Interplay between Josephson and Aharonov-Bohm effects in Andreev interferometers View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Pavel E. Dolgirev, Mikhail S. Kalenkov, Andrei D. Zaikin

ABSTRACT

Proximity induced quantum coherence of electrons in multi-terminal voltage-driven hybrid normal-superconducting nanostructures may result in a non-trivial interplay between topology-dependent Josephson and Aharonov-Bohm effects. We elucidate a trade-off between stimulation of the voltage-dependent Josephson current due to non-equilibrium effects and quantum dephasing of quasiparticles causing reduction of both Josephson and Aharonov-Bohm currents. We also predict phase-shifted quantum coherent oscillations of the induced electrostatic potential as a function of the externally applied magnetic flux. Our results may be employed for engineering superconducting nanocircuits with controlled quantum properties. More... »

PAGES

1301

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-018-37653-w

DOI

http://dx.doi.org/10.1038/s41598-018-37653-w

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111916715

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30718582


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0204", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Condensed Matter Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Skolkovo Institute of Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.454320.4", 
          "name": [
            "Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, 3 Nobel St., 143026, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dolgirev", 
        "givenName": "Pavel E.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Moscow Institute of Physics and Technology", 
          "id": "https://www.grid.ac/institutes/grid.18763.3b", 
          "name": [
            "I.E. Tamm Department of Theoretical Physics, P.N. Lebedev Physical Institute, 119991, Moscow, Russia", 
            "Moscow Institute of Physics and Technology, Dolgoprudny, 141700, Moscow region, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kalenkov", 
        "givenName": "Mikhail S.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Research University Higher School of Economics", 
          "id": "https://www.grid.ac/institutes/grid.410682.9", 
          "name": [
            "Institut f\u00fcr Nanotechnologie, Karlsruher Institut f\u00fcr Technologie (KIT), 76021, Karlsruhe, Germany", 
            "National Research University Higher School of Economics, 101000, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zaikin", 
        "givenName": "Andrei D.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevlett.76.130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003620151"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.76.130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003620151"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0921-4526(94)90069-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005682064"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0921-4526(94)90069-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005682064"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.55.1123", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009473048"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.55.1123", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009473048"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/16204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010997800", 
          "https://doi.org/10.1038/16204"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0038-1098(91)90406-l", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020490848"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0038-1098(91)90406-l", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020490848"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.76.224506", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020520096"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.76.224506", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020520096"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.86.144529", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027403370"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.86.144529", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027403370"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.91.024505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027809925"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.91.024505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027809925"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/epl/i2001-00303-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028173917"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.97.237003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031036442"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.97.237003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031036442"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.93.197003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032192957"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.93.197003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032192957"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.103.067006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032488430"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.103.067006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032488430"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/b:jolt.0000041275.16029.66", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032960259", 
          "https://doi.org/10.1023/b:jolt.0000041275.16029.66"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.54.r772", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038179520"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.54.r772", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038179520"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.58.5803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038507545"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.58.5803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038507545"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.177004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041671368"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.177004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041671368"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/spmi.1999.0710", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046772898"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.63.064502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047529667"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.63.064502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047529667"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.95.027002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049953866"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.95.027002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049953866"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.70.347", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060806995"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.70.347", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060806995"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.74.4730", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060811215"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.74.4730", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060811215"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.74.5268", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060811342"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.74.5268", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060811342"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.81.1682", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060817976"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.81.1682", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060817976"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.95.024518", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083506607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.95.024518", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083506607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.97.054521", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101276149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.97.054521", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101276149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pssr.201800252", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106012810"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "Proximity induced quantum coherence of electrons in multi-terminal voltage-driven hybrid normal-superconducting nanostructures may result in a non-trivial interplay between topology-dependent Josephson and Aharonov-Bohm effects. We elucidate a trade-off between stimulation of the voltage-dependent Josephson current due to non-equilibrium effects and quantum dephasing of quasiparticles causing reduction of both Josephson and Aharonov-Bohm currents. We also predict phase-shifted quantum coherent oscillations of the induced electrostatic potential as a function of the externally applied magnetic flux. Our results may be employed for engineering superconducting nanocircuits with controlled quantum properties.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-018-37653-w", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7596096", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "Interplay between Josephson and Aharonov-Bohm effects in Andreev interferometers", 
    "pagination": "1301", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "cc56f90ce3f1d864a31125e7de2e23eb64fa90cb894a87f3e9cb3261b48f2df6"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30718582"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-018-37653-w"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111916715"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-018-37653-w", 
      "https://app.dimensions.ai/details/publication/pub.1111916715"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:01", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000330_0000000330/records_116386_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-018-37653-w"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-37653-w'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-37653-w'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-37653-w'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-37653-w'


 

This table displays all metadata directly associated to this object as RDF triples.

169 TRIPLES      21 PREDICATES      55 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-018-37653-w schema:about anzsrc-for:02
2 anzsrc-for:0204
3 schema:author N7aa543363e864d10aa306f9ab0ff4647
4 schema:citation sg:pub.10.1023/b:jolt.0000041275.16029.66
5 sg:pub.10.1038/16204
6 https://doi.org/10.1002/pssr.201800252
7 https://doi.org/10.1006/spmi.1999.0710
8 https://doi.org/10.1016/0038-1098(91)90406-l
9 https://doi.org/10.1016/0921-4526(94)90069-8
10 https://doi.org/10.1103/physrevb.54.r772
11 https://doi.org/10.1103/physrevb.55.1123
12 https://doi.org/10.1103/physrevb.58.5803
13 https://doi.org/10.1103/physrevb.63.064502
14 https://doi.org/10.1103/physrevb.76.224506
15 https://doi.org/10.1103/physrevb.86.144529
16 https://doi.org/10.1103/physrevb.91.024505
17 https://doi.org/10.1103/physrevb.95.024518
18 https://doi.org/10.1103/physrevb.97.054521
19 https://doi.org/10.1103/physrevlett.103.067006
20 https://doi.org/10.1103/physrevlett.70.347
21 https://doi.org/10.1103/physrevlett.74.4730
22 https://doi.org/10.1103/physrevlett.74.5268
23 https://doi.org/10.1103/physrevlett.76.130
24 https://doi.org/10.1103/physrevlett.81.1682
25 https://doi.org/10.1103/physrevlett.92.177004
26 https://doi.org/10.1103/physrevlett.93.197003
27 https://doi.org/10.1103/physrevlett.95.027002
28 https://doi.org/10.1103/physrevlett.97.237003
29 https://doi.org/10.1209/epl/i2001-00303-0
30 schema:datePublished 2019-12
31 schema:datePublishedReg 2019-12-01
32 schema:description Proximity induced quantum coherence of electrons in multi-terminal voltage-driven hybrid normal-superconducting nanostructures may result in a non-trivial interplay between topology-dependent Josephson and Aharonov-Bohm effects. We elucidate a trade-off between stimulation of the voltage-dependent Josephson current due to non-equilibrium effects and quantum dephasing of quasiparticles causing reduction of both Josephson and Aharonov-Bohm currents. We also predict phase-shifted quantum coherent oscillations of the induced electrostatic potential as a function of the externally applied magnetic flux. Our results may be employed for engineering superconducting nanocircuits with controlled quantum properties.
33 schema:genre research_article
34 schema:inLanguage en
35 schema:isAccessibleForFree true
36 schema:isPartOf N1bce6bcd5ea54df09634c204ab6a2c8f
37 N8d16d1b736134293ab3c68af89560908
38 sg:journal.1045337
39 schema:name Interplay between Josephson and Aharonov-Bohm effects in Andreev interferometers
40 schema:pagination 1301
41 schema:productId N48458c813be14c1eb1efb1158ceb8266
42 N9129c8e337f64f27b50df56c4239e75e
43 N9a95f927f7a0437fa9dddf7cd9c09543
44 Ne5b99716def344af98460b18d866b1bc
45 Nf8bf0d245a6c4d80adbe8c361af5e4a2
46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111916715
47 https://doi.org/10.1038/s41598-018-37653-w
48 schema:sdDatePublished 2019-04-11T09:01
49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
50 schema:sdPublisher N0ad7f0f513514b2d82525aadf7f8b2d5
51 schema:url https://www.nature.com/articles/s41598-018-37653-w
52 sgo:license sg:explorer/license/
53 sgo:sdDataset articles
54 rdf:type schema:ScholarlyArticle
55 N0ad7f0f513514b2d82525aadf7f8b2d5 schema:name Springer Nature - SN SciGraph project
56 rdf:type schema:Organization
57 N184183e0e6f74d628fb0f9c08c758292 rdf:first N407d352d8a65483fa7b0d086e422ef88
58 rdf:rest N6081d2cfb332493ca6d30d5fd05fb0f0
59 N1bce6bcd5ea54df09634c204ab6a2c8f schema:issueNumber 1
60 rdf:type schema:PublicationIssue
61 N407d352d8a65483fa7b0d086e422ef88 schema:affiliation https://www.grid.ac/institutes/grid.18763.3b
62 schema:familyName Kalenkov
63 schema:givenName Mikhail S.
64 rdf:type schema:Person
65 N48458c813be14c1eb1efb1158ceb8266 schema:name dimensions_id
66 schema:value pub.1111916715
67 rdf:type schema:PropertyValue
68 N60017bff00b3435db639fd6a84d67915 schema:affiliation https://www.grid.ac/institutes/grid.410682.9
69 schema:familyName Zaikin
70 schema:givenName Andrei D.
71 rdf:type schema:Person
72 N6081d2cfb332493ca6d30d5fd05fb0f0 rdf:first N60017bff00b3435db639fd6a84d67915
73 rdf:rest rdf:nil
74 N7aa543363e864d10aa306f9ab0ff4647 rdf:first Nc469279914dc40d6b31dd1061e8e1704
75 rdf:rest N184183e0e6f74d628fb0f9c08c758292
76 N8d16d1b736134293ab3c68af89560908 schema:volumeNumber 9
77 rdf:type schema:PublicationVolume
78 N9129c8e337f64f27b50df56c4239e75e schema:name readcube_id
79 schema:value cc56f90ce3f1d864a31125e7de2e23eb64fa90cb894a87f3e9cb3261b48f2df6
80 rdf:type schema:PropertyValue
81 N9a95f927f7a0437fa9dddf7cd9c09543 schema:name nlm_unique_id
82 schema:value 101563288
83 rdf:type schema:PropertyValue
84 Nc469279914dc40d6b31dd1061e8e1704 schema:affiliation https://www.grid.ac/institutes/grid.454320.4
85 schema:familyName Dolgirev
86 schema:givenName Pavel E.
87 rdf:type schema:Person
88 Ne5b99716def344af98460b18d866b1bc schema:name pubmed_id
89 schema:value 30718582
90 rdf:type schema:PropertyValue
91 Nf8bf0d245a6c4d80adbe8c361af5e4a2 schema:name doi
92 schema:value 10.1038/s41598-018-37653-w
93 rdf:type schema:PropertyValue
94 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
95 schema:name Physical Sciences
96 rdf:type schema:DefinedTerm
97 anzsrc-for:0204 schema:inDefinedTermSet anzsrc-for:
98 schema:name Condensed Matter Physics
99 rdf:type schema:DefinedTerm
100 sg:grant.7596096 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-018-37653-w
101 rdf:type schema:MonetaryGrant
102 sg:journal.1045337 schema:issn 2045-2322
103 schema:name Scientific Reports
104 rdf:type schema:Periodical
105 sg:pub.10.1023/b:jolt.0000041275.16029.66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032960259
106 https://doi.org/10.1023/b:jolt.0000041275.16029.66
107 rdf:type schema:CreativeWork
108 sg:pub.10.1038/16204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010997800
109 https://doi.org/10.1038/16204
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1002/pssr.201800252 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106012810
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1006/spmi.1999.0710 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046772898
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/0038-1098(91)90406-l schema:sameAs https://app.dimensions.ai/details/publication/pub.1020490848
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/0921-4526(94)90069-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005682064
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1103/physrevb.54.r772 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038179520
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1103/physrevb.55.1123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009473048
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1103/physrevb.58.5803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038507545
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1103/physrevb.63.064502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047529667
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1103/physrevb.76.224506 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020520096
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1103/physrevb.86.144529 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027403370
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1103/physrevb.91.024505 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027809925
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1103/physrevb.95.024518 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083506607
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1103/physrevb.97.054521 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101276149
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1103/physrevlett.103.067006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032488430
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1103/physrevlett.70.347 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060806995
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1103/physrevlett.74.4730 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060811215
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1103/physrevlett.74.5268 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060811342
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1103/physrevlett.76.130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003620151
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1103/physrevlett.81.1682 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060817976
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1103/physrevlett.92.177004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041671368
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1103/physrevlett.93.197003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032192957
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1103/physrevlett.95.027002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049953866
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1103/physrevlett.97.237003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031036442
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1209/epl/i2001-00303-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028173917
158 rdf:type schema:CreativeWork
159 https://www.grid.ac/institutes/grid.18763.3b schema:alternateName Moscow Institute of Physics and Technology
160 schema:name I.E. Tamm Department of Theoretical Physics, P.N. Lebedev Physical Institute, 119991, Moscow, Russia
161 Moscow Institute of Physics and Technology, Dolgoprudny, 141700, Moscow region, Russia
162 rdf:type schema:Organization
163 https://www.grid.ac/institutes/grid.410682.9 schema:alternateName National Research University Higher School of Economics
164 schema:name Institut für Nanotechnologie, Karlsruher Institut für Technologie (KIT), 76021, Karlsruhe, Germany
165 National Research University Higher School of Economics, 101000, Moscow, Russia
166 rdf:type schema:Organization
167 https://www.grid.ac/institutes/grid.454320.4 schema:alternateName Skolkovo Institute of Science and Technology
168 schema:name Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, 3 Nobel St., 143026, Moscow, Russia
169 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...