Electromagnon excitation in cupric oxide measured by Fabry-Pérot enhanced terahertz Mueller matrix ellipsometry View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Sean Knight, Dharmalingam Prabhakaran, Christian Binek, Mathias Schubert

ABSTRACT

Here we present the use of Fabry-Pérot enhanced terahertz (THz) Mueller matrix ellipsometry to measure an electromagnon excitation in monoclinic cupric oxide (CuO). As a magnetically induced ferroelectric multiferroic, CuO exhibits coupling between electric and magnetic order. This gives rise to special quasiparticle excitations at THz frequencies called electromagnons. In order to measure the electromagnons in CuO, we exploit single-crystal CuO as a THz Fabry-Pérot cavity to resonantly enhance the excitation's signature. This enhancement technique enables the complex index of refraction to be extracted. We observe a peak in the absorption coefficient near 0.705 THz and 215 K, which corresponds to the electromagnon excitation. This absorption peak is observed along only one major polarizability axis in the monoclinic a-c plane. We show the excitation can be represented using the Lorentz oscillator model, and discuss how these Lorentz parameters evolve with temperature. Our findings are in excellent agreement with previous characterizations by THz time-domain spectroscopy (THz-TDS), which demonstrates the validity of this enhancement technique. More... »

PAGES

1353

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-018-37639-8

DOI

http://dx.doi.org/10.1038/s41598-018-37639-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111918852

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30718629


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0906", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Electrical and Electronic Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Nebraska\u2013Lincoln", 
          "id": "https://www.grid.ac/institutes/grid.24434.35", 
          "name": [
            "Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, 68588-0511, Lincoln, Nebraska, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Knight", 
        "givenName": "Sean", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Oxford", 
          "id": "https://www.grid.ac/institutes/grid.4991.5", 
          "name": [
            "Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, OX1 3PU, Oxford, United Kingdom"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Prabhakaran", 
        "givenName": "Dharmalingam", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Nebraska\u2013Lincoln", 
          "id": "https://www.grid.ac/institutes/grid.24434.35", 
          "name": [
            "Department of Physics and Astronomy, University of Nebraska-Lincoln, 68588-0511, Lincoln, Nebraska, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Binek", 
        "givenName": "Christian", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Leibniz Institute of Polymer Research", 
          "id": "https://www.grid.ac/institutes/grid.419239.4", 
          "name": [
            "Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, 68588-0511, Lincoln, Nebraska, USA", 
            "Terahertz Materials Analysis Center, Department of Physics, Chemistry and Biology, Link\u00f6ping University, SE-58183, Link\u00f6ping, Sweden", 
            "Leibniz-Institut f\u00fcr Polymerforschung Dresden e.V., 01069, Dresden, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schubert", 
        "givenName": "Mathias", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/adma.200900809", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006601348"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.200900809", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006601348"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012273606", 
          "https://doi.org/10.1038/nature05023"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012273606", 
          "https://doi.org/10.1038/nature05023"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apsusc.2016.12.200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013213864"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.74.100403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017855990"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.74.100403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017855990"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/am.2013.58", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022350295", 
          "https://doi.org/10.1038/am.2013.58"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028942997", 
          "https://doi.org/10.1038/nmat1804"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028942997", 
          "https://doi.org/10.1038/nmat1804"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.98.027202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030979107"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.98.027202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030979107"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms4787", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032589420", 
          "https://doi.org/10.1038/ncomms4787"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1805", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033256807", 
          "https://doi.org/10.1038/nmat1805"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1805", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033256807", 
          "https://doi.org/10.1038/nmat1805"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tsf.2010.12.066", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036154987"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4889920", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037993627"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2125", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041639818", 
          "https://doi.org/10.1038/nmat2125"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys212", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046815203", 
          "https://doi.org/10.1038/nphys212"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys212", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046815203", 
          "https://doi.org/10.1038/nphys212"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-33956-1_11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046987915", 
          "https://doi.org/10.1007/978-3-642-33956-1_11"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2899", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047536809", 
          "https://doi.org/10.1038/nmat2899"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pssc.201510214", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051144750"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2089147", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057837460"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3267152", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057927911"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4752093", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058059537"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4765351", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058062960"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4789495", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058068519"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.26.7119", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060531844"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.26.7119", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060531844"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.88.094420", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060642100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.88.094420", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060642100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.90.064405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060644416"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.90.064405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060644416"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/josab.26.000a35", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065172748"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.40.002688", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065237687"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ome.4.000057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065241868"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1557/opl.2012.780", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067972971"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.95.054427", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083935220"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.95.054427", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083935220"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-017-05333-w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090535865", 
          "https://doi.org/10.1038/s41598-017-05333-w"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-017-12568-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091918495", 
          "https://doi.org/10.1038/s41598-017-12568-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9780470060193", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098661623"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9780470060193", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098661623"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1361-6463/aaa836", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100428140"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tthz.2018.2814347", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103224953"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "Here we present the use of Fabry-P\u00e9rot enhanced terahertz (THz) Mueller matrix ellipsometry to measure an electromagnon excitation in monoclinic cupric oxide (CuO). As a magnetically induced ferroelectric multiferroic, CuO exhibits coupling between electric and magnetic order. This gives rise to special quasiparticle excitations at THz frequencies called electromagnons. In order to measure the electromagnons in CuO, we exploit single-crystal CuO as a THz Fabry-P\u00e9rot cavity to resonantly enhance the excitation's signature. This enhancement technique enables the complex index of refraction to be extracted. We observe a peak in the absorption coefficient near 0.705 THz and 215\u2009K, which corresponds to the electromagnon excitation. This absorption peak is observed along only one major polarizability axis in the monoclinic a-c plane. We show the excitation can be represented using the Lorentz oscillator model, and discuss how these Lorentz parameters evolve with temperature. Our findings are in excellent agreement with previous characterizations by THz time-domain spectroscopy (THz-TDS), which demonstrates the validity of this enhancement technique.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-018-37639-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.5498293", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.7568968", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3852365", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "Electromagnon excitation in cupric oxide measured by Fabry-P\u00e9rot enhanced terahertz Mueller matrix ellipsometry", 
    "pagination": "1353", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f6cd8e3b47faad6169319c9427d742660b1809c41b9eb2442f4c8fe42686bd55"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30718629"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-018-37639-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111918852"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-018-37639-8", 
      "https://app.dimensions.ai/details/publication/pub.1111918852"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:01", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000330_0000000330/records_116361_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-018-37639-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-37639-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-37639-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-37639-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-37639-8'


 

This table displays all metadata directly associated to this object as RDF triples.

213 TRIPLES      21 PREDICATES      63 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-018-37639-8 schema:about anzsrc-for:09
2 anzsrc-for:0906
3 schema:author N03c6fbc9e9ea4478852b4c3710fb8b4c
4 schema:citation sg:pub.10.1007/978-3-642-33956-1_11
5 sg:pub.10.1038/am.2013.58
6 sg:pub.10.1038/nature05023
7 sg:pub.10.1038/ncomms4787
8 sg:pub.10.1038/nmat1804
9 sg:pub.10.1038/nmat1805
10 sg:pub.10.1038/nmat2125
11 sg:pub.10.1038/nmat2899
12 sg:pub.10.1038/nphys212
13 sg:pub.10.1038/s41598-017-05333-w
14 sg:pub.10.1038/s41598-017-12568-0
15 https://doi.org/10.1002/9780470060193
16 https://doi.org/10.1002/adma.200900809
17 https://doi.org/10.1002/pssc.201510214
18 https://doi.org/10.1016/j.apsusc.2016.12.200
19 https://doi.org/10.1016/j.tsf.2010.12.066
20 https://doi.org/10.1063/1.2089147
21 https://doi.org/10.1063/1.3267152
22 https://doi.org/10.1063/1.4752093
23 https://doi.org/10.1063/1.4765351
24 https://doi.org/10.1063/1.4789495
25 https://doi.org/10.1063/1.4889920
26 https://doi.org/10.1088/1361-6463/aaa836
27 https://doi.org/10.1103/physrevb.26.7119
28 https://doi.org/10.1103/physrevb.74.100403
29 https://doi.org/10.1103/physrevb.88.094420
30 https://doi.org/10.1103/physrevb.90.064405
31 https://doi.org/10.1103/physrevb.95.054427
32 https://doi.org/10.1103/physrevlett.98.027202
33 https://doi.org/10.1109/tthz.2018.2814347
34 https://doi.org/10.1364/josab.26.000a35
35 https://doi.org/10.1364/ol.40.002688
36 https://doi.org/10.1364/ome.4.000057
37 https://doi.org/10.1557/opl.2012.780
38 schema:datePublished 2019-12
39 schema:datePublishedReg 2019-12-01
40 schema:description Here we present the use of Fabry-Pérot enhanced terahertz (THz) Mueller matrix ellipsometry to measure an electromagnon excitation in monoclinic cupric oxide (CuO). As a magnetically induced ferroelectric multiferroic, CuO exhibits coupling between electric and magnetic order. This gives rise to special quasiparticle excitations at THz frequencies called electromagnons. In order to measure the electromagnons in CuO, we exploit single-crystal CuO as a THz Fabry-Pérot cavity to resonantly enhance the excitation's signature. This enhancement technique enables the complex index of refraction to be extracted. We observe a peak in the absorption coefficient near 0.705 THz and 215 K, which corresponds to the electromagnon excitation. This absorption peak is observed along only one major polarizability axis in the monoclinic a-c plane. We show the excitation can be represented using the Lorentz oscillator model, and discuss how these Lorentz parameters evolve with temperature. Our findings are in excellent agreement with previous characterizations by THz time-domain spectroscopy (THz-TDS), which demonstrates the validity of this enhancement technique.
41 schema:genre research_article
42 schema:inLanguage en
43 schema:isAccessibleForFree true
44 schema:isPartOf N0d40c8688666409a916be82f85268941
45 N0ebb09ed98a94d9f90e2b9128e108b6a
46 sg:journal.1045337
47 schema:name Electromagnon excitation in cupric oxide measured by Fabry-Pérot enhanced terahertz Mueller matrix ellipsometry
48 schema:pagination 1353
49 schema:productId N644479274f694d9e84fe7799cad2a16d
50 N9cc5913a163946489b317bbcae870276
51 Nbf8ef45bfb0448ceb62925c084f1a4e3
52 Nd89701aac8ba4df5a31c20627ea28c5d
53 Nee52cb8c1b81450198cd6115853d2f91
54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111918852
55 https://doi.org/10.1038/s41598-018-37639-8
56 schema:sdDatePublished 2019-04-11T09:01
57 schema:sdLicense https://scigraph.springernature.com/explorer/license/
58 schema:sdPublisher N34ab79ea772f4cee83d446d646cfa439
59 schema:url https://www.nature.com/articles/s41598-018-37639-8
60 sgo:license sg:explorer/license/
61 sgo:sdDataset articles
62 rdf:type schema:ScholarlyArticle
63 N03c6fbc9e9ea4478852b4c3710fb8b4c rdf:first N26ae397542bd47c998cf92cf44e25bee
64 rdf:rest N4555908686dd412fa78aa38da7991b20
65 N0d40c8688666409a916be82f85268941 schema:volumeNumber 9
66 rdf:type schema:PublicationVolume
67 N0ebb09ed98a94d9f90e2b9128e108b6a schema:issueNumber 1
68 rdf:type schema:PublicationIssue
69 N0f2bfb103195424090a7d97117ead773 schema:affiliation https://www.grid.ac/institutes/grid.4991.5
70 schema:familyName Prabhakaran
71 schema:givenName Dharmalingam
72 rdf:type schema:Person
73 N26ae397542bd47c998cf92cf44e25bee schema:affiliation https://www.grid.ac/institutes/grid.24434.35
74 schema:familyName Knight
75 schema:givenName Sean
76 rdf:type schema:Person
77 N34ab79ea772f4cee83d446d646cfa439 schema:name Springer Nature - SN SciGraph project
78 rdf:type schema:Organization
79 N4555908686dd412fa78aa38da7991b20 rdf:first N0f2bfb103195424090a7d97117ead773
80 rdf:rest N70b4e1e3291c42ed8557796e7733c301
81 N5dfd00baf92d443cb3ac4867b32bbac0 rdf:first Nd3f3b07067f540788547481ac6856f2a
82 rdf:rest rdf:nil
83 N644479274f694d9e84fe7799cad2a16d schema:name nlm_unique_id
84 schema:value 101563288
85 rdf:type schema:PropertyValue
86 N70b4e1e3291c42ed8557796e7733c301 rdf:first N80588051b0394678998163be1f06d155
87 rdf:rest N5dfd00baf92d443cb3ac4867b32bbac0
88 N80588051b0394678998163be1f06d155 schema:affiliation https://www.grid.ac/institutes/grid.24434.35
89 schema:familyName Binek
90 schema:givenName Christian
91 rdf:type schema:Person
92 N9cc5913a163946489b317bbcae870276 schema:name pubmed_id
93 schema:value 30718629
94 rdf:type schema:PropertyValue
95 Nbf8ef45bfb0448ceb62925c084f1a4e3 schema:name readcube_id
96 schema:value f6cd8e3b47faad6169319c9427d742660b1809c41b9eb2442f4c8fe42686bd55
97 rdf:type schema:PropertyValue
98 Nd3f3b07067f540788547481ac6856f2a schema:affiliation https://www.grid.ac/institutes/grid.419239.4
99 schema:familyName Schubert
100 schema:givenName Mathias
101 rdf:type schema:Person
102 Nd89701aac8ba4df5a31c20627ea28c5d schema:name dimensions_id
103 schema:value pub.1111918852
104 rdf:type schema:PropertyValue
105 Nee52cb8c1b81450198cd6115853d2f91 schema:name doi
106 schema:value 10.1038/s41598-018-37639-8
107 rdf:type schema:PropertyValue
108 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
109 schema:name Engineering
110 rdf:type schema:DefinedTerm
111 anzsrc-for:0906 schema:inDefinedTermSet anzsrc-for:
112 schema:name Electrical and Electronic Engineering
113 rdf:type schema:DefinedTerm
114 sg:grant.3852365 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-018-37639-8
115 rdf:type schema:MonetaryGrant
116 sg:grant.5498293 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-018-37639-8
117 rdf:type schema:MonetaryGrant
118 sg:grant.7568968 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-018-37639-8
119 rdf:type schema:MonetaryGrant
120 sg:journal.1045337 schema:issn 2045-2322
121 schema:name Scientific Reports
122 rdf:type schema:Periodical
123 sg:pub.10.1007/978-3-642-33956-1_11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046987915
124 https://doi.org/10.1007/978-3-642-33956-1_11
125 rdf:type schema:CreativeWork
126 sg:pub.10.1038/am.2013.58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022350295
127 https://doi.org/10.1038/am.2013.58
128 rdf:type schema:CreativeWork
129 sg:pub.10.1038/nature05023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012273606
130 https://doi.org/10.1038/nature05023
131 rdf:type schema:CreativeWork
132 sg:pub.10.1038/ncomms4787 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032589420
133 https://doi.org/10.1038/ncomms4787
134 rdf:type schema:CreativeWork
135 sg:pub.10.1038/nmat1804 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028942997
136 https://doi.org/10.1038/nmat1804
137 rdf:type schema:CreativeWork
138 sg:pub.10.1038/nmat1805 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033256807
139 https://doi.org/10.1038/nmat1805
140 rdf:type schema:CreativeWork
141 sg:pub.10.1038/nmat2125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041639818
142 https://doi.org/10.1038/nmat2125
143 rdf:type schema:CreativeWork
144 sg:pub.10.1038/nmat2899 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047536809
145 https://doi.org/10.1038/nmat2899
146 rdf:type schema:CreativeWork
147 sg:pub.10.1038/nphys212 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046815203
148 https://doi.org/10.1038/nphys212
149 rdf:type schema:CreativeWork
150 sg:pub.10.1038/s41598-017-05333-w schema:sameAs https://app.dimensions.ai/details/publication/pub.1090535865
151 https://doi.org/10.1038/s41598-017-05333-w
152 rdf:type schema:CreativeWork
153 sg:pub.10.1038/s41598-017-12568-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091918495
154 https://doi.org/10.1038/s41598-017-12568-0
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1002/9780470060193 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098661623
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1002/adma.200900809 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006601348
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1002/pssc.201510214 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051144750
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/j.apsusc.2016.12.200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013213864
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1016/j.tsf.2010.12.066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036154987
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1063/1.2089147 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057837460
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1063/1.3267152 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057927911
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1063/1.4752093 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058059537
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1063/1.4765351 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058062960
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1063/1.4789495 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058068519
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1063/1.4889920 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037993627
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1088/1361-6463/aaa836 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100428140
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1103/physrevb.26.7119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060531844
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1103/physrevb.74.100403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017855990
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1103/physrevb.88.094420 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060642100
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1103/physrevb.90.064405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060644416
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1103/physrevb.95.054427 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083935220
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1103/physrevlett.98.027202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030979107
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1109/tthz.2018.2814347 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103224953
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1364/josab.26.000a35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065172748
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1364/ol.40.002688 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065237687
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1364/ome.4.000057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065241868
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1557/opl.2012.780 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067972971
201 rdf:type schema:CreativeWork
202 https://www.grid.ac/institutes/grid.24434.35 schema:alternateName University of Nebraska–Lincoln
203 schema:name Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, 68588-0511, Lincoln, Nebraska, USA
204 Department of Physics and Astronomy, University of Nebraska-Lincoln, 68588-0511, Lincoln, Nebraska, USA
205 rdf:type schema:Organization
206 https://www.grid.ac/institutes/grid.419239.4 schema:alternateName Leibniz Institute of Polymer Research
207 schema:name Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, 68588-0511, Lincoln, Nebraska, USA
208 Leibniz-Institut für Polymerforschung Dresden e.V., 01069, Dresden, Germany
209 Terahertz Materials Analysis Center, Department of Physics, Chemistry and Biology, Linköping University, SE-58183, Linköping, Sweden
210 rdf:type schema:Organization
211 https://www.grid.ac/institutes/grid.4991.5 schema:alternateName University of Oxford
212 schema:name Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, OX1 3PU, Oxford, United Kingdom
213 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...