Acoustic Emission from Porous Collapse and Moving Dislocations in Granular Mg-Ho Alloys under Compression and Tension View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Yan Chen, Xiangdong Ding, Daqing Fang, Jun Sun, Ekhard K. H. Salje

ABSTRACT

We identified heterogeneous Mg-Ho alloys as an ideal material to measure the most extensive acoustic emission spectra available. Mg-Ho alloys are porous and show a high density of dislocations, which slide under external tension and compression. These dislocations nucleate near numerous heterogeneities. Two mechanisms compete under external forcing in the structural collapse, namely collapsing holes and the movements of dislocations. Their respective fingerprints in acoustic emission (AE) measurements are very different and relate to their individual signal strengths. Porous collapse generates very strong AE signals while dislocation movements create more but weaker AE signals. This allows the separation of the two processes even though they almost always coincide temporarily. The porous collapse follows approximately mean-field behavior (ε = 1.4, τ' = 1.82, α = 2.56, x = 1.93, χ = 1.95) with mean field scaling fulfilled. The exponents for dislocation movement are greater (ε = 1.92, τ' = 2.44, α = 3.0, x = 1.7, χ = 1.42) and follows approximately the force integrated mean-field predictions. The Omori scaling is similar for both mechanisms. The Bath's law is well fulfilled for the porous collapse but not for the dislocation movements. We suggest that such 'complex' mixing behavior is dominant in many other complex materials such as (multi-) ferroics, entropic alloys and porous ferroelastics, and, potentially, homogeneous materials with the simultaneous appearance of different collapse mechanisms. More... »

PAGES

1330

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-018-37604-5

DOI

http://dx.doi.org/10.1038/s41598-018-37604-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111915892

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30718551


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Xi'an Jiaotong University", 
          "id": "https://www.grid.ac/institutes/grid.43169.39", 
          "name": [
            "State Key Laboratory for Mechanical Behavior of Materials, Xi\u2019an Jiaotong University, 710049, Xi\u2019an, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Yan", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Xi'an Jiaotong University", 
          "id": "https://www.grid.ac/institutes/grid.43169.39", 
          "name": [
            "State Key Laboratory for Mechanical Behavior of Materials, Xi\u2019an Jiaotong University, 710049, Xi\u2019an, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ding", 
        "givenName": "Xiangdong", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Xi'an Jiaotong University", 
          "id": "https://www.grid.ac/institutes/grid.43169.39", 
          "name": [
            "State Key Laboratory for Mechanical Behavior of Materials, Xi\u2019an Jiaotong University, 710049, Xi\u2019an, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fang", 
        "givenName": "Daqing", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Xi'an Jiaotong University", 
          "id": "https://www.grid.ac/institutes/grid.43169.39", 
          "name": [
            "State Key Laboratory for Mechanical Behavior of Materials, Xi\u2019an Jiaotong University, 710049, Xi\u2019an, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sun", 
        "givenName": "Jun", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Cambridge", 
          "id": "https://www.grid.ac/institutes/grid.5335.0", 
          "name": [
            "State Key Laboratory for Mechanical Behavior of Materials, Xi\u2019an Jiaotong University, 710049, Xi\u2019an, China", 
            "Department of Earth Sciences, University of Cambridge, CB2 3EQ, Cambridge, England"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Salje", 
        "givenName": "Ekhard K. H.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.4294/jpe1952.43.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004036568"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.038501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008612374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.038501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008612374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1359-6454(97)00301-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013730775"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2006gl026122", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013980137"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2138/am.2013.4319", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015766122"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2005.06.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015912480"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/09500839.2011.596491", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016671412"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2138/am-2015-5085", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024716738"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-45612-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026981281", 
          "https://doi.org/10.1007/978-3-319-45612-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/26/27/275401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028040245"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/97rg00426", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031327620"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.91.058501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031962899"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.91.058501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031962899"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms10641", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034245115", 
          "https://doi.org/10.1038/ncomms10641"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/386379a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035450622", 
          "https://doi.org/10.1038/386379a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev-conmatphys-031113-133838", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043129471"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2138/am-2016-5809ccby", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043332250"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/17461390500402657", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043646381"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/25/29/292202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043752603"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/14786435.2016.1235288", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045941114"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.110.088702", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046520096"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.110.088702", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046520096"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112003005317", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054022491"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1051/m2an/2013081", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057032467"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.76.224110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060623185"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.76.224110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060623185"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.83.104109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060635055"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.83.104109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060635055"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.87.094109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060641005"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.87.094109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060641005"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.90.064103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060644406"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.90.064103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060644406"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.90.022405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060746520"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.90.022405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060746520"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.91.060401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060747572"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.91.060401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060747572"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.93.033006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060749322"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.93.033006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060749322"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.175501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060755276"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.175501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060755276"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.115.055501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060763892"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.115.055501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060763892"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.117.230601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060766822"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.117.230601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060766822"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/070710111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062851851"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.95.032910", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084198960"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.95.032910", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084198960"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2017.06.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085994800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.96.023004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091132250"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.96.023004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091132250"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.96.042122", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092172317"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.96.042122", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092172317"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.97.013001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100204637"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.97.013001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100204637"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.5018137", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100699588"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.120.245501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104576128"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.120.245501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104576128"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.2517-6161.1961.tb00430.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110457328"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.2517-6161.1961.tb00430.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110457328"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "We identified heterogeneous Mg-Ho alloys as an ideal material to measure the most extensive acoustic emission spectra available. Mg-Ho alloys are porous and show a high density of dislocations, which slide under external tension and compression. These dislocations nucleate near numerous heterogeneities. Two mechanisms compete under external forcing in the structural collapse, namely collapsing holes and the movements of dislocations. Their respective fingerprints in acoustic emission (AE) measurements are very different and relate to their individual signal strengths. Porous collapse generates very strong AE signals while dislocation movements create more but weaker AE signals. This allows the separation of the two processes even though they almost always coincide temporarily. The porous collapse follows approximately mean-field behavior (\u03b5\u2009=\u20091.4, \u03c4'\u2009=\u20091.82, \u03b1\u2009=\u20092.56, x\u2009=\u20091.93, \u03c7\u2009=\u20091.95) with mean field scaling fulfilled. The exponents for dislocation movement are greater (\u03b5\u2009=\u20091.92, \u03c4'\u2009=\u20092.44, \u03b1\u2009=\u20093.0, x\u2009=\u20091.7, \u03c7\u2009=\u20091.42) and follows approximately the force integrated mean-field predictions. The Omori scaling is similar for both mechanisms. The Bath's law is well fulfilled for the porous collapse but not for the dislocation movements. We suggest that such 'complex' mixing behavior is dominant in many other complex materials such as (multi-) ferroics, entropic alloys and porous ferroelastics, and, potentially, homogeneous materials with the simultaneous appearance of different collapse mechanisms.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-018-37604-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6711521", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "Acoustic Emission from Porous Collapse and Moving Dislocations in Granular Mg-Ho Alloys under Compression and Tension", 
    "pagination": "1330", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "bbe59031278da877d8af23b548a5358fe4f04db656a6ab590fbc977b0b7d0ec7"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30718551"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-018-37604-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111915892"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-018-37604-5", 
      "https://app.dimensions.ai/details/publication/pub.1111915892"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:01", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000330_0000000330/records_116383_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-018-37604-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-37604-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-37604-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-37604-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-37604-5'


 

This table displays all metadata directly associated to this object as RDF triples.

223 TRIPLES      21 PREDICATES      70 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-018-37604-5 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N868b70810b1545438f0f259fbbbaa226
4 schema:citation sg:pub.10.1007/978-3-319-45612-6
5 sg:pub.10.1038/386379a0
6 sg:pub.10.1038/ncomms10641
7 https://doi.org/10.1016/j.actamat.2005.06.007
8 https://doi.org/10.1016/j.actamat.2017.06.023
9 https://doi.org/10.1016/s1359-6454(97)00301-7
10 https://doi.org/10.1017/s0022112003005317
11 https://doi.org/10.1029/2006gl026122
12 https://doi.org/10.1029/97rg00426
13 https://doi.org/10.1051/m2an/2013081
14 https://doi.org/10.1063/1.5018137
15 https://doi.org/10.1080/09500839.2011.596491
16 https://doi.org/10.1080/14786435.2016.1235288
17 https://doi.org/10.1080/17461390500402657
18 https://doi.org/10.1088/0953-8984/25/29/292202
19 https://doi.org/10.1088/0953-8984/26/27/275401
20 https://doi.org/10.1103/physrevb.76.224110
21 https://doi.org/10.1103/physrevb.83.104109
22 https://doi.org/10.1103/physrevb.87.094109
23 https://doi.org/10.1103/physrevb.90.064103
24 https://doi.org/10.1103/physreve.90.022405
25 https://doi.org/10.1103/physreve.91.060401
26 https://doi.org/10.1103/physreve.93.033006
27 https://doi.org/10.1103/physreve.95.032910
28 https://doi.org/10.1103/physreve.96.023004
29 https://doi.org/10.1103/physreve.96.042122
30 https://doi.org/10.1103/physreve.97.013001
31 https://doi.org/10.1103/physrevlett.102.175501
32 https://doi.org/10.1103/physrevlett.110.088702
33 https://doi.org/10.1103/physrevlett.115.055501
34 https://doi.org/10.1103/physrevlett.117.230601
35 https://doi.org/10.1103/physrevlett.120.245501
36 https://doi.org/10.1103/physrevlett.91.058501
37 https://doi.org/10.1103/physrevlett.94.038501
38 https://doi.org/10.1111/j.2517-6161.1961.tb00430.x
39 https://doi.org/10.1137/070710111
40 https://doi.org/10.1146/annurev-conmatphys-031113-133838
41 https://doi.org/10.2138/am-2015-5085
42 https://doi.org/10.2138/am-2016-5809ccby
43 https://doi.org/10.2138/am.2013.4319
44 https://doi.org/10.4294/jpe1952.43.1
45 schema:datePublished 2019-12
46 schema:datePublishedReg 2019-12-01
47 schema:description We identified heterogeneous Mg-Ho alloys as an ideal material to measure the most extensive acoustic emission spectra available. Mg-Ho alloys are porous and show a high density of dislocations, which slide under external tension and compression. These dislocations nucleate near numerous heterogeneities. Two mechanisms compete under external forcing in the structural collapse, namely collapsing holes and the movements of dislocations. Their respective fingerprints in acoustic emission (AE) measurements are very different and relate to their individual signal strengths. Porous collapse generates very strong AE signals while dislocation movements create more but weaker AE signals. This allows the separation of the two processes even though they almost always coincide temporarily. The porous collapse follows approximately mean-field behavior (ε = 1.4, τ' = 1.82, α = 2.56, x = 1.93, χ = 1.95) with mean field scaling fulfilled. The exponents for dislocation movement are greater (ε = 1.92, τ' = 2.44, α = 3.0, x = 1.7, χ = 1.42) and follows approximately the force integrated mean-field predictions. The Omori scaling is similar for both mechanisms. The Bath's law is well fulfilled for the porous collapse but not for the dislocation movements. We suggest that such 'complex' mixing behavior is dominant in many other complex materials such as (multi-) ferroics, entropic alloys and porous ferroelastics, and, potentially, homogeneous materials with the simultaneous appearance of different collapse mechanisms.
48 schema:genre research_article
49 schema:inLanguage en
50 schema:isAccessibleForFree true
51 schema:isPartOf N416341fa38424456b386a115d1fea0c8
52 N89377d09be304886b42b121fb07cd61e
53 sg:journal.1045337
54 schema:name Acoustic Emission from Porous Collapse and Moving Dislocations in Granular Mg-Ho Alloys under Compression and Tension
55 schema:pagination 1330
56 schema:productId N22694981036548cfa83f660100f2ecbc
57 N8ae04e85887e48bfa5a4be8e58968a0a
58 Nbb6432a5e7694bfb9ae889ae74a6fffb
59 Nc94863b7291e43c09f012e2d837ebde1
60 Nfdebc2480aa64e9ab80fec5a5cc35ffc
61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111915892
62 https://doi.org/10.1038/s41598-018-37604-5
63 schema:sdDatePublished 2019-04-11T09:01
64 schema:sdLicense https://scigraph.springernature.com/explorer/license/
65 schema:sdPublisher N29b214ac5464444d98c620c5f83ae3c4
66 schema:url https://www.nature.com/articles/s41598-018-37604-5
67 sgo:license sg:explorer/license/
68 sgo:sdDataset articles
69 rdf:type schema:ScholarlyArticle
70 N017e65008d7f469b92b77932b956da73 schema:affiliation https://www.grid.ac/institutes/grid.43169.39
71 schema:familyName Sun
72 schema:givenName Jun
73 rdf:type schema:Person
74 N22694981036548cfa83f660100f2ecbc schema:name nlm_unique_id
75 schema:value 101563288
76 rdf:type schema:PropertyValue
77 N29b214ac5464444d98c620c5f83ae3c4 schema:name Springer Nature - SN SciGraph project
78 rdf:type schema:Organization
79 N416341fa38424456b386a115d1fea0c8 schema:volumeNumber 9
80 rdf:type schema:PublicationVolume
81 N4750ab9e5c6a4167a50c51725815574f schema:affiliation https://www.grid.ac/institutes/grid.43169.39
82 schema:familyName Ding
83 schema:givenName Xiangdong
84 rdf:type schema:Person
85 N487f04c8d77a4fc2a958b28e94d3a9bc rdf:first Ndba681822fe64e2c84806596fec4aeab
86 rdf:rest rdf:nil
87 N7c3e1cec0cb3410595ebe7cb60fa1c6a schema:affiliation https://www.grid.ac/institutes/grid.43169.39
88 schema:familyName Fang
89 schema:givenName Daqing
90 rdf:type schema:Person
91 N868b70810b1545438f0f259fbbbaa226 rdf:first Nfaa7dbd0b50f4bbf8e9637b878e666fc
92 rdf:rest Nfa697e2f96f9406c92ca6b835e85f433
93 N89377d09be304886b42b121fb07cd61e schema:issueNumber 1
94 rdf:type schema:PublicationIssue
95 N8ae04e85887e48bfa5a4be8e58968a0a schema:name pubmed_id
96 schema:value 30718551
97 rdf:type schema:PropertyValue
98 Nbb6432a5e7694bfb9ae889ae74a6fffb schema:name dimensions_id
99 schema:value pub.1111915892
100 rdf:type schema:PropertyValue
101 Nc94863b7291e43c09f012e2d837ebde1 schema:name readcube_id
102 schema:value bbe59031278da877d8af23b548a5358fe4f04db656a6ab590fbc977b0b7d0ec7
103 rdf:type schema:PropertyValue
104 Nceb473ad7d0745eab0b83d3fbce5d9c3 rdf:first N7c3e1cec0cb3410595ebe7cb60fa1c6a
105 rdf:rest Ne0410d10e89d4c64a63db89690702963
106 Ndba681822fe64e2c84806596fec4aeab schema:affiliation https://www.grid.ac/institutes/grid.5335.0
107 schema:familyName Salje
108 schema:givenName Ekhard K. H.
109 rdf:type schema:Person
110 Ne0410d10e89d4c64a63db89690702963 rdf:first N017e65008d7f469b92b77932b956da73
111 rdf:rest N487f04c8d77a4fc2a958b28e94d3a9bc
112 Nfa697e2f96f9406c92ca6b835e85f433 rdf:first N4750ab9e5c6a4167a50c51725815574f
113 rdf:rest Nceb473ad7d0745eab0b83d3fbce5d9c3
114 Nfaa7dbd0b50f4bbf8e9637b878e666fc schema:affiliation https://www.grid.ac/institutes/grid.43169.39
115 schema:familyName Chen
116 schema:givenName Yan
117 rdf:type schema:Person
118 Nfdebc2480aa64e9ab80fec5a5cc35ffc schema:name doi
119 schema:value 10.1038/s41598-018-37604-5
120 rdf:type schema:PropertyValue
121 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
122 schema:name Engineering
123 rdf:type schema:DefinedTerm
124 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
125 schema:name Materials Engineering
126 rdf:type schema:DefinedTerm
127 sg:grant.6711521 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-018-37604-5
128 rdf:type schema:MonetaryGrant
129 sg:journal.1045337 schema:issn 2045-2322
130 schema:name Scientific Reports
131 rdf:type schema:Periodical
132 sg:pub.10.1007/978-3-319-45612-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026981281
133 https://doi.org/10.1007/978-3-319-45612-6
134 rdf:type schema:CreativeWork
135 sg:pub.10.1038/386379a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035450622
136 https://doi.org/10.1038/386379a0
137 rdf:type schema:CreativeWork
138 sg:pub.10.1038/ncomms10641 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034245115
139 https://doi.org/10.1038/ncomms10641
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.actamat.2005.06.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015912480
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.actamat.2017.06.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085994800
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/s1359-6454(97)00301-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013730775
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1017/s0022112003005317 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054022491
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1029/2006gl026122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013980137
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1029/97rg00426 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031327620
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1051/m2an/2013081 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057032467
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1063/1.5018137 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100699588
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1080/09500839.2011.596491 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016671412
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1080/14786435.2016.1235288 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045941114
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1080/17461390500402657 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043646381
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1088/0953-8984/25/29/292202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043752603
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1088/0953-8984/26/27/275401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028040245
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1103/physrevb.76.224110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060623185
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1103/physrevb.83.104109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060635055
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1103/physrevb.87.094109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060641005
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1103/physrevb.90.064103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060644406
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1103/physreve.90.022405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060746520
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1103/physreve.91.060401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060747572
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1103/physreve.93.033006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060749322
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1103/physreve.95.032910 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084198960
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1103/physreve.96.023004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091132250
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1103/physreve.96.042122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092172317
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1103/physreve.97.013001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100204637
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1103/physrevlett.102.175501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060755276
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1103/physrevlett.110.088702 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046520096
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1103/physrevlett.115.055501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060763892
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1103/physrevlett.117.230601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060766822
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1103/physrevlett.120.245501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104576128
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1103/physrevlett.91.058501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031962899
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1103/physrevlett.94.038501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008612374
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1111/j.2517-6161.1961.tb00430.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1110457328
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1137/070710111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062851851
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1146/annurev-conmatphys-031113-133838 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043129471
208 rdf:type schema:CreativeWork
209 https://doi.org/10.2138/am-2015-5085 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024716738
210 rdf:type schema:CreativeWork
211 https://doi.org/10.2138/am-2016-5809ccby schema:sameAs https://app.dimensions.ai/details/publication/pub.1043332250
212 rdf:type schema:CreativeWork
213 https://doi.org/10.2138/am.2013.4319 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015766122
214 rdf:type schema:CreativeWork
215 https://doi.org/10.4294/jpe1952.43.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004036568
216 rdf:type schema:CreativeWork
217 https://www.grid.ac/institutes/grid.43169.39 schema:alternateName Xi'an Jiaotong University
218 schema:name State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, 710049, Xi’an, China
219 rdf:type schema:Organization
220 https://www.grid.ac/institutes/grid.5335.0 schema:alternateName University of Cambridge
221 schema:name Department of Earth Sciences, University of Cambridge, CB2 3EQ, Cambridge, England
222 State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, 710049, Xi’an, China
223 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...