Detecting and Mapping Harmful Chemicals in Fruit and Vegetables Using Nanoparticle-Enhanced Laser-Induced Breakdown Spectroscopy View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Xiande Zhao, Chunjiang Zhao, Xiaofan Du, Daming Dong

ABSTRACT

Residues of harmful chemicals in fruit and vegetables pose risks to human health. Ordinary laser-induced breakdown spectroscopy (LIBS) techniques are unsatisfactory for detecting harmful chemicals in fruit and vegetables. In this study, we applied metal nanoparticles to fruit and vegetables samples to improve the ability of LIBS to detect trace pesticide and heavy metal residues in the samples. The nanoparticle-enhanced LIBS technique gave pesticide residue detection limits for fruit and vegetables two orders of magnitude lower than achieved using standard LIBS and heavy metal detection limits markedly better than achieved using standard LIBS. We used the nanoparticle-enhanced LIBS technique to study the distributions of harmful chemicals in vegetable leaves. We found that heavy metals are distributed unevenly in edible plant leaves, the heavy metal concentrations being higher in the veins than in the mesophyll. More... »

PAGES

906

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-018-37556-w

DOI

http://dx.doi.org/10.1038/s41598-018-37556-w

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111766290

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30696892


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0402", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Geochemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Beijing Academy of Agricultural and Forestry Sciences", 
          "id": "https://www.grid.ac/institutes/grid.418260.9", 
          "name": [
            "Beijing Research Center of Intelligent Equipment for Agriculture, 100097, Beijing, China", 
            "Beijing Academy of Agriculture and Forestry Sciences, 100097, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhao", 
        "givenName": "Xiande", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Beijing Academy of Agricultural and Forestry Sciences", 
          "id": "https://www.grid.ac/institutes/grid.418260.9", 
          "name": [
            "Beijing Research Center of Intelligent Equipment for Agriculture, 100097, Beijing, China", 
            "Beijing Academy of Agriculture and Forestry Sciences, 100097, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhao", 
        "givenName": "Chunjiang", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Beijing Academy of Agricultural and Forestry Sciences", 
          "id": "https://www.grid.ac/institutes/grid.418260.9", 
          "name": [
            "Beijing Research Center of Intelligent Equipment for Agriculture, 100097, Beijing, China", 
            "Beijing Academy of Agriculture and Forestry Sciences, 100097, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Du", 
        "givenName": "Xiaofan", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Beijing Academy of Agricultural and Forestry Sciences", 
          "id": "https://www.grid.ac/institutes/grid.418260.9", 
          "name": [
            "Beijing Research Center of Intelligent Equipment for Agriculture, 100097, Beijing, China", 
            "Beijing Academy of Agriculture and Forestry Sciences, 100097, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dong", 
        "givenName": "Daming", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1093/jxb/eri062", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002614377"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.sab.2008.08.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005911890"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sia.3445", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008647369"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.microc.2012.04.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009401372"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c4ja00144c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015523973"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1469-8137.2010.03424.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017101990"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1469-8137.2010.03424.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017101990"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13197-010-0052-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017166140", 
          "https://doi.org/10.1007/s13197-010-0052-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13197-010-0052-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017166140", 
          "https://doi.org/10.1007/s13197-010-0052-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/xrs.1035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018050265"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chroma.2005.10.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018380599"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chroma.2005.10.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018380599"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c5ra12461a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019839947"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/rcm.4767", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020735148"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/rcm.4767", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020735148"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.sab.2014.05.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021958788"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10533-010-9498-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024775195", 
          "https://doi.org/10.1007/s10533-010-9498-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11104-007-9269-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025398834", 
          "https://doi.org/10.1007/s11104-007-9269-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aca.2011.09.040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026921683"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00216-013-6768-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027302860", 
          "https://doi.org/10.1007/s00216-013-6768-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nimb.2009.03.059", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029502020"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11104-007-9406-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031042056", 
          "https://doi.org/10.1007/s11104-007-9406-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10653-009-9248-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032887846", 
          "https://doi.org/10.1007/s10653-009-9248-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhazmat.2012.10.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036265548"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12161-014-9828-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036414017", 
          "https://doi.org/10.1007/s12161-014-9828-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1104/pp.111.173088", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036967955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scitotenv.2008.12.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037950099"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c4ja00462k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038964366"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.sab.2013.01.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044347914"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-3040.2008.01858.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044910771"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.envres.2009.02.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045569840"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b805228j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050877628"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4935829", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052601701"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac061233x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054998486"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac061233x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054998486"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/es506334y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055508971"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jf025801v", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055900612"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jf025801v", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055900612"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jf072348k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055907314"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jf072348k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055907314"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jf203518f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055910441"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2337169", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057850300"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.19.014067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065197272"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4236/jbise.2015.83020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072385527"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ao.56.004070", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085327716"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ecoenv.2017.08.053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091435821"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.talanta.2018.02.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101129542"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.talanta.2018.02.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101129542"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.sab.2018.06.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104546901"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "Residues of harmful chemicals in fruit and vegetables pose risks to human health. Ordinary laser-induced breakdown spectroscopy (LIBS) techniques are unsatisfactory for detecting harmful chemicals in fruit and vegetables. In this study, we applied metal nanoparticles to fruit and vegetables samples to improve the ability of LIBS to detect trace pesticide and heavy metal residues in the samples. The nanoparticle-enhanced LIBS technique gave pesticide residue detection limits for fruit and vegetables two orders of magnitude lower than achieved using standard LIBS and heavy metal detection limits markedly better than achieved using standard LIBS. We used the nanoparticle-enhanced LIBS technique to study the distributions of harmful chemicals in vegetable leaves. We found that heavy metals are distributed unevenly in edible plant leaves, the heavy metal concentrations being higher in the veins than in the mesophyll.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-018-37556-w", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "Detecting and Mapping Harmful Chemicals in Fruit and Vegetables Using Nanoparticle-Enhanced Laser-Induced Breakdown Spectroscopy", 
    "pagination": "906", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b0a94b3f8384dfd8258cae43597b4f0364a8d4b18ded03405e4839bf00249baa"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30696892"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-018-37556-w"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111766290"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-018-37556-w", 
      "https://app.dimensions.ai/details/publication/pub.1111766290"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:59", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000327_0000000327/records_114967_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-018-37556-w"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-37556-w'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-37556-w'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-37556-w'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-37556-w'


 

This table displays all metadata directly associated to this object as RDF triples.

216 TRIPLES      21 PREDICATES      70 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-018-37556-w schema:about anzsrc-for:04
2 anzsrc-for:0402
3 schema:author N34af71e5367f49ecadbd4572d1bc7ab1
4 schema:citation sg:pub.10.1007/s00216-013-6768-6
5 sg:pub.10.1007/s10533-010-9498-2
6 sg:pub.10.1007/s10653-009-9248-3
7 sg:pub.10.1007/s11104-007-9269-6
8 sg:pub.10.1007/s11104-007-9406-2
9 sg:pub.10.1007/s12161-014-9828-4
10 sg:pub.10.1007/s13197-010-0052-y
11 https://doi.org/10.1002/rcm.4767
12 https://doi.org/10.1002/sia.3445
13 https://doi.org/10.1002/xrs.1035
14 https://doi.org/10.1016/j.aca.2011.09.040
15 https://doi.org/10.1016/j.chroma.2005.10.022
16 https://doi.org/10.1016/j.ecoenv.2017.08.053
17 https://doi.org/10.1016/j.envres.2009.02.005
18 https://doi.org/10.1016/j.jhazmat.2012.10.027
19 https://doi.org/10.1016/j.microc.2012.04.010
20 https://doi.org/10.1016/j.nimb.2009.03.059
21 https://doi.org/10.1016/j.sab.2008.08.001
22 https://doi.org/10.1016/j.sab.2013.01.005
23 https://doi.org/10.1016/j.sab.2014.05.010
24 https://doi.org/10.1016/j.sab.2018.06.008
25 https://doi.org/10.1016/j.scitotenv.2008.12.003
26 https://doi.org/10.1016/j.talanta.2018.02.001
27 https://doi.org/10.1021/ac061233x
28 https://doi.org/10.1021/es506334y
29 https://doi.org/10.1021/jf025801v
30 https://doi.org/10.1021/jf072348k
31 https://doi.org/10.1021/jf203518f
32 https://doi.org/10.1039/b805228j
33 https://doi.org/10.1039/c4ja00144c
34 https://doi.org/10.1039/c4ja00462k
35 https://doi.org/10.1039/c5ra12461a
36 https://doi.org/10.1063/1.2337169
37 https://doi.org/10.1063/1.4935829
38 https://doi.org/10.1093/jxb/eri062
39 https://doi.org/10.1104/pp.111.173088
40 https://doi.org/10.1111/j.1365-3040.2008.01858.x
41 https://doi.org/10.1111/j.1469-8137.2010.03424.x
42 https://doi.org/10.1364/ao.56.004070
43 https://doi.org/10.1364/oe.19.014067
44 https://doi.org/10.4236/jbise.2015.83020
45 schema:datePublished 2019-12
46 schema:datePublishedReg 2019-12-01
47 schema:description Residues of harmful chemicals in fruit and vegetables pose risks to human health. Ordinary laser-induced breakdown spectroscopy (LIBS) techniques are unsatisfactory for detecting harmful chemicals in fruit and vegetables. In this study, we applied metal nanoparticles to fruit and vegetables samples to improve the ability of LIBS to detect trace pesticide and heavy metal residues in the samples. The nanoparticle-enhanced LIBS technique gave pesticide residue detection limits for fruit and vegetables two orders of magnitude lower than achieved using standard LIBS and heavy metal detection limits markedly better than achieved using standard LIBS. We used the nanoparticle-enhanced LIBS technique to study the distributions of harmful chemicals in vegetable leaves. We found that heavy metals are distributed unevenly in edible plant leaves, the heavy metal concentrations being higher in the veins than in the mesophyll.
48 schema:genre research_article
49 schema:inLanguage en
50 schema:isAccessibleForFree true
51 schema:isPartOf N7bb305c14d844addba0ff5400f016e8e
52 N816f18e9fca249288ecf636a9bc7fe85
53 sg:journal.1045337
54 schema:name Detecting and Mapping Harmful Chemicals in Fruit and Vegetables Using Nanoparticle-Enhanced Laser-Induced Breakdown Spectroscopy
55 schema:pagination 906
56 schema:productId N33bdf4f0b258412ebfbf14f983a5bca4
57 N79646a86e90741bbbecd84ea3321a270
58 N7e27d8183e45470e8989f8c8aa1fff7e
59 Nc8e9ed97d2664b6d9c8185818b963fb6
60 Nec70130d2b0448718497143361465773
61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111766290
62 https://doi.org/10.1038/s41598-018-37556-w
63 schema:sdDatePublished 2019-04-11T08:59
64 schema:sdLicense https://scigraph.springernature.com/explorer/license/
65 schema:sdPublisher N3e9e5ab7c6e24acbb8682d355482e7c7
66 schema:url https://www.nature.com/articles/s41598-018-37556-w
67 sgo:license sg:explorer/license/
68 sgo:sdDataset articles
69 rdf:type schema:ScholarlyArticle
70 N2f6f9d89f9164db790c9acd59791561c rdf:first N6c25df776fc74bfa8dccb595790ff2c4
71 rdf:rest Nb28c21dee1b0402a9b2012a7acfb378c
72 N33bdf4f0b258412ebfbf14f983a5bca4 schema:name doi
73 schema:value 10.1038/s41598-018-37556-w
74 rdf:type schema:PropertyValue
75 N34af71e5367f49ecadbd4572d1bc7ab1 rdf:first N9939913e0ef34b9d918224f22b0b87b9
76 rdf:rest N2f6f9d89f9164db790c9acd59791561c
77 N3e9e5ab7c6e24acbb8682d355482e7c7 schema:name Springer Nature - SN SciGraph project
78 rdf:type schema:Organization
79 N6c25df776fc74bfa8dccb595790ff2c4 schema:affiliation https://www.grid.ac/institutes/grid.418260.9
80 schema:familyName Zhao
81 schema:givenName Chunjiang
82 rdf:type schema:Person
83 N757d036705664bbe831b1e9020dfcf97 schema:affiliation https://www.grid.ac/institutes/grid.418260.9
84 schema:familyName Dong
85 schema:givenName Daming
86 rdf:type schema:Person
87 N79646a86e90741bbbecd84ea3321a270 schema:name pubmed_id
88 schema:value 30696892
89 rdf:type schema:PropertyValue
90 N7bb305c14d844addba0ff5400f016e8e schema:volumeNumber 9
91 rdf:type schema:PublicationVolume
92 N7e27d8183e45470e8989f8c8aa1fff7e schema:name dimensions_id
93 schema:value pub.1111766290
94 rdf:type schema:PropertyValue
95 N816f18e9fca249288ecf636a9bc7fe85 schema:issueNumber 1
96 rdf:type schema:PublicationIssue
97 N9939913e0ef34b9d918224f22b0b87b9 schema:affiliation https://www.grid.ac/institutes/grid.418260.9
98 schema:familyName Zhao
99 schema:givenName Xiande
100 rdf:type schema:Person
101 Nb28c21dee1b0402a9b2012a7acfb378c rdf:first Nd7078d2ddd0d40ab9898b0765efad9c8
102 rdf:rest Ndd9077665fb9461892ca7630c58cd6f5
103 Nc8e9ed97d2664b6d9c8185818b963fb6 schema:name readcube_id
104 schema:value b0a94b3f8384dfd8258cae43597b4f0364a8d4b18ded03405e4839bf00249baa
105 rdf:type schema:PropertyValue
106 Nd7078d2ddd0d40ab9898b0765efad9c8 schema:affiliation https://www.grid.ac/institutes/grid.418260.9
107 schema:familyName Du
108 schema:givenName Xiaofan
109 rdf:type schema:Person
110 Ndd9077665fb9461892ca7630c58cd6f5 rdf:first N757d036705664bbe831b1e9020dfcf97
111 rdf:rest rdf:nil
112 Nec70130d2b0448718497143361465773 schema:name nlm_unique_id
113 schema:value 101563288
114 rdf:type schema:PropertyValue
115 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
116 schema:name Earth Sciences
117 rdf:type schema:DefinedTerm
118 anzsrc-for:0402 schema:inDefinedTermSet anzsrc-for:
119 schema:name Geochemistry
120 rdf:type schema:DefinedTerm
121 sg:journal.1045337 schema:issn 2045-2322
122 schema:name Scientific Reports
123 rdf:type schema:Periodical
124 sg:pub.10.1007/s00216-013-6768-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027302860
125 https://doi.org/10.1007/s00216-013-6768-6
126 rdf:type schema:CreativeWork
127 sg:pub.10.1007/s10533-010-9498-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024775195
128 https://doi.org/10.1007/s10533-010-9498-2
129 rdf:type schema:CreativeWork
130 sg:pub.10.1007/s10653-009-9248-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032887846
131 https://doi.org/10.1007/s10653-009-9248-3
132 rdf:type schema:CreativeWork
133 sg:pub.10.1007/s11104-007-9269-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025398834
134 https://doi.org/10.1007/s11104-007-9269-6
135 rdf:type schema:CreativeWork
136 sg:pub.10.1007/s11104-007-9406-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031042056
137 https://doi.org/10.1007/s11104-007-9406-2
138 rdf:type schema:CreativeWork
139 sg:pub.10.1007/s12161-014-9828-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036414017
140 https://doi.org/10.1007/s12161-014-9828-4
141 rdf:type schema:CreativeWork
142 sg:pub.10.1007/s13197-010-0052-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1017166140
143 https://doi.org/10.1007/s13197-010-0052-y
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1002/rcm.4767 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020735148
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1002/sia.3445 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008647369
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1002/xrs.1035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018050265
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.aca.2011.09.040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026921683
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/j.chroma.2005.10.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018380599
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/j.ecoenv.2017.08.053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091435821
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/j.envres.2009.02.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045569840
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/j.jhazmat.2012.10.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036265548
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/j.microc.2012.04.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009401372
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/j.nimb.2009.03.059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029502020
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/j.sab.2008.08.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005911890
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/j.sab.2013.01.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044347914
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/j.sab.2014.05.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021958788
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/j.sab.2018.06.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104546901
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/j.scitotenv.2008.12.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037950099
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/j.talanta.2018.02.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101129542
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1021/ac061233x schema:sameAs https://app.dimensions.ai/details/publication/pub.1054998486
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1021/es506334y schema:sameAs https://app.dimensions.ai/details/publication/pub.1055508971
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1021/jf025801v schema:sameAs https://app.dimensions.ai/details/publication/pub.1055900612
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1021/jf072348k schema:sameAs https://app.dimensions.ai/details/publication/pub.1055907314
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1021/jf203518f schema:sameAs https://app.dimensions.ai/details/publication/pub.1055910441
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1039/b805228j schema:sameAs https://app.dimensions.ai/details/publication/pub.1050877628
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1039/c4ja00144c schema:sameAs https://app.dimensions.ai/details/publication/pub.1015523973
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1039/c4ja00462k schema:sameAs https://app.dimensions.ai/details/publication/pub.1038964366
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1039/c5ra12461a schema:sameAs https://app.dimensions.ai/details/publication/pub.1019839947
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1063/1.2337169 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057850300
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1063/1.4935829 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052601701
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1093/jxb/eri062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002614377
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1104/pp.111.173088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036967955
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1111/j.1365-3040.2008.01858.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1044910771
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1111/j.1469-8137.2010.03424.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1017101990
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1364/ao.56.004070 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085327716
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1364/oe.19.014067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065197272
210 rdf:type schema:CreativeWork
211 https://doi.org/10.4236/jbise.2015.83020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072385527
212 rdf:type schema:CreativeWork
213 https://www.grid.ac/institutes/grid.418260.9 schema:alternateName Beijing Academy of Agricultural and Forestry Sciences
214 schema:name Beijing Academy of Agriculture and Forestry Sciences, 100097, Beijing, China
215 Beijing Research Center of Intelligent Equipment for Agriculture, 100097, Beijing, China
216 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...