High-velocity impact of solid objects on Non-Newtonian Fluids View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Thijs C. de Goede, Karla G. de Bruin, Daniel Bonn

ABSTRACT

We investigate which property of non-Newtonian fluids determines the deceleration of a high-speed impacting object. Using high-speed camera footage, we measure the velocity decrease of a high-speed spherical object impacting a typical Newtonian fluid (water) as a reference and compare it with a shear thickening fluid (cornstarch) and a shear thinning viscoelastic fluid (a weakly cross-linked polymer gel). Three models describing the kinetic energy loss of the object are considered: fluid inertia, shear thickening and viscoelasticity. By fitting the three models to the experimental data, we conclude that the viscoelastic model works best for both the cornstarch and the polymer gel. Since the cornstarch is also viscoelastic, we conclude that the ability to stop objects of these complex fluids is given by their viscoelasticity rather than shear thickening or shear thinning. More... »

PAGES

1250

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-018-37543-1

DOI

http://dx.doi.org/10.1038/s41598-018-37543-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111918195

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30718642


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Amsterdam", 
          "id": "https://www.grid.ac/institutes/grid.7177.6", 
          "name": [
            "Van der Waals-Zeeman Institute, Institute of Physics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "de Goede", 
        "givenName": "Thijs C.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Netherlands Forensic Institute", 
          "id": "https://www.grid.ac/institutes/grid.419915.1", 
          "name": [
            "Van der Waals-Zeeman Institute, Institute of Physics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands", 
            "Netherlands Forensic Institute, Laan van Ypenburg 6, 2497 GB, The Hague, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "de Bruin", 
        "givenName": "Karla G.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Amsterdam", 
          "id": "https://www.grid.ac/institutes/grid.7177.6", 
          "name": [
            "Van der Waals-Zeeman Institute, Institute of Physics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bonn", 
        "givenName": "Daniel", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0032-5910(01)00261-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001167609"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epje/i2006-10193-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003600464", 
          "https://doi.org/10.1140/epje/i2006-10193-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature11187", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005023716", 
          "https://doi.org/10.1038/nature11187"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1122/1.3696875", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005792975"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijsolstr.2004.08.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009925277"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/epl/i2002-00427-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014301945"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.powtec.2007.12.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016337040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.018301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017785614"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.018301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017785614"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matdes.2012.10.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020455030"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matdes.2013.04.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024195992"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.184501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025736267"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.184501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025736267"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1096-9845(200002)29:2<159::aid-eqe895>3.0.co;2-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041265977"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matdes.2013.07.086", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042416895"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112081002036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044930549"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1024424200221", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045809540", 
          "https://doi.org/10.1023/a:1024424200221"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c4sm00457d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045967298"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jnnfm.2006.01.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050835840"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112008005533", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053765243"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112008005533", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053765243"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112008005533", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053765243"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112008004382", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053908726"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112008004382", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053908726"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/jfm.2012.232", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053928156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/jfm.2012.232", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053928156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112099007557", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054069745"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3086431", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057911242"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.457091", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058035103"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4797499", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058072931"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.869010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058121177"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0305-4470/28/23/012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059074635"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0959-5309/61/4/308", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059119666"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.55.7203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060720965"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.55.7203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060720965"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1122/1.551072", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062416031"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/jfm.2017.365", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090717611"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/jfm.2017.365", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090717611"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "We investigate which property of non-Newtonian fluids determines the deceleration of a high-speed impacting object. Using high-speed camera footage, we measure the velocity decrease of a high-speed spherical object impacting a typical Newtonian fluid (water) as a reference and compare it with a shear thickening fluid (cornstarch) and a shear thinning viscoelastic fluid (a weakly cross-linked polymer gel). Three models describing the kinetic energy loss of the object are considered: fluid inertia, shear thickening and viscoelasticity. By fitting the three models to the experimental data, we conclude that the viscoelastic model works best for both the cornstarch and the polymer gel. Since the cornstarch is also viscoelastic, we conclude that the ability to stop objects of these complex fluids is given by their viscoelasticity rather than shear thickening or shear thinning.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-018-37543-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "High-velocity impact of solid objects on Non-Newtonian Fluids", 
    "pagination": "1250", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e99f70416079cc0149030a8875693f1ea8db01bf92e74bb1f445dd77e546ca16"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30718642"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-018-37543-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111918195"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-018-37543-1", 
      "https://app.dimensions.ai/details/publication/pub.1111918195"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:01", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000330_0000000330/records_116375_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-018-37543-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-37543-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-37543-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-37543-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-37543-1'


 

This table displays all metadata directly associated to this object as RDF triples.

176 TRIPLES      21 PREDICATES      59 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-018-37543-1 schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author N664a6a21cf384aeb9bc74627d2284c61
4 schema:citation sg:pub.10.1023/a:1024424200221
5 sg:pub.10.1038/nature11187
6 sg:pub.10.1140/epje/i2006-10193-x
7 https://doi.org/10.1002/(sici)1096-9845(200002)29:2<159::aid-eqe895>3.0.co;2-1
8 https://doi.org/10.1016/j.ijsolstr.2004.08.013
9 https://doi.org/10.1016/j.jnnfm.2006.01.004
10 https://doi.org/10.1016/j.matdes.2012.10.018
11 https://doi.org/10.1016/j.matdes.2013.04.016
12 https://doi.org/10.1016/j.matdes.2013.07.086
13 https://doi.org/10.1016/j.powtec.2007.12.006
14 https://doi.org/10.1016/s0032-5910(01)00261-3
15 https://doi.org/10.1017/jfm.2012.232
16 https://doi.org/10.1017/jfm.2017.365
17 https://doi.org/10.1017/s0022112008004382
18 https://doi.org/10.1017/s0022112008005533
19 https://doi.org/10.1017/s0022112081002036
20 https://doi.org/10.1017/s0022112099007557
21 https://doi.org/10.1039/c4sm00457d
22 https://doi.org/10.1063/1.3086431
23 https://doi.org/10.1063/1.457091
24 https://doi.org/10.1063/1.4797499
25 https://doi.org/10.1063/1.869010
26 https://doi.org/10.1088/0305-4470/28/23/012
27 https://doi.org/10.1088/0959-5309/61/4/308
28 https://doi.org/10.1103/physreve.55.7203
29 https://doi.org/10.1103/physrevlett.100.018301
30 https://doi.org/10.1103/physrevlett.92.184501
31 https://doi.org/10.1122/1.3696875
32 https://doi.org/10.1122/1.551072
33 https://doi.org/10.1209/epl/i2002-00427-7
34 schema:datePublished 2019-12
35 schema:datePublishedReg 2019-12-01
36 schema:description We investigate which property of non-Newtonian fluids determines the deceleration of a high-speed impacting object. Using high-speed camera footage, we measure the velocity decrease of a high-speed spherical object impacting a typical Newtonian fluid (water) as a reference and compare it with a shear thickening fluid (cornstarch) and a shear thinning viscoelastic fluid (a weakly cross-linked polymer gel). Three models describing the kinetic energy loss of the object are considered: fluid inertia, shear thickening and viscoelasticity. By fitting the three models to the experimental data, we conclude that the viscoelastic model works best for both the cornstarch and the polymer gel. Since the cornstarch is also viscoelastic, we conclude that the ability to stop objects of these complex fluids is given by their viscoelasticity rather than shear thickening or shear thinning.
37 schema:genre research_article
38 schema:inLanguage en
39 schema:isAccessibleForFree true
40 schema:isPartOf N8789a8255a72440596eb285ec6a51ffb
41 Nb0dd08a64a7a4de4a98472bd3a1ed962
42 sg:journal.1045337
43 schema:name High-velocity impact of solid objects on Non-Newtonian Fluids
44 schema:pagination 1250
45 schema:productId N0b59d37bb51144a4a36b5e3bde9b4e1d
46 N1c63c3ebe62844d49b1988523a96417c
47 Na54b83d020464559a155bfc374dc4191
48 Nc12b859abc5c42d08da9ce5b76eb78bd
49 Nd914dffd9c17483795520c5570946643
50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111918195
51 https://doi.org/10.1038/s41598-018-37543-1
52 schema:sdDatePublished 2019-04-11T09:01
53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
54 schema:sdPublisher N0df091a15f5642c4b83372abda4eaaca
55 schema:url https://www.nature.com/articles/s41598-018-37543-1
56 sgo:license sg:explorer/license/
57 sgo:sdDataset articles
58 rdf:type schema:ScholarlyArticle
59 N0b59d37bb51144a4a36b5e3bde9b4e1d schema:name pubmed_id
60 schema:value 30718642
61 rdf:type schema:PropertyValue
62 N0df091a15f5642c4b83372abda4eaaca schema:name Springer Nature - SN SciGraph project
63 rdf:type schema:Organization
64 N1af66b672cf54c119fc997f653fde2e8 schema:affiliation https://www.grid.ac/institutes/grid.7177.6
65 schema:familyName de Goede
66 schema:givenName Thijs C.
67 rdf:type schema:Person
68 N1c63c3ebe62844d49b1988523a96417c schema:name nlm_unique_id
69 schema:value 101563288
70 rdf:type schema:PropertyValue
71 N2572be8a4d8943d2bf76d006bd7fb9f3 schema:affiliation https://www.grid.ac/institutes/grid.7177.6
72 schema:familyName Bonn
73 schema:givenName Daniel
74 rdf:type schema:Person
75 N2584bb98764b41258620a781dcad6d11 rdf:first N8b3c59c8174c457fa8f224ba9dd898d3
76 rdf:rest Nc7d0e34d399744778b8560165bb5863b
77 N664a6a21cf384aeb9bc74627d2284c61 rdf:first N1af66b672cf54c119fc997f653fde2e8
78 rdf:rest N2584bb98764b41258620a781dcad6d11
79 N8789a8255a72440596eb285ec6a51ffb schema:issueNumber 1
80 rdf:type schema:PublicationIssue
81 N8b3c59c8174c457fa8f224ba9dd898d3 schema:affiliation https://www.grid.ac/institutes/grid.419915.1
82 schema:familyName de Bruin
83 schema:givenName Karla G.
84 rdf:type schema:Person
85 Na54b83d020464559a155bfc374dc4191 schema:name readcube_id
86 schema:value e99f70416079cc0149030a8875693f1ea8db01bf92e74bb1f445dd77e546ca16
87 rdf:type schema:PropertyValue
88 Nb0dd08a64a7a4de4a98472bd3a1ed962 schema:volumeNumber 9
89 rdf:type schema:PublicationVolume
90 Nc12b859abc5c42d08da9ce5b76eb78bd schema:name doi
91 schema:value 10.1038/s41598-018-37543-1
92 rdf:type schema:PropertyValue
93 Nc7d0e34d399744778b8560165bb5863b rdf:first N2572be8a4d8943d2bf76d006bd7fb9f3
94 rdf:rest rdf:nil
95 Nd914dffd9c17483795520c5570946643 schema:name dimensions_id
96 schema:value pub.1111918195
97 rdf:type schema:PropertyValue
98 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
99 schema:name Engineering
100 rdf:type schema:DefinedTerm
101 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
102 schema:name Interdisciplinary Engineering
103 rdf:type schema:DefinedTerm
104 sg:journal.1045337 schema:issn 2045-2322
105 schema:name Scientific Reports
106 rdf:type schema:Periodical
107 sg:pub.10.1023/a:1024424200221 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045809540
108 https://doi.org/10.1023/a:1024424200221
109 rdf:type schema:CreativeWork
110 sg:pub.10.1038/nature11187 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005023716
111 https://doi.org/10.1038/nature11187
112 rdf:type schema:CreativeWork
113 sg:pub.10.1140/epje/i2006-10193-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1003600464
114 https://doi.org/10.1140/epje/i2006-10193-x
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1002/(sici)1096-9845(200002)29:2<159::aid-eqe895>3.0.co;2-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041265977
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/j.ijsolstr.2004.08.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009925277
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/j.jnnfm.2006.01.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050835840
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/j.matdes.2012.10.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020455030
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/j.matdes.2013.04.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024195992
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/j.matdes.2013.07.086 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042416895
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/j.powtec.2007.12.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016337040
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/s0032-5910(01)00261-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001167609
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1017/jfm.2012.232 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053928156
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1017/jfm.2017.365 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090717611
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1017/s0022112008004382 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053908726
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1017/s0022112008005533 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053765243
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1017/s0022112081002036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044930549
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1017/s0022112099007557 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054069745
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1039/c4sm00457d schema:sameAs https://app.dimensions.ai/details/publication/pub.1045967298
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1063/1.3086431 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057911242
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1063/1.457091 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058035103
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1063/1.4797499 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058072931
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1063/1.869010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058121177
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1088/0305-4470/28/23/012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059074635
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1088/0959-5309/61/4/308 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059119666
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1103/physreve.55.7203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060720965
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1103/physrevlett.100.018301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017785614
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1103/physrevlett.92.184501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025736267
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1122/1.3696875 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005792975
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1122/1.551072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062416031
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1209/epl/i2002-00427-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014301945
169 rdf:type schema:CreativeWork
170 https://www.grid.ac/institutes/grid.419915.1 schema:alternateName Netherlands Forensic Institute
171 schema:name Netherlands Forensic Institute, Laan van Ypenburg 6, 2497 GB, The Hague, The Netherlands
172 Van der Waals-Zeeman Institute, Institute of Physics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
173 rdf:type schema:Organization
174 https://www.grid.ac/institutes/grid.7177.6 schema:alternateName University of Amsterdam
175 schema:name Van der Waals-Zeeman Institute, Institute of Physics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
176 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...