Identification of Key Signaling Pathways Orchestrating Substrate Topography Directed Osteogenic Differentiation Through High-Throughput siRNA Screening View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Tugba Ozdemir, Daniel T. Bowers, Xiang Zhan, Debashis Ghosh, Justin L. Brown

ABSTRACT

Fibrous scaffolds are used for bone tissue engineering purposes with great success across a variety of polymers with different physical and chemical properties. It is now evident that the correct degree of curvature promotes increased cytoskeletal tension on osteoprogenitors leading to osteogenic differentiation. However, the mechanotransductive pathways involved in this phenomenon are not fully understood. To achieve a reproducible and specific cellular response, an increased mechanistic understanding of the molecular mechanisms driving the fibrous scaffold mediated bone regeneration must be understood. High throughput siRNA mediated screening technology has been utilized for dissecting molecular targets that are important in certain cellular phenotypes. In this study, we used siRNA mediated gene silencing to understand the osteogenic differentiation observed on fibrous scaffolds. A high-throughput siRNA screen was conducted using a library collection of 863 genes including important human kinase and phosphatase targets on pre-osteoblast SaOS-2 cells. The cells were grown on electrospun poly(methyl methacrylate) (PMMA) scaffolds with a diameter of 0.938 ± 0.304 µm and a flat surface control. The osteogenic transcription factor RUNX2 was quantified with an in-cell western (ICW) assay for the primary screen and significant targets were selected via two sample t-test. After selecting the significant targets, a secondary screen was performed to identify osteoinductive markers that also effect cell shape on fibrous topography. Finally, we report the most physiologically relevant molecular signaling mechanisms that are involved in growth factor free, fibrous topography mediated osteoinduction. We identified GTPases, membrane channel proteins, and microtubule associated targets that promote an osteoinductive cell shape on fibrous scaffolds. More... »

PAGES

1001

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-018-37554-y

DOI

http://dx.doi.org/10.1038/s41598-018-37554-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111775369

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30700820


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Gaziosmanpa\u015fa University", 
          "id": "https://www.grid.ac/institutes/grid.411550.4", 
          "name": [
            "Department of Genetics and Bioengineering, Tokat Gaziosmanpasa University, Tokat, Turkey"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ozdemir", 
        "givenName": "Tugba", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Pennsylvania State University", 
          "id": "https://www.grid.ac/institutes/grid.29857.31", 
          "name": [
            "Department of Biomedical Engineering, The Pennsylvania State University, University Park, State College, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bowers", 
        "givenName": "Daniel T.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Penn State Milton S. Hershey Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.240473.6", 
          "name": [
            "Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhan", 
        "givenName": "Xiang", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Colorado School of Public Health", 
          "id": "https://www.grid.ac/institutes/grid.414594.9", 
          "name": [
            "Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, CO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ghosh", 
        "givenName": "Debashis", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Pennsylvania State University", 
          "id": "https://www.grid.ac/institutes/grid.29857.31", 
          "name": [
            "Department of Biomedical Engineering, The Pennsylvania State University, University Park, State College, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Brown", 
        "givenName": "Justin L.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.3389/fonc.2015.00190", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001649918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jbm.b.33397", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004161521"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c4ib00225c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005282449"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adfm.201505047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006362992"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tibtech.2009.12.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009180882"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1087057103256465", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009600193"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1087057103256465", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009600193"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.087890.108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009616014"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biomaterials.2012.10.035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009850992"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/jbc.m705215200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010020363"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-4644(19990501)73:2<153::aid-jcb2>3.0.co;2-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010220651"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bimj.4710310115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011587481"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biomaterials.2016.11.032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012677428"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c6ib00076b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013366441"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1534-5807(04)00075-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016167288"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0378-1119(98)00605-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016791088"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35888", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018713804", 
          "https://doi.org/10.1038/35888"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35888", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018713804", 
          "https://doi.org/10.1038/35888"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scr.2013.09.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022711331"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/19336918.2016.1178449", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023161471"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/mcb.00976-15", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023268061"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.106.069963", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023496286"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.106.069963", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023496286"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1600-0501.2004.01054.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024821996"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/jbc.m504761200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028445498"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0955-0674(98)80037-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030521878"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncb1762", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031500894", 
          "https://doi.org/10.1038/ncb1762"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c3ib40068a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032786849"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.devcel.2006.03.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033344775"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1600-0765.1997.tb01399.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036700692"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1083/jcb.200208120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037411160"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2015/575170", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037452189"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.yexcr.2004.05.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037669569"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/jbc.c400441200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039363626"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2006-7-10-r100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040889351", 
          "https://doi.org/10.1186/gb-2006-7-10-r100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep21901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043255000", 
          "https://doi.org/10.1038/srep21901"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jbm.a.32934", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044308712"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jbm.a.32934", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044308712"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jbm.a.34234", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044592336"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1091/mbc.e11-07-0639", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044956863"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bbamcr.2015.07.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045160352"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actbio.2016.02.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047104126"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0431052100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050015050"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adfm.201100275", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050466870"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bbamcr.2014.08.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052939865"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.286.5444.1583", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062567386"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2174/1381612811319190010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069169006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077943029", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/embc.2015.7318716", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079205226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1079469207", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-017-06483-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090754947", 
          "https://doi.org/10.1038/s41598-017-06483-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acsnano.7b03732", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090901117"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acsnano.7b03732", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090901117"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actbio.2017.08.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091235566"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "Fibrous scaffolds are used for bone tissue engineering purposes with great success across a variety of polymers with different physical and chemical properties. It is now evident that the correct degree of curvature promotes increased cytoskeletal tension on osteoprogenitors leading to osteogenic differentiation. However, the mechanotransductive pathways involved in this phenomenon are not fully understood. To achieve a reproducible and specific cellular response, an increased mechanistic understanding of the molecular mechanisms driving the fibrous scaffold mediated bone regeneration must be understood. High throughput siRNA mediated screening technology has been utilized for dissecting molecular targets that are important in certain cellular phenotypes. In this study, we used siRNA mediated gene silencing to understand the osteogenic differentiation observed on fibrous scaffolds. A high-throughput siRNA screen was conducted using a library collection of 863 genes including important human kinase and phosphatase targets on pre-osteoblast SaOS-2 cells. The cells were grown on electrospun poly(methyl methacrylate) (PMMA) scaffolds with a diameter of 0.938\u2009\u00b1\u20090.304\u2009\u00b5m and a flat surface control. The osteogenic transcription factor RUNX2 was quantified with an in-cell western (ICW) assay for the primary screen and significant targets were selected via two sample t-test. After selecting the significant targets, a secondary screen was performed to identify osteoinductive markers that also effect cell shape on fibrous topography. Finally, we report the most physiologically relevant molecular signaling mechanisms that are involved in growth factor free, fibrous topography mediated osteoinduction. We identified GTPases, membrane channel proteins, and microtubule associated targets that promote an osteoinductive cell shape on fibrous scaffolds.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-018-37554-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "Identification of Key Signaling Pathways Orchestrating Substrate Topography Directed Osteogenic Differentiation Through High-Throughput siRNA Screening", 
    "pagination": "1001", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "84401ffc5a2228e0950ffb37efc48b4aa754c03fd7d86cb15be5132d7dbfb303"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30700820"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-018-37554-y"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111775369"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-018-37554-y", 
      "https://app.dimensions.ai/details/publication/pub.1111775369"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:00", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000327_0000000327/records_114999_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-018-37554-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-37554-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-37554-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-37554-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-37554-y'


 

This table displays all metadata directly associated to this object as RDF triples.

250 TRIPLES      21 PREDICATES      78 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-018-37554-y schema:about anzsrc-for:06
2 anzsrc-for:0601
3 schema:author Nc3eb1508a1a0419fabff36f736605663
4 schema:citation sg:pub.10.1038/35888
5 sg:pub.10.1038/ncb1762
6 sg:pub.10.1038/s41598-017-06483-7
7 sg:pub.10.1038/srep21901
8 sg:pub.10.1186/gb-2006-7-10-r100
9 https://app.dimensions.ai/details/publication/pub.1077943029
10 https://app.dimensions.ai/details/publication/pub.1079469207
11 https://doi.org/10.1002/(sici)1097-4644(19990501)73:2<153::aid-jcb2>3.0.co;2-7
12 https://doi.org/10.1002/adfm.201100275
13 https://doi.org/10.1002/adfm.201505047
14 https://doi.org/10.1002/bimj.4710310115
15 https://doi.org/10.1002/jbm.a.32934
16 https://doi.org/10.1002/jbm.a.34234
17 https://doi.org/10.1002/jbm.b.33397
18 https://doi.org/10.1016/j.actbio.2016.02.015
19 https://doi.org/10.1016/j.actbio.2017.08.023
20 https://doi.org/10.1016/j.bbamcr.2014.08.014
21 https://doi.org/10.1016/j.bbamcr.2015.07.001
22 https://doi.org/10.1016/j.biomaterials.2012.10.035
23 https://doi.org/10.1016/j.biomaterials.2016.11.032
24 https://doi.org/10.1016/j.devcel.2006.03.010
25 https://doi.org/10.1016/j.scr.2013.09.009
26 https://doi.org/10.1016/j.tibtech.2009.12.006
27 https://doi.org/10.1016/j.yexcr.2004.05.010
28 https://doi.org/10.1016/s0378-1119(98)00605-2
29 https://doi.org/10.1016/s0955-0674(98)80037-9
30 https://doi.org/10.1016/s1534-5807(04)00075-9
31 https://doi.org/10.1021/acsnano.7b03732
32 https://doi.org/10.1039/c3ib40068a
33 https://doi.org/10.1039/c4ib00225c
34 https://doi.org/10.1039/c6ib00076b
35 https://doi.org/10.1073/pnas.0431052100
36 https://doi.org/10.1074/jbc.c400441200
37 https://doi.org/10.1074/jbc.m504761200
38 https://doi.org/10.1074/jbc.m705215200
39 https://doi.org/10.1080/19336918.2016.1178449
40 https://doi.org/10.1083/jcb.200208120
41 https://doi.org/10.1091/mbc.e11-07-0639
42 https://doi.org/10.1101/gr.087890.108
43 https://doi.org/10.1109/embc.2015.7318716
44 https://doi.org/10.1111/j.1600-0501.2004.01054.x
45 https://doi.org/10.1111/j.1600-0765.1997.tb01399.x
46 https://doi.org/10.1126/science.286.5444.1583
47 https://doi.org/10.1128/mcb.00976-15
48 https://doi.org/10.1155/2015/575170
49 https://doi.org/10.1177/1087057103256465
50 https://doi.org/10.1534/genetics.106.069963
51 https://doi.org/10.2174/1381612811319190010
52 https://doi.org/10.3389/fonc.2015.00190
53 schema:datePublished 2019-12
54 schema:datePublishedReg 2019-12-01
55 schema:description Fibrous scaffolds are used for bone tissue engineering purposes with great success across a variety of polymers with different physical and chemical properties. It is now evident that the correct degree of curvature promotes increased cytoskeletal tension on osteoprogenitors leading to osteogenic differentiation. However, the mechanotransductive pathways involved in this phenomenon are not fully understood. To achieve a reproducible and specific cellular response, an increased mechanistic understanding of the molecular mechanisms driving the fibrous scaffold mediated bone regeneration must be understood. High throughput siRNA mediated screening technology has been utilized for dissecting molecular targets that are important in certain cellular phenotypes. In this study, we used siRNA mediated gene silencing to understand the osteogenic differentiation observed on fibrous scaffolds. A high-throughput siRNA screen was conducted using a library collection of 863 genes including important human kinase and phosphatase targets on pre-osteoblast SaOS-2 cells. The cells were grown on electrospun poly(methyl methacrylate) (PMMA) scaffolds with a diameter of 0.938 ± 0.304 µm and a flat surface control. The osteogenic transcription factor RUNX2 was quantified with an in-cell western (ICW) assay for the primary screen and significant targets were selected via two sample t-test. After selecting the significant targets, a secondary screen was performed to identify osteoinductive markers that also effect cell shape on fibrous topography. Finally, we report the most physiologically relevant molecular signaling mechanisms that are involved in growth factor free, fibrous topography mediated osteoinduction. We identified GTPases, membrane channel proteins, and microtubule associated targets that promote an osteoinductive cell shape on fibrous scaffolds.
56 schema:genre research_article
57 schema:inLanguage en
58 schema:isAccessibleForFree true
59 schema:isPartOf N58b0bf020ca84243a0d247574780589f
60 Nb3127bee362f48e5a89e8b2d847f3ff4
61 sg:journal.1045337
62 schema:name Identification of Key Signaling Pathways Orchestrating Substrate Topography Directed Osteogenic Differentiation Through High-Throughput siRNA Screening
63 schema:pagination 1001
64 schema:productId N1ac00d0d5620480d88b6d1e3a92af5d1
65 N5d5079c7a7ac4f6bae6abe37aec2ceab
66 N8ed82b66f437415c89d2ad3424de73fd
67 Naf67895d109241aa8a09d3c433d2d8da
68 Nde7c90e701a04d488cf9f706179c2305
69 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111775369
70 https://doi.org/10.1038/s41598-018-37554-y
71 schema:sdDatePublished 2019-04-11T09:00
72 schema:sdLicense https://scigraph.springernature.com/explorer/license/
73 schema:sdPublisher N8dc9baf3eb2e4f41ad2f4e1161cb3267
74 schema:url https://www.nature.com/articles/s41598-018-37554-y
75 sgo:license sg:explorer/license/
76 sgo:sdDataset articles
77 rdf:type schema:ScholarlyArticle
78 N1ac00d0d5620480d88b6d1e3a92af5d1 schema:name readcube_id
79 schema:value 84401ffc5a2228e0950ffb37efc48b4aa754c03fd7d86cb15be5132d7dbfb303
80 rdf:type schema:PropertyValue
81 N3bc1c16f61bd4f39a476e1ca36f67d09 schema:affiliation https://www.grid.ac/institutes/grid.414594.9
82 schema:familyName Ghosh
83 schema:givenName Debashis
84 rdf:type schema:Person
85 N539c661c79ef47c29c635d0730c00aed schema:affiliation https://www.grid.ac/institutes/grid.240473.6
86 schema:familyName Zhan
87 schema:givenName Xiang
88 rdf:type schema:Person
89 N58b0bf020ca84243a0d247574780589f schema:issueNumber 1
90 rdf:type schema:PublicationIssue
91 N5d5079c7a7ac4f6bae6abe37aec2ceab schema:name pubmed_id
92 schema:value 30700820
93 rdf:type schema:PropertyValue
94 N7209944a267e4ce294efd70612f7857c rdf:first Na68519268eab415c83f8f9cfb93b06df
95 rdf:rest Nfbb044eaf3354f21bfe0c427fee71934
96 N8dc9baf3eb2e4f41ad2f4e1161cb3267 schema:name Springer Nature - SN SciGraph project
97 rdf:type schema:Organization
98 N8ed82b66f437415c89d2ad3424de73fd schema:name nlm_unique_id
99 schema:value 101563288
100 rdf:type schema:PropertyValue
101 Na68519268eab415c83f8f9cfb93b06df schema:affiliation https://www.grid.ac/institutes/grid.29857.31
102 schema:familyName Bowers
103 schema:givenName Daniel T.
104 rdf:type schema:Person
105 Nab9f8d922d8643bea5709d6f894a970c rdf:first Nd3235e39e4a1443bbc629215dac20202
106 rdf:rest rdf:nil
107 Naf67895d109241aa8a09d3c433d2d8da schema:name doi
108 schema:value 10.1038/s41598-018-37554-y
109 rdf:type schema:PropertyValue
110 Nb3127bee362f48e5a89e8b2d847f3ff4 schema:volumeNumber 9
111 rdf:type schema:PublicationVolume
112 Nc3eb1508a1a0419fabff36f736605663 rdf:first Ncc3c3852e997432ab74391e72845356c
113 rdf:rest N7209944a267e4ce294efd70612f7857c
114 Ncc3c3852e997432ab74391e72845356c schema:affiliation https://www.grid.ac/institutes/grid.411550.4
115 schema:familyName Ozdemir
116 schema:givenName Tugba
117 rdf:type schema:Person
118 Nd3235e39e4a1443bbc629215dac20202 schema:affiliation https://www.grid.ac/institutes/grid.29857.31
119 schema:familyName Brown
120 schema:givenName Justin L.
121 rdf:type schema:Person
122 Nde5712300b734710b1c480f37a8f6f53 rdf:first N3bc1c16f61bd4f39a476e1ca36f67d09
123 rdf:rest Nab9f8d922d8643bea5709d6f894a970c
124 Nde7c90e701a04d488cf9f706179c2305 schema:name dimensions_id
125 schema:value pub.1111775369
126 rdf:type schema:PropertyValue
127 Nfbb044eaf3354f21bfe0c427fee71934 rdf:first N539c661c79ef47c29c635d0730c00aed
128 rdf:rest Nde5712300b734710b1c480f37a8f6f53
129 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
130 schema:name Biological Sciences
131 rdf:type schema:DefinedTerm
132 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
133 schema:name Biochemistry and Cell Biology
134 rdf:type schema:DefinedTerm
135 sg:journal.1045337 schema:issn 2045-2322
136 schema:name Scientific Reports
137 rdf:type schema:Periodical
138 sg:pub.10.1038/35888 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018713804
139 https://doi.org/10.1038/35888
140 rdf:type schema:CreativeWork
141 sg:pub.10.1038/ncb1762 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031500894
142 https://doi.org/10.1038/ncb1762
143 rdf:type schema:CreativeWork
144 sg:pub.10.1038/s41598-017-06483-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090754947
145 https://doi.org/10.1038/s41598-017-06483-7
146 rdf:type schema:CreativeWork
147 sg:pub.10.1038/srep21901 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043255000
148 https://doi.org/10.1038/srep21901
149 rdf:type schema:CreativeWork
150 sg:pub.10.1186/gb-2006-7-10-r100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040889351
151 https://doi.org/10.1186/gb-2006-7-10-r100
152 rdf:type schema:CreativeWork
153 https://app.dimensions.ai/details/publication/pub.1077943029 schema:CreativeWork
154 https://app.dimensions.ai/details/publication/pub.1079469207 schema:CreativeWork
155 https://doi.org/10.1002/(sici)1097-4644(19990501)73:2<153::aid-jcb2>3.0.co;2-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010220651
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1002/adfm.201100275 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050466870
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1002/adfm.201505047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006362992
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1002/bimj.4710310115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011587481
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1002/jbm.a.32934 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044308712
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1002/jbm.a.34234 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044592336
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1002/jbm.b.33397 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004161521
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/j.actbio.2016.02.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047104126
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/j.actbio.2017.08.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091235566
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/j.bbamcr.2014.08.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052939865
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/j.bbamcr.2015.07.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045160352
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/j.biomaterials.2012.10.035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009850992
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/j.biomaterials.2016.11.032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012677428
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/j.devcel.2006.03.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033344775
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/j.scr.2013.09.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022711331
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1016/j.tibtech.2009.12.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009180882
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1016/j.yexcr.2004.05.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037669569
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1016/s0378-1119(98)00605-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016791088
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1016/s0955-0674(98)80037-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030521878
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1016/s1534-5807(04)00075-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016167288
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1021/acsnano.7b03732 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090901117
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1039/c3ib40068a schema:sameAs https://app.dimensions.ai/details/publication/pub.1032786849
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1039/c4ib00225c schema:sameAs https://app.dimensions.ai/details/publication/pub.1005282449
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1039/c6ib00076b schema:sameAs https://app.dimensions.ai/details/publication/pub.1013366441
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1073/pnas.0431052100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050015050
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1074/jbc.c400441200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039363626
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1074/jbc.m504761200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028445498
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1074/jbc.m705215200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010020363
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1080/19336918.2016.1178449 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023161471
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1083/jcb.200208120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037411160
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1091/mbc.e11-07-0639 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044956863
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1101/gr.087890.108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009616014
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1109/embc.2015.7318716 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079205226
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1111/j.1600-0501.2004.01054.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1024821996
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1111/j.1600-0765.1997.tb01399.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1036700692
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1126/science.286.5444.1583 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062567386
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1128/mcb.00976-15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023268061
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1155/2015/575170 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037452189
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1177/1087057103256465 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009600193
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1534/genetics.106.069963 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023496286
234 rdf:type schema:CreativeWork
235 https://doi.org/10.2174/1381612811319190010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069169006
236 rdf:type schema:CreativeWork
237 https://doi.org/10.3389/fonc.2015.00190 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001649918
238 rdf:type schema:CreativeWork
239 https://www.grid.ac/institutes/grid.240473.6 schema:alternateName Penn State Milton S. Hershey Medical Center
240 schema:name Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA
241 rdf:type schema:Organization
242 https://www.grid.ac/institutes/grid.29857.31 schema:alternateName Pennsylvania State University
243 schema:name Department of Biomedical Engineering, The Pennsylvania State University, University Park, State College, PA, USA
244 rdf:type schema:Organization
245 https://www.grid.ac/institutes/grid.411550.4 schema:alternateName Gaziosmanpaşa University
246 schema:name Department of Genetics and Bioengineering, Tokat Gaziosmanpasa University, Tokat, Turkey
247 rdf:type schema:Organization
248 https://www.grid.ac/institutes/grid.414594.9 schema:alternateName Colorado School of Public Health
249 schema:name Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, CO, USA
250 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...