126-3_16", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033734679", 
          "https://doi.org/10.1007/978-3-319-02126-3_16"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jalz.2015.05.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036459340"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jalz.2015.05.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036459340"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/neco.1997.9.8.1735", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038140272"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jalz.2010.03.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038951865"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jalz.2010.03.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038951865"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neurobiolaging.2010.10.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039999182"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2011.09.085", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042106073"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.290.5500.2323", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051806676"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0025446", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053445243"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0025446", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053445243"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/72.279181", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061218416"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tbme.2015.2404809", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061529805"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/wnl.0b013e3182343314", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064356558"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/wnl.0b013e3182343314", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064356558"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/wnl.0b013e3182343314", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064356558"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1078353811", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3233/jad-131928", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078893958"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3115/v1/d14-1179", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099110544"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3115/v1/d14-1179", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099110544"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-018-22871-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103198095", 
          "https://doi.org/10.1038/s41598-018-22871-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-018-22871-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103198095", 
          "https://doi.org/10.1038/s41598-018-22871-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.2517-6161.1996.tb02080.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110458978"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.2517-6161.1996.tb02080.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110458978"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "Alzheimer's disease (AD) is a progressive neurodegenerative condition marked by a decline in cognitive functions with no validated disease modifying treatment. It is critical for timely treatment to detect AD in its earlier stage before clinical manifestation. Mild cognitive impairment (MCI) is an intermediate stage between cognitively normal older adults and AD. To predict conversion from MCI to probable AD, we applied a deep learning approach, multimodal recurrent neural network. We developed an integrative framework that combines not only cross-sectional neuroimaging biomarkers at baseline but also longitudinal cerebrospinal fluid (CSF) and cognitive performance biomarkers obtained from the Alzheimer's Disease Neuroimaging Initiative cohort (ADNI). The proposed framework integrated longitudinal multi-domain data. Our results showed that 1) our prediction model for MCI conversion to AD yielded up to 75% accuracy (area under the curve (AUC)\u2009=\u20090.83) when using only single modality of data separately; and 2) our prediction model achieved the best performance with 81% accuracy (AUC\u2009=\u20090.86) when incorporating longitudinal multi-domain data. A multi-modal deep learning approach has potential to identify persons at risk of developing AD who might benefit most from a clinical trial or as a stratification approach within clinical trials.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-018-37769-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6617992", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.6953223", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2696250", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2687006", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.7132465", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "Predicting Alzheimer\u2019s disease progression using multi-modal deep learning approach", 
    "pagination": "1952", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d74b6e3c4a2786d2c12dbbe35090e63203f0fca3ed06497211858113fe351b2e"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30760848"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-018-37769-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112093901"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-018-37769-z", 
      "https://app.dimensions.ai/details/publication/pub.1112093901"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:33", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000346_0000000346/records_99812_00000004.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-018-37769-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-37769-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-37769-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-37769-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-37769-z'


 

This table displays all metadata directly associated to this object as RDF triples.

221 TRIPLES      21 PREDICATES      63 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-018-37769-z schema:about anzsrc-for:11
2 anzsrc-for:1109
3 schema:author N0b72e386f5b64147baa1d23ad74b566f
4 schema:citation sg:pub.10.1007/978-3-319-02126-3_16
5 sg:pub.10.1007/bf00994018
6 sg:pub.10.1007/s10548-012-0246-x
7 sg:pub.10.1007/s11682-012-9203-2
8 sg:pub.10.1038/nature14539
9 sg:pub.10.1038/nrg3868
10 sg:pub.10.1038/s41598-018-22871-z
11 sg:pub.10.1038/srep39880
12 https://app.dimensions.ai/details/publication/pub.1078353811
13 https://doi.org/10.1001/archneur.56.3.303
14 https://doi.org/10.1002/hbm.22156
15 https://doi.org/10.1016/j.jalz.2010.03.013
16 https://doi.org/10.1016/j.jalz.2011.03.003
17 https://doi.org/10.1016/j.jalz.2011.03.004
18 https://doi.org/10.1016/j.jalz.2011.03.008
19 https://doi.org/10.1016/j.jalz.2015.02.003
20 https://doi.org/10.1016/j.jalz.2015.05.009
21 https://doi.org/10.1016/j.neurobiolaging.2010.10.019
22 https://doi.org/10.1016/j.neuroimage.2011.09.069
23 https://doi.org/10.1016/j.neuroimage.2011.09.085
24 https://doi.org/10.1016/j.neuroimage.2013.06.033
25 https://doi.org/10.1016/j.nicl.2013.05.004
26 https://doi.org/10.1093/jamia/ocw112
27 https://doi.org/10.1109/72.279181
28 https://doi.org/10.1109/tbme.2015.2404809
29 https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
30 https://doi.org/10.1126/science.290.5500.2323
31 https://doi.org/10.1162/neco.1997.9.8.1735
32 https://doi.org/10.1212/wnl.0b013e3182343314
33 https://doi.org/10.1371/journal.pone.0025446
34 https://doi.org/10.1371/journal.pone.0033182
35 https://doi.org/10.3115/v1/d14-1179
36 https://doi.org/10.3233/jad-131928
37 https://doi.org/10.3390/geriatrics1020011
38 schema:datePublished 2019-12
39 schema:datePublishedReg 2019-12-01
40 schema:description Alzheimer's disease (AD) is a progressive neurodegenerative condition marked by a decline in cognitive functions with no validated disease modifying treatment. It is critical for timely treatment to detect AD in its earlier stage before clinical manifestation. Mild cognitive impairment (MCI) is an intermediate stage between cognitively normal older adults and AD. To predict conversion from MCI to probable AD, we applied a deep learning approach, multimodal recurrent neural network. We developed an integrative framework that combines not only cross-sectional neuroimaging biomarkers at baseline but also longitudinal cerebrospinal fluid (CSF) and cognitive performance biomarkers obtained from the Alzheimer's Disease Neuroimaging Initiative cohort (ADNI). The proposed framework integrated longitudinal multi-domain data. Our results showed that 1) our prediction model for MCI conversion to AD yielded up to 75% accuracy (area under the curve (AUC) = 0.83) when using only single modality of data separately; and 2) our prediction model achieved the best performance with 81% accuracy (AUC = 0.86) when incorporating longitudinal multi-domain data. A multi-modal deep learning approach has potential to identify persons at risk of developing AD who might benefit most from a clinical trial or as a stratification approach within clinical trials.
41 schema:genre research_article
42 schema:inLanguage en
43 schema:isAccessibleForFree true
44 schema:isPartOf N3b1484b31b2742d797801e822603ad9a
45 Nbe2536cc845649a0aec70fc10830eb95
46 sg:journal.1045337
47 schema:name Predicting Alzheimer’s disease progression using multi-modal deep learning approach
48 schema:pagination 1952
49 schema:productId N1281080da28f4439a2b282876710c8da
50 N22b07db108e647b0894115a0decf76d3
51 N44e4ef5de7204918b404dbe0a7ac30b9
52 N53993150837b45d5ac6344cb78f14704
53 N9f8ad892f92b46f985356754a6f6c5d9
54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112093901
55 https://doi.org/10.1038/s41598-018-37769-z
56 schema:sdDatePublished 2019-04-11T09:33
57 schema:sdLicense https://scigraph.springernature.com/explorer/license/
58 schema:sdPublisher N8a24ea6d5b3d498c8b1d270f87de1b23
59 schema:url https://www.nature.com/articles/s41598-018-37769-z
60 sgo:license sg:explorer/license/
61 sgo:sdDataset articles
62 rdf:type schema:ScholarlyArticle
63 N023dba98d95047ccb243083452cebdbf rdf:first Ndca2b341b93e4878ab7355c2aec201f2
64 rdf:rest Nb57ce78c21bf49b38123d2c052b50536
65 N0b72e386f5b64147baa1d23ad74b566f rdf:first N0f99a94c17774a0f80905aa3b08e2244
66 rdf:rest N49e2df7c19a04fefb5feb94619300aff
67 N0f99a94c17774a0f80905aa3b08e2244 schema:affiliation https://www.grid.ac/institutes/grid.251916.8
68 schema:familyName Lee
69 schema:givenName Garam
70 rdf:type schema:Person
71 N1281080da28f4439a2b282876710c8da schema:name readcube_id
72 schema:value d74b6e3c4a2786d2c12dbbe35090e63203f0fca3ed06497211858113fe351b2e
73 rdf:type schema:PropertyValue
74 N22b07db108e647b0894115a0decf76d3 schema:name pubmed_id
75 schema:value 30760848
76 rdf:type schema:PropertyValue
77 N3b1484b31b2742d797801e822603ad9a schema:volumeNumber 9
78 rdf:type schema:PublicationVolume
79 N44e4ef5de7204918b404dbe0a7ac30b9 schema:name nlm_unique_id
80 schema:value 101563288
81 rdf:type schema:PropertyValue
82 N49e2df7c19a04fefb5feb94619300aff rdf:first Na0b3e5c977534ab3aff8a22ef9f6233e
83 rdf:rest Ndd556325508b4668bcd1c76ef53647ab
84 N53993150837b45d5ac6344cb78f14704 schema:name dimensions_id
85 schema:value pub.1112093901
86 rdf:type schema:PropertyValue
87 N8a24ea6d5b3d498c8b1d270f87de1b23 schema:name Springer Nature - SN SciGraph project
88 rdf:type schema:Organization
89 N9f8ad892f92b46f985356754a6f6c5d9 schema:name doi
90 schema:value 10.1038/s41598-018-37769-z
91 rdf:type schema:PropertyValue
92 Na0b3e5c977534ab3aff8a22ef9f6233e schema:affiliation https://www.grid.ac/institutes/grid.257413.6
93 schema:familyName Nho
94 schema:givenName Kwangsik
95 rdf:type schema:Person
96 Nac8f50304b8a49f595c50585f467873f rdf:first Nd7f1f5a886cd4cc4a8a1c1027bff4961
97 rdf:rest N023dba98d95047ccb243083452cebdbf
98 Nb57ce78c21bf49b38123d2c052b50536 rdf:first Nb072671bb82946bbbd566a2fe567c25c
99 rdf:rest rdf:nil
100 Nbe2536cc845649a0aec70fc10830eb95 schema:issueNumber 1
101 rdf:type schema:PublicationIssue
102 Nbf55bab6bae449cab331a22b8b7c5e96 schema:affiliation https://www.grid.ac/institutes/grid.251916.8
103 schema:familyName Kang
104 schema:givenName Byungkon
105 rdf:type schema:Person
106 Nd7f1f5a886cd4cc4a8a1c1027bff4961 schema:affiliation https://www.grid.ac/institutes/grid.251916.8
107 schema:familyName Sohn
108 schema:givenName Kyung-Ah
109 rdf:type schema:Person
110 Ndca2b341b93e4878ab7355c2aec201f2 schema:affiliation https://www.grid.ac/institutes/grid.29857.31
111 schema:familyName Kim
112 schema:givenName Dokyoon
113 rdf:type schema:Person
114 Ndd556325508b4668bcd1c76ef53647ab rdf:first Nbf55bab6bae449cab331a22b8b7c5e96
115 rdf:rest Nac8f50304b8a49f595c50585f467873f
116 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
117 schema:name Medical and Health Sciences
118 rdf:type schema:DefinedTerm
119 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
120 schema:name Neurosciences
121 rdf:type schema:DefinedTerm
122 sg:grant.2687006 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-018-37769-z
123 rdf:type schema:MonetaryGrant
124 sg:grant.2696250 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-018-37769-z
125 rdf:type schema:MonetaryGrant
126 sg:grant.6617992 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-018-37769-z
127 rdf:type schema:MonetaryGrant
128 sg:grant.6953223 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-018-37769-z
129 rdf:type schema:MonetaryGrant
130 sg:grant.7132465 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-018-37769-z
131 rdf:type schema:MonetaryGrant
132 sg:journal.1045337 schema:issn 2045-2322
133 schema:name Scientific Reports
134 rdf:type schema:Periodical
135 sg:pub.10.1007/978-3-319-02126-3_16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033734679
136 https://doi.org/10.1007/978-3-319-02126-3_16
137 rdf:type schema:CreativeWork
138 sg:pub.10.1007/bf00994018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025150743
139 https://doi.org/10.1007/bf00994018
140 rdf:type schema:CreativeWork
141 sg:pub.10.1007/s10548-012-0246-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1010581750
142 https://doi.org/10.1007/s10548-012-0246-x
143 rdf:type schema:CreativeWork
144 sg:pub.10.1007/s11682-012-9203-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027547946
145 https://doi.org/10.1007/s11682-012-9203-2
146 rdf:type schema:CreativeWork
147 sg:pub.10.1038/nature14539 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010020120
148 https://doi.org/10.1038/nature14539
149 rdf:type schema:CreativeWork
150 sg:pub.10.1038/nrg3868 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017872565
151 https://doi.org/10.1038/nrg3868
152 rdf:type schema:CreativeWork
153 sg:pub.10.1038/s41598-018-22871-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1103198095
154 https://doi.org/10.1038/s41598-018-22871-z
155 rdf:type schema:CreativeWork
156 sg:pub.10.1038/srep39880 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005854479
157 https://doi.org/10.1038/srep39880
158 rdf:type schema:CreativeWork
159 https://app.dimensions.ai/details/publication/pub.1078353811 schema:CreativeWork
160 https://doi.org/10.1001/archneur.56.3.303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030365018
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1002/hbm.22156 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026932483
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1016/j.jalz.2010.03.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038951865
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1016/j.jalz.2011.03.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018411398
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1016/j.jalz.2011.03.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015324218
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/j.jalz.2011.03.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025279802
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1016/j.jalz.2015.02.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012338779
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1016/j.jalz.2015.05.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036459340
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1016/j.neurobiolaging.2010.10.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039999182
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1016/j.neuroimage.2011.09.069 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007778081
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1016/j.neuroimage.2011.09.085 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042106073
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1016/j.neuroimage.2013.06.033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014761691
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1016/j.nicl.2013.05.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027936716
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1093/jamia/ocw112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007784435
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1109/72.279181 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061218416
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1109/tbme.2015.2404809 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061529805
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1111/j.2517-6161.1996.tb02080.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1110458978
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1126/science.290.5500.2323 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051806676
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1162/neco.1997.9.8.1735 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038140272
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1212/wnl.0b013e3182343314 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064356558
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1371/journal.pone.0025446 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053445243
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1371/journal.pone.0033182 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031408726
203 rdf:type schema:CreativeWork
204 https://doi.org/10.3115/v1/d14-1179 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099110544
205 rdf:type schema:CreativeWork
206 https://doi.org/10.3233/jad-131928 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078893958
207 rdf:type schema:CreativeWork
208 https://doi.org/10.3390/geriatrics1020011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009276284
209 rdf:type schema:CreativeWork
210 https://www.grid.ac/institutes/grid.251916.8 schema:alternateName Ajou University
211 schema:name Biomedical & Translational Informatics Institute, Geisinger, Danville, USA
212 Department of Software and Computer Engineering, Ajou University, Suwon, South Korea
213 rdf:type schema:Organization
214 https://www.grid.ac/institutes/grid.257413.6 schema:alternateName Indiana University – Purdue University Indianapolis
215 schema:name Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN USA
216 Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN USA
217 rdf:type schema:Organization
218 https://www.grid.ac/institutes/grid.29857.31 schema:alternateName Pennsylvania State University
219 schema:name Biomedical & Translational Informatics Institute, Geisinger, Danville, USA
220 The Huck Institute of the Life Sciences, Pennsylvania State University, University Park, USA
221 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...