Empirical Models of Shear-Wave Radiation Pattern Derived from Large Datasets of Ground-Shaking Observations View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Sreeram Reddy Kotha, Fabrice Cotton, Dino Bindi

ABSTRACT

Shear-waves are the most energetic body-waves radiated from an earthquake, and are responsible for the destruction of engineered structures. In both short-term emergency response and long-term risk forecasting of disaster-resilient built environment, it is critical to predict spatially accurate distribution of shear-wave amplitudes. Although decades' old theory proposes a deterministic, highly anisotropic, four-lobed shear-wave radiation pattern, from lack of convincing evidence, most empirical ground-shaking prediction models settled for an oversimplified stochastic radiation pattern that is isotropic on average. Today, using the large datasets of uniformly processed seismograms from several strike, normal, reverse, and oblique-slip earthquakes across the globe, compiled specifically for engineering applications, we could reveal, quantify, and calibrate the frequency-, distance-, and style-of-faulting dependent transition of shear-wave radiation between a stochastic-isotropic and a deterministic-anisotropic phenomenon. Consequent recalibration of empirical ground-shaking models dramatically improved their predictions: with isodistant anisotropic variations of ±40%, and 8% reduction in uncertainty. The outcomes presented here can potentially trigger a reappraisal of several practical issues in engineering seismology, particularly in seismic ground-shaking studies and seismic hazard and risk assessment. More... »

PAGES

981

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-018-37524-4

DOI

http://dx.doi.org/10.1038/s41598-018-37524-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111780355

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30700780


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0404", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Geophysics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Potsdam", 
          "id": "https://www.grid.ac/institutes/grid.11348.3f", 
          "name": [
            "Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences, 14467, Potsdam, Germany", 
            "University of Potsdam, Potsdam, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kotha", 
        "givenName": "Sreeram Reddy", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Potsdam", 
          "id": "https://www.grid.ac/institutes/grid.11348.3f", 
          "name": [
            "Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences, 14467, Potsdam, Germany", 
            "University of Potsdam, Potsdam, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cotton", 
        "givenName": "Fabrice", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Helmholtz Centre Potsdam - GFZ German Research Centre for Geosciences", 
          "id": "https://www.grid.ac/institutes/grid.23731.34", 
          "name": [
            "Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences, 14467, Potsdam, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bindi", 
        "givenName": "Dino", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1023/a:1026323123154", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002273421", 
          "https://doi.org/10.1023/a:1026323123154"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1193/071214eqs106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004081243"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10518-016-9875-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004182934", 
          "https://doi.org/10.1007/s10518-016-9875-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/2016gl068546", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007364792"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/2016gl068546", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007364792"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10518-013-9506-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009456914", 
          "https://doi.org/10.1007/s10518-013-9506-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1785/0120060043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009488968"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1193/071113eqs200m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011860908"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/eqe.2212", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013624196"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10518-013-9522-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013633149", 
          "https://doi.org/10.1007/s10518-013-9522-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1785/gssrl.72.6.690", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013937341"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1785/0119990108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018485401"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10518-015-9795-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018788824", 
          "https://doi.org/10.1007/s10518-015-9795-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10518-015-9795-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018788824", 
          "https://doi.org/10.1007/s10518-015-9795-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1785/0120050209", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019172344"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-246x.2009.04210.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022393639"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-246x.2009.04210.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022393639"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/jb094ib07p09607", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023360499"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1785/0120050066", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030276036"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1193/070913eqs197m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030435055"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.soildyn.2004.10.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036957163"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1193/120814eqs210m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037322647"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/bf03353076", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040356687", 
          "https://doi.org/10.1186/bf03353076"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1193/070113eqs184m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042436025"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1785/0120030233", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044255986"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-246x.2009.04394.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045058708"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-246x.2009.04394.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045058708"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1785/0120100057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045472254"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tecto.2004.03.032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047458877"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2010jb008182", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047915125"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1193/070113eqs186m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048449373"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0031-9201(03)00006-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049810946"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/gji/ggs041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050013311"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s40623-016-0544-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050760260", 
          "https://doi.org/10.1186/s40623-016-0544-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s40623-016-0544-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050760260", 
          "https://doi.org/10.1186/s40623-016-0544-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1193/1.1586057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053123494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/gji/ggv263", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059637772"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1785/0120140249", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068471964"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1785/0120150129", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068472017"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1785/0120160088", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068472194"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.18637/jss.v067.i01", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068673008"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3130/aijs.67.25_2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083664613"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1193/020515eqs020m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084253677"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10950-017-9661-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084959129", 
          "https://doi.org/10.1007/s10950-017-9661-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10950-017-9661-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084959129", 
          "https://doi.org/10.1007/s10950-017-9661-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/gji/ggx269", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090124196"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.soildyn.2018.01.051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101095419"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.soildyn.2018.01.051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101095419"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1785/0120180076", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107221947"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "Shear-waves are the most energetic body-waves radiated from an earthquake, and are responsible for the destruction of engineered structures. In both short-term emergency response and long-term risk forecasting of disaster-resilient built environment, it is critical to predict spatially accurate distribution of shear-wave amplitudes. Although decades' old theory proposes a deterministic, highly anisotropic, four-lobed shear-wave radiation pattern, from lack of convincing evidence, most empirical ground-shaking prediction models settled for an oversimplified stochastic radiation pattern that is isotropic on average. Today, using the large datasets of uniformly processed seismograms from several strike, normal, reverse, and oblique-slip earthquakes across the globe, compiled specifically for engineering applications, we could reveal, quantify, and calibrate the frequency-, distance-, and style-of-faulting dependent transition of shear-wave radiation between a stochastic-isotropic and a deterministic-anisotropic phenomenon. Consequent recalibration of empirical ground-shaking models dramatically improved their predictions: with isodistant anisotropic variations of \u00b140%, and 8% reduction in uncertainty. The outcomes presented here can potentially trigger a reappraisal of several practical issues in engineering seismology, particularly in seismic ground-shaking studies and seismic hazard and risk assessment.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-018-37524-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "Empirical Models of Shear-Wave Radiation Pattern Derived from Large Datasets of Ground-Shaking Observations", 
    "pagination": "981", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f24972612239b1042cafe1c75eff8d25c210f3e7dc946c3491e7816695c324fc"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30700780"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-018-37524-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111780355"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-018-37524-4", 
      "https://app.dimensions.ai/details/publication/pub.1111780355"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:59", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000327_0000000327/records_114976_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-018-37524-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-37524-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-37524-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-37524-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-37524-4'


 

This table displays all metadata directly associated to this object as RDF triples.

217 TRIPLES      21 PREDICATES      71 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-018-37524-4 schema:about anzsrc-for:04
2 anzsrc-for:0404
3 schema:author N245d808737fb4669bef75ce63e647f21
4 schema:citation sg:pub.10.1007/s10518-013-9506-8
5 sg:pub.10.1007/s10518-013-9522-8
6 sg:pub.10.1007/s10518-015-9795-1
7 sg:pub.10.1007/s10518-016-9875-x
8 sg:pub.10.1007/s10950-017-9661-5
9 sg:pub.10.1023/a:1026323123154
10 sg:pub.10.1186/bf03353076
11 sg:pub.10.1186/s40623-016-0544-8
12 https://doi.org/10.1002/2016gl068546
13 https://doi.org/10.1002/eqe.2212
14 https://doi.org/10.1016/j.soildyn.2004.10.007
15 https://doi.org/10.1016/j.soildyn.2018.01.051
16 https://doi.org/10.1016/j.tecto.2004.03.032
17 https://doi.org/10.1016/s0031-9201(03)00006-2
18 https://doi.org/10.1029/2010jb008182
19 https://doi.org/10.1029/jb094ib07p09607
20 https://doi.org/10.1093/gji/ggs041
21 https://doi.org/10.1093/gji/ggv263
22 https://doi.org/10.1093/gji/ggx269
23 https://doi.org/10.1111/j.1365-246x.2009.04210.x
24 https://doi.org/10.1111/j.1365-246x.2009.04394.x
25 https://doi.org/10.1193/020515eqs020m
26 https://doi.org/10.1193/070113eqs184m
27 https://doi.org/10.1193/070113eqs186m
28 https://doi.org/10.1193/070913eqs197m
29 https://doi.org/10.1193/071113eqs200m
30 https://doi.org/10.1193/071214eqs106
31 https://doi.org/10.1193/1.1586057
32 https://doi.org/10.1193/120814eqs210m
33 https://doi.org/10.1785/0119990108
34 https://doi.org/10.1785/0120030233
35 https://doi.org/10.1785/0120050066
36 https://doi.org/10.1785/0120050209
37 https://doi.org/10.1785/0120060043
38 https://doi.org/10.1785/0120100057
39 https://doi.org/10.1785/0120140249
40 https://doi.org/10.1785/0120150129
41 https://doi.org/10.1785/0120160088
42 https://doi.org/10.1785/0120180076
43 https://doi.org/10.1785/gssrl.72.6.690
44 https://doi.org/10.18637/jss.v067.i01
45 https://doi.org/10.3130/aijs.67.25_2
46 schema:datePublished 2019-12
47 schema:datePublishedReg 2019-12-01
48 schema:description Shear-waves are the most energetic body-waves radiated from an earthquake, and are responsible for the destruction of engineered structures. In both short-term emergency response and long-term risk forecasting of disaster-resilient built environment, it is critical to predict spatially accurate distribution of shear-wave amplitudes. Although decades' old theory proposes a deterministic, highly anisotropic, four-lobed shear-wave radiation pattern, from lack of convincing evidence, most empirical ground-shaking prediction models settled for an oversimplified stochastic radiation pattern that is isotropic on average. Today, using the large datasets of uniformly processed seismograms from several strike, normal, reverse, and oblique-slip earthquakes across the globe, compiled specifically for engineering applications, we could reveal, quantify, and calibrate the frequency-, distance-, and style-of-faulting dependent transition of shear-wave radiation between a stochastic-isotropic and a deterministic-anisotropic phenomenon. Consequent recalibration of empirical ground-shaking models dramatically improved their predictions: with isodistant anisotropic variations of ±40%, and 8% reduction in uncertainty. The outcomes presented here can potentially trigger a reappraisal of several practical issues in engineering seismology, particularly in seismic ground-shaking studies and seismic hazard and risk assessment.
49 schema:genre research_article
50 schema:inLanguage en
51 schema:isAccessibleForFree true
52 schema:isPartOf N31323a83c7884d1d995ce5f7817304e5
53 N5e701c7fdb094c0aa22eed3165ab55a5
54 sg:journal.1045337
55 schema:name Empirical Models of Shear-Wave Radiation Pattern Derived from Large Datasets of Ground-Shaking Observations
56 schema:pagination 981
57 schema:productId N252135d207a14db3a6a0f9f17bfd7864
58 N292d1a0c8f724a2487014c7cb3ccf7d2
59 N5e587373e93e4e709c662f353e24f853
60 N8a3041e35293410e8908d979df844f45
61 Nc3cebd29aea54d22985a999695f61ccc
62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111780355
63 https://doi.org/10.1038/s41598-018-37524-4
64 schema:sdDatePublished 2019-04-11T08:59
65 schema:sdLicense https://scigraph.springernature.com/explorer/license/
66 schema:sdPublisher Ncdd874f5e4964f7e84636d9fe55ef722
67 schema:url https://www.nature.com/articles/s41598-018-37524-4
68 sgo:license sg:explorer/license/
69 sgo:sdDataset articles
70 rdf:type schema:ScholarlyArticle
71 N245d808737fb4669bef75ce63e647f21 rdf:first N25f3790b6b3c4faf87cfaf0d46537f4b
72 rdf:rest N7cc696a46f6f4aef9a0a8a9a4f61c070
73 N252135d207a14db3a6a0f9f17bfd7864 schema:name pubmed_id
74 schema:value 30700780
75 rdf:type schema:PropertyValue
76 N25f3790b6b3c4faf87cfaf0d46537f4b schema:affiliation https://www.grid.ac/institutes/grid.11348.3f
77 schema:familyName Kotha
78 schema:givenName Sreeram Reddy
79 rdf:type schema:Person
80 N292d1a0c8f724a2487014c7cb3ccf7d2 schema:name readcube_id
81 schema:value f24972612239b1042cafe1c75eff8d25c210f3e7dc946c3491e7816695c324fc
82 rdf:type schema:PropertyValue
83 N31323a83c7884d1d995ce5f7817304e5 schema:issueNumber 1
84 rdf:type schema:PublicationIssue
85 N5e587373e93e4e709c662f353e24f853 schema:name doi
86 schema:value 10.1038/s41598-018-37524-4
87 rdf:type schema:PropertyValue
88 N5e701c7fdb094c0aa22eed3165ab55a5 schema:volumeNumber 9
89 rdf:type schema:PublicationVolume
90 N76c8bcf42b6946fab69b04964087c10c rdf:first Nc31d0583648e41a99dfa42147e15e921
91 rdf:rest rdf:nil
92 N7cc696a46f6f4aef9a0a8a9a4f61c070 rdf:first N970cc9fbb4ec42d9ad928a4cd67db887
93 rdf:rest N76c8bcf42b6946fab69b04964087c10c
94 N8a3041e35293410e8908d979df844f45 schema:name nlm_unique_id
95 schema:value 101563288
96 rdf:type schema:PropertyValue
97 N970cc9fbb4ec42d9ad928a4cd67db887 schema:affiliation https://www.grid.ac/institutes/grid.11348.3f
98 schema:familyName Cotton
99 schema:givenName Fabrice
100 rdf:type schema:Person
101 Nc31d0583648e41a99dfa42147e15e921 schema:affiliation https://www.grid.ac/institutes/grid.23731.34
102 schema:familyName Bindi
103 schema:givenName Dino
104 rdf:type schema:Person
105 Nc3cebd29aea54d22985a999695f61ccc schema:name dimensions_id
106 schema:value pub.1111780355
107 rdf:type schema:PropertyValue
108 Ncdd874f5e4964f7e84636d9fe55ef722 schema:name Springer Nature - SN SciGraph project
109 rdf:type schema:Organization
110 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
111 schema:name Earth Sciences
112 rdf:type schema:DefinedTerm
113 anzsrc-for:0404 schema:inDefinedTermSet anzsrc-for:
114 schema:name Geophysics
115 rdf:type schema:DefinedTerm
116 sg:journal.1045337 schema:issn 2045-2322
117 schema:name Scientific Reports
118 rdf:type schema:Periodical
119 sg:pub.10.1007/s10518-013-9506-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009456914
120 https://doi.org/10.1007/s10518-013-9506-8
121 rdf:type schema:CreativeWork
122 sg:pub.10.1007/s10518-013-9522-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013633149
123 https://doi.org/10.1007/s10518-013-9522-8
124 rdf:type schema:CreativeWork
125 sg:pub.10.1007/s10518-015-9795-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018788824
126 https://doi.org/10.1007/s10518-015-9795-1
127 rdf:type schema:CreativeWork
128 sg:pub.10.1007/s10518-016-9875-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1004182934
129 https://doi.org/10.1007/s10518-016-9875-x
130 rdf:type schema:CreativeWork
131 sg:pub.10.1007/s10950-017-9661-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084959129
132 https://doi.org/10.1007/s10950-017-9661-5
133 rdf:type schema:CreativeWork
134 sg:pub.10.1023/a:1026323123154 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002273421
135 https://doi.org/10.1023/a:1026323123154
136 rdf:type schema:CreativeWork
137 sg:pub.10.1186/bf03353076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040356687
138 https://doi.org/10.1186/bf03353076
139 rdf:type schema:CreativeWork
140 sg:pub.10.1186/s40623-016-0544-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050760260
141 https://doi.org/10.1186/s40623-016-0544-8
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1002/2016gl068546 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007364792
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1002/eqe.2212 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013624196
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.soildyn.2004.10.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036957163
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/j.soildyn.2018.01.051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101095419
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.tecto.2004.03.032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047458877
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/s0031-9201(03)00006-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049810946
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1029/2010jb008182 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047915125
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1029/jb094ib07p09607 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023360499
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1093/gji/ggs041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050013311
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1093/gji/ggv263 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059637772
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1093/gji/ggx269 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090124196
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1111/j.1365-246x.2009.04210.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1022393639
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1111/j.1365-246x.2009.04394.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1045058708
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1193/020515eqs020m schema:sameAs https://app.dimensions.ai/details/publication/pub.1084253677
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1193/070113eqs184m schema:sameAs https://app.dimensions.ai/details/publication/pub.1042436025
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1193/070113eqs186m schema:sameAs https://app.dimensions.ai/details/publication/pub.1048449373
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1193/070913eqs197m schema:sameAs https://app.dimensions.ai/details/publication/pub.1030435055
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1193/071113eqs200m schema:sameAs https://app.dimensions.ai/details/publication/pub.1011860908
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1193/071214eqs106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004081243
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1193/1.1586057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053123494
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1193/120814eqs210m schema:sameAs https://app.dimensions.ai/details/publication/pub.1037322647
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1785/0119990108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018485401
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1785/0120030233 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044255986
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1785/0120050066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030276036
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1785/0120050209 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019172344
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1785/0120060043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009488968
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1785/0120100057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045472254
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1785/0120140249 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068471964
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1785/0120150129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068472017
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1785/0120160088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068472194
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1785/0120180076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107221947
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1785/gssrl.72.6.690 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013937341
206 rdf:type schema:CreativeWork
207 https://doi.org/10.18637/jss.v067.i01 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068673008
208 rdf:type schema:CreativeWork
209 https://doi.org/10.3130/aijs.67.25_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083664613
210 rdf:type schema:CreativeWork
211 https://www.grid.ac/institutes/grid.11348.3f schema:alternateName University of Potsdam
212 schema:name Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences, 14467, Potsdam, Germany
213 University of Potsdam, Potsdam, Germany
214 rdf:type schema:Organization
215 https://www.grid.ac/institutes/grid.23731.34 schema:alternateName Helmholtz Centre Potsdam - GFZ German Research Centre for Geosciences
216 schema:name Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences, 14467, Potsdam, Germany
217 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...