Accelerating small-angle scattering experiments on anisotropic samples using kernel density estimation View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Kotaro Saito, Masao Yano, Hideitsu Hino, Tetsuya Shoji, Akinori Asahara, Hidekazu Morita, Chiharu Mitsumata, Joachim Kohlbrecher, Kanta Ono

ABSTRACT

We propose a method to accelerate small-angle scattering experiments by exploiting spatial correlation in two-dimensional data. We applied kernel density estimation to the average of a hundred short scans and evaluated noise reduction effects of kernel density estimation (smoothing). Although there is no advantage of using smoothing for isotropic data due to the powerful noise reduction effect of radial averaging, smoothing with a statistically and physically appropriate kernel can shorten measurement time by less than half to obtain sector averages with comparable statistical quality to that of sector averages without smoothing. This benefit will encourage researchers not to use full radial average on anisotropic data sacrificing anisotropy for statistical quality. We also confirmed that statistically reasonable estimation of measurement time is feasible on site by evaluating how intensity variances improve with accumulating counts. The noise reduction effect of smoothing will bring benefits to a wide range of applications from efficient use of beamtime at laboratories and large experimental facilities to stroboscopic measurements suffering low statistical quality. More... »

PAGES

1526

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-018-37345-5

DOI

http://dx.doi.org/10.1038/s41598-018-37345-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111950451

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30728390


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Paul Scherrer Institute", 
          "id": "https://www.grid.ac/institutes/grid.5991.4", 
          "name": [
            "Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institute, 5232, Villigen, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Saito", 
        "givenName": "Kotaro", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Toyota Motor Corporation (Japan)", 
          "id": "https://www.grid.ac/institutes/grid.462975.b", 
          "name": [
            "Toyota Motor Corporation, 471-8572, Toyota, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yano", 
        "givenName": "Masao", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Research Organization of Information and Systems", 
          "id": "https://www.grid.ac/institutes/grid.418987.b", 
          "name": [
            "The Institute of Statistical Mathematics, 190-8562, Tachikawa, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hino", 
        "givenName": "Hideitsu", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Toyota Motor Corporation (Japan)", 
          "id": "https://www.grid.ac/institutes/grid.462975.b", 
          "name": [
            "Toyota Motor Corporation, 471-8572, Toyota, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shoji", 
        "givenName": "Tetsuya", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hitachi (Japan)", 
          "id": "https://www.grid.ac/institutes/grid.417547.4", 
          "name": [
            "Hitachi Ltd., 100-8280, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Asahara", 
        "givenName": "Akinori", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hitachi (Japan)", 
          "id": "https://www.grid.ac/institutes/grid.417547.4", 
          "name": [
            "Hitachi Ltd., 100-8280, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Morita", 
        "givenName": "Hidekazu", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute for Materials Science", 
          "id": "https://www.grid.ac/institutes/grid.21941.3f", 
          "name": [
            "National Institute for Materials Science, 305-0047, Tsukuba, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mitsumata", 
        "givenName": "Chiharu", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Paul Scherrer Institute", 
          "id": "https://www.grid.ac/institutes/grid.5991.4", 
          "name": [
            "Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institute, 5232, Villigen, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kohlbrecher", 
        "givenName": "Joachim", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "High Energy Accelerator Research Organization", 
          "id": "https://www.grid.ac/institutes/grid.410794.f", 
          "name": [
            "Institute of Materials Structure Science, High Energy Accelerator Research Organization, 305-0801, Tsukuba, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ono", 
        "givenName": "Kanta", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1107/s0021889893001980", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016440183"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.115.205901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016762637"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.115.205901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016762637"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s1600576715004306", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022179694"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00362-010-0338-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026562838", 
          "https://doi.org/10.1007/s00362-010-0338-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.commatsci.2016.05.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031986226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.commatsci.2016.05.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031986226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.commatsci.2015.08.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040238911"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2463676.2465319", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050169834"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep06367", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050357030", 
          "https://doi.org/10.1038/srep06367"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-9473(01)00053-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051758982"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/sciadv.1600746", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062440186"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aoms/1177729549", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064401728"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aoms/1177730349", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064402058"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aos/1176344076", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064407382"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aos/1176348768", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064408694"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/sciadv.1602241", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084849965"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2017.09.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091911480"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.96.161102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092079129"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.96.161102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092079129"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41524-017-0056-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099656915", 
          "https://doi.org/10.1038/s41524-017-0056-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.md.2018.03.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101883473"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/sciadv.aaq1566", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103149574"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1109705924", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4899-4493-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109705924", 
          "https://doi.org/10.1007/978-1-4899-4493-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4899-4493-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109705924", 
          "https://doi.org/10.1007/978-1-4899-4493-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1201/b14876", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109727533"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "We propose a method to accelerate small-angle scattering experiments by exploiting spatial correlation in two-dimensional data. We applied kernel density estimation to the average of a hundred short scans and evaluated noise reduction effects of kernel density estimation (smoothing). Although there is no advantage of using smoothing for isotropic data due to the powerful noise reduction effect of radial averaging, smoothing with a statistically and physically appropriate kernel can shorten measurement time by less than half to obtain sector averages with comparable statistical quality to that of sector averages without smoothing. This benefit will encourage researchers not to use full radial average on anisotropic data sacrificing anisotropy for statistical quality. We also confirmed that statistically reasonable estimation of measurement time is feasible on site by evaluating how intensity variances improve with accumulating counts. The noise reduction effect of smoothing will bring benefits to a wide range of applications from efficient use of beamtime at laboratories and large experimental facilities to stroboscopic measurements suffering low statistical quality.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-018-37345-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.5495477", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "Accelerating small-angle scattering experiments on anisotropic samples using kernel density estimation", 
    "pagination": "1526", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c6be670495606a36c9a7257450a7c9ec55fdd628cf2be1d49e285bc4a4f9d34d"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30728390"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-018-37345-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111950451"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-018-37345-5", 
      "https://app.dimensions.ai/details/publication/pub.1111950451"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:02", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000331_0000000331/records_105422_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-018-37345-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-37345-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-37345-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-37345-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-37345-5'


 

This table displays all metadata directly associated to this object as RDF triples.

204 TRIPLES      21 PREDICATES      52 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-018-37345-5 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N773289c433c245328cdbd54f13fcd7f2
4 schema:citation sg:pub.10.1007/978-1-4899-4493-1
5 sg:pub.10.1007/s00362-010-0338-1
6 sg:pub.10.1038/s41524-017-0056-5
7 sg:pub.10.1038/srep06367
8 https://app.dimensions.ai/details/publication/pub.1109705924
9 https://doi.org/10.1016/j.actamat.2017.09.004
10 https://doi.org/10.1016/j.commatsci.2015.08.011
11 https://doi.org/10.1016/j.commatsci.2016.05.034
12 https://doi.org/10.1016/j.md.2018.03.002
13 https://doi.org/10.1016/s0167-9473(01)00053-6
14 https://doi.org/10.1103/physrevb.96.161102
15 https://doi.org/10.1103/physrevlett.115.205901
16 https://doi.org/10.1107/s0021889893001980
17 https://doi.org/10.1107/s1600576715004306
18 https://doi.org/10.1126/sciadv.1600746
19 https://doi.org/10.1126/sciadv.1602241
20 https://doi.org/10.1126/sciadv.aaq1566
21 https://doi.org/10.1145/2463676.2465319
22 https://doi.org/10.1201/b14876
23 https://doi.org/10.1214/aoms/1177729549
24 https://doi.org/10.1214/aoms/1177730349
25 https://doi.org/10.1214/aos/1176344076
26 https://doi.org/10.1214/aos/1176348768
27 schema:datePublished 2019-12
28 schema:datePublishedReg 2019-12-01
29 schema:description We propose a method to accelerate small-angle scattering experiments by exploiting spatial correlation in two-dimensional data. We applied kernel density estimation to the average of a hundred short scans and evaluated noise reduction effects of kernel density estimation (smoothing). Although there is no advantage of using smoothing for isotropic data due to the powerful noise reduction effect of radial averaging, smoothing with a statistically and physically appropriate kernel can shorten measurement time by less than half to obtain sector averages with comparable statistical quality to that of sector averages without smoothing. This benefit will encourage researchers not to use full radial average on anisotropic data sacrificing anisotropy for statistical quality. We also confirmed that statistically reasonable estimation of measurement time is feasible on site by evaluating how intensity variances improve with accumulating counts. The noise reduction effect of smoothing will bring benefits to a wide range of applications from efficient use of beamtime at laboratories and large experimental facilities to stroboscopic measurements suffering low statistical quality.
30 schema:genre research_article
31 schema:inLanguage en
32 schema:isAccessibleForFree true
33 schema:isPartOf N70a044bc546d4a73a652c9fc9fe4ae83
34 N798de700644a40669a0ac49c14148ac8
35 sg:journal.1045337
36 schema:name Accelerating small-angle scattering experiments on anisotropic samples using kernel density estimation
37 schema:pagination 1526
38 schema:productId N163da47971fc4ca69eaed5769ae19381
39 N2014a30aa9af4b31806984cb92a1ac60
40 N6992137d568a4908a7c9e92f2f99840f
41 N7dc20ac7b1f34278915289210aad6330
42 Nb3e14d74bd1443de819908f609b5e55a
43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111950451
44 https://doi.org/10.1038/s41598-018-37345-5
45 schema:sdDatePublished 2019-04-11T09:02
46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
47 schema:sdPublisher N4a315cac6ff04a91a066f197748d8684
48 schema:url https://www.nature.com/articles/s41598-018-37345-5
49 sgo:license sg:explorer/license/
50 sgo:sdDataset articles
51 rdf:type schema:ScholarlyArticle
52 N0241f1304ff0420787256e5cff9f5ed8 rdf:first N90310b2498494b4d8ada56fef30ef6cc
53 rdf:rest N7b4d36f64be74641b2fa24594a72513b
54 N163da47971fc4ca69eaed5769ae19381 schema:name readcube_id
55 schema:value c6be670495606a36c9a7257450a7c9ec55fdd628cf2be1d49e285bc4a4f9d34d
56 rdf:type schema:PropertyValue
57 N2014a30aa9af4b31806984cb92a1ac60 schema:name pubmed_id
58 schema:value 30728390
59 rdf:type schema:PropertyValue
60 N286c4c334faf4f7da3b8988e192e65c2 rdf:first Nca4617cf1b0843169e2022bd8c960662
61 rdf:rest N5b722ee9e7cd49c3b7932e92656433bd
62 N48ccd55d57af494ba3a24d00aeaa923c rdf:first N91420a7957234169855becca6ad639ab
63 rdf:rest N872808c2a0ac41bc87559785597d4fb2
64 N4a315cac6ff04a91a066f197748d8684 schema:name Springer Nature - SN SciGraph project
65 rdf:type schema:Organization
66 N4c1410121088460a9dc53e52f00746e2 schema:affiliation https://www.grid.ac/institutes/grid.462975.b
67 schema:familyName Yano
68 schema:givenName Masao
69 rdf:type schema:Person
70 N5b722ee9e7cd49c3b7932e92656433bd rdf:first Nebb6f082cda3411fb06b9b54930b1b3a
71 rdf:rest N6b7c4e86edc94cec9bd24179df59b29f
72 N6992137d568a4908a7c9e92f2f99840f schema:name nlm_unique_id
73 schema:value 101563288
74 rdf:type schema:PropertyValue
75 N6b7c4e86edc94cec9bd24179df59b29f rdf:first Neeca014947a44df98e9a2651be451465
76 rdf:rest rdf:nil
77 N6c0d1762437a43f5a9e0e15f6f4761e4 schema:affiliation https://www.grid.ac/institutes/grid.5991.4
78 schema:familyName Saito
79 schema:givenName Kotaro
80 rdf:type schema:Person
81 N70a044bc546d4a73a652c9fc9fe4ae83 schema:issueNumber 1
82 rdf:type schema:PublicationIssue
83 N773289c433c245328cdbd54f13fcd7f2 rdf:first N6c0d1762437a43f5a9e0e15f6f4761e4
84 rdf:rest N99e600b9ca584d75831af5863a28e97a
85 N798de700644a40669a0ac49c14148ac8 schema:volumeNumber 9
86 rdf:type schema:PublicationVolume
87 N7b4d36f64be74641b2fa24594a72513b rdf:first Ne476c4ce3ccf4867b0a7d8ef7162f894
88 rdf:rest N48ccd55d57af494ba3a24d00aeaa923c
89 N7dc20ac7b1f34278915289210aad6330 schema:name dimensions_id
90 schema:value pub.1111950451
91 rdf:type schema:PropertyValue
92 N872808c2a0ac41bc87559785597d4fb2 rdf:first Ned5b6cae85d946cdaf8203e23b8715d2
93 rdf:rest N286c4c334faf4f7da3b8988e192e65c2
94 N90310b2498494b4d8ada56fef30ef6cc schema:affiliation https://www.grid.ac/institutes/grid.418987.b
95 schema:familyName Hino
96 schema:givenName Hideitsu
97 rdf:type schema:Person
98 N91420a7957234169855becca6ad639ab schema:affiliation https://www.grid.ac/institutes/grid.417547.4
99 schema:familyName Asahara
100 schema:givenName Akinori
101 rdf:type schema:Person
102 N99e600b9ca584d75831af5863a28e97a rdf:first N4c1410121088460a9dc53e52f00746e2
103 rdf:rest N0241f1304ff0420787256e5cff9f5ed8
104 Nb3e14d74bd1443de819908f609b5e55a schema:name doi
105 schema:value 10.1038/s41598-018-37345-5
106 rdf:type schema:PropertyValue
107 Nca4617cf1b0843169e2022bd8c960662 schema:affiliation https://www.grid.ac/institutes/grid.21941.3f
108 schema:familyName Mitsumata
109 schema:givenName Chiharu
110 rdf:type schema:Person
111 Ne476c4ce3ccf4867b0a7d8ef7162f894 schema:affiliation https://www.grid.ac/institutes/grid.462975.b
112 schema:familyName Shoji
113 schema:givenName Tetsuya
114 rdf:type schema:Person
115 Nebb6f082cda3411fb06b9b54930b1b3a schema:affiliation https://www.grid.ac/institutes/grid.5991.4
116 schema:familyName Kohlbrecher
117 schema:givenName Joachim
118 rdf:type schema:Person
119 Ned5b6cae85d946cdaf8203e23b8715d2 schema:affiliation https://www.grid.ac/institutes/grid.417547.4
120 schema:familyName Morita
121 schema:givenName Hidekazu
122 rdf:type schema:Person
123 Neeca014947a44df98e9a2651be451465 schema:affiliation https://www.grid.ac/institutes/grid.410794.f
124 schema:familyName Ono
125 schema:givenName Kanta
126 rdf:type schema:Person
127 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
128 schema:name Mathematical Sciences
129 rdf:type schema:DefinedTerm
130 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
131 schema:name Statistics
132 rdf:type schema:DefinedTerm
133 sg:grant.5495477 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-018-37345-5
134 rdf:type schema:MonetaryGrant
135 sg:journal.1045337 schema:issn 2045-2322
136 schema:name Scientific Reports
137 rdf:type schema:Periodical
138 sg:pub.10.1007/978-1-4899-4493-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109705924
139 https://doi.org/10.1007/978-1-4899-4493-1
140 rdf:type schema:CreativeWork
141 sg:pub.10.1007/s00362-010-0338-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026562838
142 https://doi.org/10.1007/s00362-010-0338-1
143 rdf:type schema:CreativeWork
144 sg:pub.10.1038/s41524-017-0056-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099656915
145 https://doi.org/10.1038/s41524-017-0056-5
146 rdf:type schema:CreativeWork
147 sg:pub.10.1038/srep06367 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050357030
148 https://doi.org/10.1038/srep06367
149 rdf:type schema:CreativeWork
150 https://app.dimensions.ai/details/publication/pub.1109705924 schema:CreativeWork
151 https://doi.org/10.1016/j.actamat.2017.09.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091911480
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/j.commatsci.2015.08.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040238911
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/j.commatsci.2016.05.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031986226
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/j.md.2018.03.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101883473
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/s0167-9473(01)00053-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051758982
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1103/physrevb.96.161102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092079129
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1103/physrevlett.115.205901 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016762637
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1107/s0021889893001980 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016440183
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1107/s1600576715004306 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022179694
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1126/sciadv.1600746 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062440186
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1126/sciadv.1602241 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084849965
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1126/sciadv.aaq1566 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103149574
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1145/2463676.2465319 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050169834
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1201/b14876 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109727533
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1214/aoms/1177729549 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064401728
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1214/aoms/1177730349 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064402058
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1214/aos/1176344076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064407382
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1214/aos/1176348768 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064408694
186 rdf:type schema:CreativeWork
187 https://www.grid.ac/institutes/grid.21941.3f schema:alternateName National Institute for Materials Science
188 schema:name National Institute for Materials Science, 305-0047, Tsukuba, Japan
189 rdf:type schema:Organization
190 https://www.grid.ac/institutes/grid.410794.f schema:alternateName High Energy Accelerator Research Organization
191 schema:name Institute of Materials Structure Science, High Energy Accelerator Research Organization, 305-0801, Tsukuba, Japan
192 rdf:type schema:Organization
193 https://www.grid.ac/institutes/grid.417547.4 schema:alternateName Hitachi (Japan)
194 schema:name Hitachi Ltd., 100-8280, Tokyo, Japan
195 rdf:type schema:Organization
196 https://www.grid.ac/institutes/grid.418987.b schema:alternateName Research Organization of Information and Systems
197 schema:name The Institute of Statistical Mathematics, 190-8562, Tachikawa, Japan
198 rdf:type schema:Organization
199 https://www.grid.ac/institutes/grid.462975.b schema:alternateName Toyota Motor Corporation (Japan)
200 schema:name Toyota Motor Corporation, 471-8572, Toyota, Japan
201 rdf:type schema:Organization
202 https://www.grid.ac/institutes/grid.5991.4 schema:alternateName Paul Scherrer Institute
203 schema:name Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institute, 5232, Villigen, Switzerland
204 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...