MultiLink Analysis: Brain Network Comparison via Sparse Connectivity Analysis View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Alessandro Crimi, Luca Giancardo, Fabio Sambataro, Alessandro Gozzi, Vittorio Murino, Diego Sona

ABSTRACT

The analysis of the brain from a connectivity perspective is revealing novel insights into brain structure and function. Discovery is, however, hindered by the lack of prior knowledge used to make hypotheses. Additionally, exploratory data analysis is made complex by the high dimensionality of data. Indeed, to assess the effect of pathological states on brain networks, neuroscientists are often required to evaluate experimental effects in case-control studies, with hundreds of thousands of connections. In this paper, we propose an approach to identify the multivariate relationships in brain connections that characterize two distinct groups, hence permitting the investigators to immediately discover the subnetworks that contain information about the differences between experimental groups. In particular, we are interested in data discovery related to connectomics, where the connections that characterize differences between two groups of subjects are found. Nevertheless, those connections do not necessarily maximize the accuracy in classification since this does not guarantee reliable interpretation of specific differences between groups. In practice, our method exploits recent machine learning techniques employing sparsity to deal with weighted networks describing the whole-brain macro connectivity. We evaluated our technique on functional and structural connectomes from human and murine brain data. In our experiments, we automatically identified disease-relevant connections in datasets with supervised and unsupervised anatomy-driven parcellation approaches and by using high-dimensional datasets. More... »

PAGES

65

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-018-37300-4

DOI

http://dx.doi.org/10.1038/s41598-018-37300-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111223634

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30635604


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Neurosciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University Hospital of Zurich", 
          "id": "https://www.grid.ac/institutes/grid.412004.3", 
          "name": [
            "Pattern Analysis and Computer Vision, Istituto Italiano di Tecnologia, Genova, Italy", 
            "Institute of Neuropathology, University Hospital of Z\u00fcrich, Z\u00fcrich, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Crimi", 
        "givenName": "Alessandro", 
        "id": "sg:person.0757303371.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0757303371.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The University of Texas Health Science Center at Houston", 
          "id": "https://www.grid.ac/institutes/grid.267308.8", 
          "name": [
            "Pattern Analysis and Computer Vision, Istituto Italiano di Tecnologia, Genova, Italy", 
            "Center for Precision Health, School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Giancardo", 
        "givenName": "Luca", 
        "id": "sg:person.0623701123.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0623701123.71"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Udine", 
          "id": "https://www.grid.ac/institutes/grid.5390.f", 
          "name": [
            "Department of Experimental and Clinical Medical Sciences, University of Udine, Udine, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sambataro", 
        "givenName": "Fabio", 
        "id": "sg:person.01301505757.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01301505757.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Italian Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.25786.3e", 
          "name": [
            "Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Rovereto, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gozzi", 
        "givenName": "Alessandro", 
        "id": "sg:person.01367245201.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01367245201.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Verona", 
          "id": "https://www.grid.ac/institutes/grid.5611.3", 
          "name": [
            "Pattern Analysis and Computer Vision, Istituto Italiano di Tecnologia, Genova, Italy", 
            "Department of Computer Science, University of Verona, Verona, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Murino", 
        "givenName": "Vittorio", 
        "id": "sg:person.01147163731.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01147163731.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Fondazione Bruno Kessler", 
          "id": "https://www.grid.ac/institutes/grid.11469.3b", 
          "name": [
            "Pattern Analysis and Computer Vision, Istituto Italiano di Tecnologia, Genova, Italy", 
            "Neuroinformatics Laboratory, Fondazione Bruno Kessler, Trento, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sona", 
        "givenName": "Diego", 
        "id": "sg:person.01320216161.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01320216161.42"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1111/j.1467-9868.2010.00740.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000696823"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-9868.2010.00740.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000696823"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biopsych.2009.08.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002268818"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/strokeaha.113.004137", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002466874"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/strokeaha.113.004137", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002466874"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2010.06.041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002516416"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.1000100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003321082"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2015.03.069", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003517578"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1523/jneurosci.2787-07.2007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004496076"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrn2575", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004953014", 
          "https://doi.org/10.1038/nrn2575"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/nyas.12360", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007685416"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hbm.22278", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008180623"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-24574-4_72", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010806412", 
          "https://doi.org/10.1007/978-3-319-24574-4_72"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuron.2009.03.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011850909"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biopsych.2007.06.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011888284"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2010.05.081", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012067626"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1961189.1961199", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013637525"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hbm.21333", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014532716"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0197-4580(93)90015-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014717127"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0197-4580(93)90015-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014717127"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.10091701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015080097"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/tp.2014.69", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015471926", 
          "https://doi.org/10.1038/tp.2014.69"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2013.03.066", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015889618"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/brain/awp089", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016722055"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/1544-6115.1792", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017320119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0019071", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019157013"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biopsych.2011.02.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020953647"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fnsys.2012.00059", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021123783"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hbm.10102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021974779"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2009.10.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022342218"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biopsych.2010.08.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025983222"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.schres.2005.11.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026737394"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hbm.23007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027897550"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2015.05.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028357410"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2009.12.120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028581904"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12859-015-0575-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028801735", 
          "https://doi.org/10.1186/s12859-015-0575-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12859-015-0575-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028801735", 
          "https://doi.org/10.1186/s12859-015-0575-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2013.04.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030801178"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2013.09.050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033556624"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2016.06.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036180331"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2010.02.040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036370969"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/brain/awn262", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036438207"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.brainres.2009.02.070", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036649298"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2013.04.056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037316334"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2008.05.050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037798802"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1167/iovs.06-1029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038720140"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fpsyt.2011.00077", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041482830"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fncom.2013.00171", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043867737"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-9868.2005.00503.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043971564"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0076655", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045293543"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1749-6632.2010.05888.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045416901"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biopsych.2009.07.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045970745"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/1531-8249(199902)45:2<265::aid-ana21>3.0.co;2-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047436296"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13064-015-0033-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047478270", 
          "https://doi.org/10.1186/s13064-015-0033-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13064-015-0033-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047478270", 
          "https://doi.org/10.1186/s13064-015-0033-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2377-12-46", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047921675", 
          "https://doi.org/10.1186/1471-2377-12-46"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0006-8993(03)02354-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047938481"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-9868.2011.00783.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050208266"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2014.07.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050265488"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nicl.2014.05.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051151338"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1523/jneurosci.3539-11.2011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051512745"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1362361310386506", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051752066"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1362361310386506", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051752066"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/archneur.64.10.1482", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052907745"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmi.2010.2059709", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061695602"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmi.2011.2140380", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061695736"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmi.2013.2276916", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061696161"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmi.2013.2281398", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061696174"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmi.2015.2463723", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061696579"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/jnnp.64.1.138", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062818912"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/jnnp.64.1.138", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062818912"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1198/tech.2011.08118", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064199782"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/brain.2016.0474", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090908049"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/isbi.2017.7950677", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093707950"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/prni.2013.14", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094341426"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nicl.2018.01.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100770680"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1110628402", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1110629995", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "The analysis of the brain from a connectivity perspective is revealing novel insights into brain structure and function. Discovery is, however, hindered by the lack of prior knowledge used to make hypotheses. Additionally, exploratory data analysis is made complex by the high dimensionality of data. Indeed, to assess the effect of pathological states on brain networks, neuroscientists are often required to evaluate experimental effects in case-control studies, with hundreds of thousands of connections. In this paper, we propose an approach to identify the multivariate relationships in brain connections that characterize two distinct groups, hence permitting the investigators to immediately discover the subnetworks that contain information about the differences between experimental groups. In particular, we are interested in data discovery related to connectomics, where the connections that characterize differences between two groups of subjects are found. Nevertheless, those connections do not necessarily maximize the accuracy in classification since this does not guarantee reliable interpretation of specific differences between groups. In practice, our method exploits recent machine learning techniques employing sparsity to deal with weighted networks describing the whole-brain macro connectivity. We evaluated our technique on functional and structural connectomes from human and murine brain data. In our experiments, we automatically identified disease-relevant connections in datasets with supervised and unsupervised anatomy-driven parcellation approaches and by using high-dimensional datasets.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-018-37300-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2687006", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.7132465", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "MultiLink Analysis: Brain Network Comparison via Sparse Connectivity Analysis", 
    "pagination": "65", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "781ec8b39612ff46e31701567139f230351ed84a64623997386e877c0c64369a"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30635604"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-018-37300-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111223634"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-018-37300-4", 
      "https://app.dimensions.ai/details/publication/pub.1111223634"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:40", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000319_0000000319/records_11196_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-018-37300-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-37300-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-37300-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-37300-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-37300-4'


 

This table displays all metadata directly associated to this object as RDF triples.

343 TRIPLES      21 PREDICATES      100 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-018-37300-4 schema:about anzsrc-for:11
2 anzsrc-for:1109
3 schema:author Nbfe583e509a6446aa06b448b15523c92
4 schema:citation sg:pub.10.1007/978-3-319-24574-4_72
5 sg:pub.10.1038/nrn2575
6 sg:pub.10.1038/tp.2014.69
7 sg:pub.10.1186/1471-2377-12-46
8 sg:pub.10.1186/s12859-015-0575-3
9 sg:pub.10.1186/s13064-015-0033-y
10 https://app.dimensions.ai/details/publication/pub.1110628402
11 https://app.dimensions.ai/details/publication/pub.1110629995
12 https://doi.org/10.1001/archneur.64.10.1482
13 https://doi.org/10.1002/1531-8249(199902)45:2<265::aid-ana21>3.0.co;2-3
14 https://doi.org/10.1002/hbm.10102
15 https://doi.org/10.1002/hbm.21333
16 https://doi.org/10.1002/hbm.22278
17 https://doi.org/10.1002/hbm.23007
18 https://doi.org/10.1016/0197-4580(93)90015-4
19 https://doi.org/10.1016/j.biopsych.2007.06.025
20 https://doi.org/10.1016/j.biopsych.2009.07.022
21 https://doi.org/10.1016/j.biopsych.2009.08.024
22 https://doi.org/10.1016/j.biopsych.2010.08.022
23 https://doi.org/10.1016/j.biopsych.2011.02.019
24 https://doi.org/10.1016/j.brainres.2009.02.070
25 https://doi.org/10.1016/j.neuroimage.2008.05.050
26 https://doi.org/10.1016/j.neuroimage.2009.10.003
27 https://doi.org/10.1016/j.neuroimage.2009.12.120
28 https://doi.org/10.1016/j.neuroimage.2010.02.040
29 https://doi.org/10.1016/j.neuroimage.2010.05.081
30 https://doi.org/10.1016/j.neuroimage.2010.06.041
31 https://doi.org/10.1016/j.neuroimage.2013.03.066
32 https://doi.org/10.1016/j.neuroimage.2013.04.007
33 https://doi.org/10.1016/j.neuroimage.2013.04.056
34 https://doi.org/10.1016/j.neuroimage.2013.09.050
35 https://doi.org/10.1016/j.neuroimage.2014.07.031
36 https://doi.org/10.1016/j.neuroimage.2015.03.069
37 https://doi.org/10.1016/j.neuroimage.2015.05.002
38 https://doi.org/10.1016/j.neuroimage.2016.06.034
39 https://doi.org/10.1016/j.neuron.2009.03.024
40 https://doi.org/10.1016/j.nicl.2014.05.004
41 https://doi.org/10.1016/j.nicl.2018.01.014
42 https://doi.org/10.1016/j.schres.2005.11.020
43 https://doi.org/10.1016/s0006-8993(03)02354-0
44 https://doi.org/10.1089/brain.2016.0474
45 https://doi.org/10.1093/brain/awn262
46 https://doi.org/10.1093/brain/awp089
47 https://doi.org/10.1109/isbi.2017.7950677
48 https://doi.org/10.1109/prni.2013.14
49 https://doi.org/10.1109/tmi.2010.2059709
50 https://doi.org/10.1109/tmi.2011.2140380
51 https://doi.org/10.1109/tmi.2013.2276916
52 https://doi.org/10.1109/tmi.2013.2281398
53 https://doi.org/10.1109/tmi.2015.2463723
54 https://doi.org/10.1111/j.1467-9868.2005.00503.x
55 https://doi.org/10.1111/j.1467-9868.2010.00740.x
56 https://doi.org/10.1111/j.1467-9868.2011.00783.x
57 https://doi.org/10.1111/j.1749-6632.2010.05888.x
58 https://doi.org/10.1111/nyas.12360
59 https://doi.org/10.1136/jnnp.64.1.138
60 https://doi.org/10.1145/1961189.1961199
61 https://doi.org/10.1148/radiol.10091701
62 https://doi.org/10.1161/strokeaha.113.004137
63 https://doi.org/10.1167/iovs.06-1029
64 https://doi.org/10.1177/1362361310386506
65 https://doi.org/10.1198/tech.2011.08118
66 https://doi.org/10.1371/journal.pcbi.1000100
67 https://doi.org/10.1371/journal.pone.0019071
68 https://doi.org/10.1371/journal.pone.0076655
69 https://doi.org/10.1515/1544-6115.1792
70 https://doi.org/10.1523/jneurosci.2787-07.2007
71 https://doi.org/10.1523/jneurosci.3539-11.2011
72 https://doi.org/10.3389/fncom.2013.00171
73 https://doi.org/10.3389/fnsys.2012.00059
74 https://doi.org/10.3389/fpsyt.2011.00077
75 schema:datePublished 2019-12
76 schema:datePublishedReg 2019-12-01
77 schema:description The analysis of the brain from a connectivity perspective is revealing novel insights into brain structure and function. Discovery is, however, hindered by the lack of prior knowledge used to make hypotheses. Additionally, exploratory data analysis is made complex by the high dimensionality of data. Indeed, to assess the effect of pathological states on brain networks, neuroscientists are often required to evaluate experimental effects in case-control studies, with hundreds of thousands of connections. In this paper, we propose an approach to identify the multivariate relationships in brain connections that characterize two distinct groups, hence permitting the investigators to immediately discover the subnetworks that contain information about the differences between experimental groups. In particular, we are interested in data discovery related to connectomics, where the connections that characterize differences between two groups of subjects are found. Nevertheless, those connections do not necessarily maximize the accuracy in classification since this does not guarantee reliable interpretation of specific differences between groups. In practice, our method exploits recent machine learning techniques employing sparsity to deal with weighted networks describing the whole-brain macro connectivity. We evaluated our technique on functional and structural connectomes from human and murine brain data. In our experiments, we automatically identified disease-relevant connections in datasets with supervised and unsupervised anatomy-driven parcellation approaches and by using high-dimensional datasets.
78 schema:genre research_article
79 schema:inLanguage en
80 schema:isAccessibleForFree true
81 schema:isPartOf N4e5511c76bf64a1c989c8e043fd7dfae
82 N90b939a8974644568ca1c7d9498a7867
83 sg:journal.1045337
84 schema:name MultiLink Analysis: Brain Network Comparison via Sparse Connectivity Analysis
85 schema:pagination 65
86 schema:productId N3f406684d2f94333ad9ff125058f7120
87 N53fe02d922c04e9dbbb3819d3dead000
88 N5cb47742c68440c2a0a39682ab3463c0
89 Na84532f47aba4bb4b9ef229d4d9f9fd1
90 Ne7a111b0a4fa44ac9dfdc6155d9c9c3b
91 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111223634
92 https://doi.org/10.1038/s41598-018-37300-4
93 schema:sdDatePublished 2019-04-11T08:40
94 schema:sdLicense https://scigraph.springernature.com/explorer/license/
95 schema:sdPublisher N0949e8308e9e4d2c8f1d92101acf403b
96 schema:url https://www.nature.com/articles/s41598-018-37300-4
97 sgo:license sg:explorer/license/
98 sgo:sdDataset articles
99 rdf:type schema:ScholarlyArticle
100 N0949e8308e9e4d2c8f1d92101acf403b schema:name Springer Nature - SN SciGraph project
101 rdf:type schema:Organization
102 N0e54f1cac70c417fb37839dfa37810e6 rdf:first sg:person.01301505757.63
103 rdf:rest N2deba67686f748898cb5411678313852
104 N2deba67686f748898cb5411678313852 rdf:first sg:person.01367245201.42
105 rdf:rest Naf52908a6b664460a95718b445a1303d
106 N3f406684d2f94333ad9ff125058f7120 schema:name readcube_id
107 schema:value 781ec8b39612ff46e31701567139f230351ed84a64623997386e877c0c64369a
108 rdf:type schema:PropertyValue
109 N4e5511c76bf64a1c989c8e043fd7dfae schema:volumeNumber 9
110 rdf:type schema:PublicationVolume
111 N53fe02d922c04e9dbbb3819d3dead000 schema:name pubmed_id
112 schema:value 30635604
113 rdf:type schema:PropertyValue
114 N5cb47742c68440c2a0a39682ab3463c0 schema:name nlm_unique_id
115 schema:value 101563288
116 rdf:type schema:PropertyValue
117 N90b939a8974644568ca1c7d9498a7867 schema:issueNumber 1
118 rdf:type schema:PublicationIssue
119 Na84532f47aba4bb4b9ef229d4d9f9fd1 schema:name dimensions_id
120 schema:value pub.1111223634
121 rdf:type schema:PropertyValue
122 Naf52908a6b664460a95718b445a1303d rdf:first sg:person.01147163731.38
123 rdf:rest Nb5990e6094c2475a9d4360cd7fc6b83b
124 Nb5990e6094c2475a9d4360cd7fc6b83b rdf:first sg:person.01320216161.42
125 rdf:rest rdf:nil
126 Nbfe583e509a6446aa06b448b15523c92 rdf:first sg:person.0757303371.13
127 rdf:rest Ne4abe5acc5684162b2e7131fd1580ad6
128 Ne4abe5acc5684162b2e7131fd1580ad6 rdf:first sg:person.0623701123.71
129 rdf:rest N0e54f1cac70c417fb37839dfa37810e6
130 Ne7a111b0a4fa44ac9dfdc6155d9c9c3b schema:name doi
131 schema:value 10.1038/s41598-018-37300-4
132 rdf:type schema:PropertyValue
133 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
134 schema:name Medical and Health Sciences
135 rdf:type schema:DefinedTerm
136 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
137 schema:name Neurosciences
138 rdf:type schema:DefinedTerm
139 sg:grant.2687006 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-018-37300-4
140 rdf:type schema:MonetaryGrant
141 sg:grant.7132465 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-018-37300-4
142 rdf:type schema:MonetaryGrant
143 sg:journal.1045337 schema:issn 2045-2322
144 schema:name Scientific Reports
145 rdf:type schema:Periodical
146 sg:person.01147163731.38 schema:affiliation https://www.grid.ac/institutes/grid.5611.3
147 schema:familyName Murino
148 schema:givenName Vittorio
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01147163731.38
150 rdf:type schema:Person
151 sg:person.01301505757.63 schema:affiliation https://www.grid.ac/institutes/grid.5390.f
152 schema:familyName Sambataro
153 schema:givenName Fabio
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01301505757.63
155 rdf:type schema:Person
156 sg:person.01320216161.42 schema:affiliation https://www.grid.ac/institutes/grid.11469.3b
157 schema:familyName Sona
158 schema:givenName Diego
159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01320216161.42
160 rdf:type schema:Person
161 sg:person.01367245201.42 schema:affiliation https://www.grid.ac/institutes/grid.25786.3e
162 schema:familyName Gozzi
163 schema:givenName Alessandro
164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01367245201.42
165 rdf:type schema:Person
166 sg:person.0623701123.71 schema:affiliation https://www.grid.ac/institutes/grid.267308.8
167 schema:familyName Giancardo
168 schema:givenName Luca
169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0623701123.71
170 rdf:type schema:Person
171 sg:person.0757303371.13 schema:affiliation https://www.grid.ac/institutes/grid.412004.3
172 schema:familyName Crimi
173 schema:givenName Alessandro
174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0757303371.13
175 rdf:type schema:Person
176 sg:pub.10.1007/978-3-319-24574-4_72 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010806412
177 https://doi.org/10.1007/978-3-319-24574-4_72
178 rdf:type schema:CreativeWork
179 sg:pub.10.1038/nrn2575 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004953014
180 https://doi.org/10.1038/nrn2575
181 rdf:type schema:CreativeWork
182 sg:pub.10.1038/tp.2014.69 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015471926
183 https://doi.org/10.1038/tp.2014.69
184 rdf:type schema:CreativeWork
185 sg:pub.10.1186/1471-2377-12-46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047921675
186 https://doi.org/10.1186/1471-2377-12-46
187 rdf:type schema:CreativeWork
188 sg:pub.10.1186/s12859-015-0575-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028801735
189 https://doi.org/10.1186/s12859-015-0575-3
190 rdf:type schema:CreativeWork
191 sg:pub.10.1186/s13064-015-0033-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1047478270
192 https://doi.org/10.1186/s13064-015-0033-y
193 rdf:type schema:CreativeWork
194 https://app.dimensions.ai/details/publication/pub.1110628402 schema:CreativeWork
195 https://app.dimensions.ai/details/publication/pub.1110629995 schema:CreativeWork
196 https://doi.org/10.1001/archneur.64.10.1482 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052907745
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1002/1531-8249(199902)45:2<265::aid-ana21>3.0.co;2-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047436296
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1002/hbm.10102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021974779
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1002/hbm.21333 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014532716
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1002/hbm.22278 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008180623
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1002/hbm.23007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027897550
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1016/0197-4580(93)90015-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014717127
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1016/j.biopsych.2007.06.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011888284
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1016/j.biopsych.2009.07.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045970745
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1016/j.biopsych.2009.08.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002268818
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1016/j.biopsych.2010.08.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025983222
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1016/j.biopsych.2011.02.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020953647
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1016/j.brainres.2009.02.070 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036649298
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1016/j.neuroimage.2008.05.050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037798802
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1016/j.neuroimage.2009.10.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022342218
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1016/j.neuroimage.2009.12.120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028581904
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1016/j.neuroimage.2010.02.040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036370969
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1016/j.neuroimage.2010.05.081 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012067626
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1016/j.neuroimage.2010.06.041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002516416
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1016/j.neuroimage.2013.03.066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015889618
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1016/j.neuroimage.2013.04.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030801178
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1016/j.neuroimage.2013.04.056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037316334
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1016/j.neuroimage.2013.09.050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033556624
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1016/j.neuroimage.2014.07.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050265488
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1016/j.neuroimage.2015.03.069 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003517578
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1016/j.neuroimage.2015.05.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028357410
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1016/j.neuroimage.2016.06.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036180331
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1016/j.neuron.2009.03.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011850909
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1016/j.nicl.2014.05.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051151338
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1016/j.nicl.2018.01.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100770680
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1016/j.schres.2005.11.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026737394
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1016/s0006-8993(03)02354-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047938481
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1089/brain.2016.0474 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090908049
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1093/brain/awn262 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036438207
263 rdf:type schema:CreativeWork
264 https://doi.org/10.1093/brain/awp089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016722055
265 rdf:type schema:CreativeWork
266 https://doi.org/10.1109/isbi.2017.7950677 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093707950
267 rdf:type schema:CreativeWork
268 https://doi.org/10.1109/prni.2013.14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094341426
269 rdf:type schema:CreativeWork
270 https://doi.org/10.1109/tmi.2010.2059709 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061695602
271 rdf:type schema:CreativeWork
272 https://doi.org/10.1109/tmi.2011.2140380 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061695736
273 rdf:type schema:CreativeWork
274 https://doi.org/10.1109/tmi.2013.2276916 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061696161
275 rdf:type schema:CreativeWork
276 https://doi.org/10.1109/tmi.2013.2281398 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061696174
277 rdf:type schema:CreativeWork
278 https://doi.org/10.1109/tmi.2015.2463723 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061696579
279 rdf:type schema:CreativeWork
280 https://doi.org/10.1111/j.1467-9868.2005.00503.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1043971564
281 rdf:type schema:CreativeWork
282 https://doi.org/10.1111/j.1467-9868.2010.00740.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1000696823
283 rdf:type schema:CreativeWork
284 https://doi.org/10.1111/j.1467-9868.2011.00783.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1050208266
285 rdf:type schema:CreativeWork
286 https://doi.org/10.1111/j.1749-6632.2010.05888.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1045416901
287 rdf:type schema:CreativeWork
288 https://doi.org/10.1111/nyas.12360 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007685416
289 rdf:type schema:CreativeWork
290 https://doi.org/10.1136/jnnp.64.1.138 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062818912
291 rdf:type schema:CreativeWork
292 https://doi.org/10.1145/1961189.1961199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013637525
293 rdf:type schema:CreativeWork
294 https://doi.org/10.1148/radiol.10091701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015080097
295 rdf:type schema:CreativeWork
296 https://doi.org/10.1161/strokeaha.113.004137 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002466874
297 rdf:type schema:CreativeWork
298 https://doi.org/10.1167/iovs.06-1029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038720140
299 rdf:type schema:CreativeWork
300 https://doi.org/10.1177/1362361310386506 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051752066
301 rdf:type schema:CreativeWork
302 https://doi.org/10.1198/tech.2011.08118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064199782
303 rdf:type schema:CreativeWork
304 https://doi.org/10.1371/journal.pcbi.1000100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003321082
305 rdf:type schema:CreativeWork
306 https://doi.org/10.1371/journal.pone.0019071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019157013
307 rdf:type schema:CreativeWork
308 https://doi.org/10.1371/journal.pone.0076655 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045293543
309 rdf:type schema:CreativeWork
310 https://doi.org/10.1515/1544-6115.1792 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017320119
311 rdf:type schema:CreativeWork
312 https://doi.org/10.1523/jneurosci.2787-07.2007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004496076
313 rdf:type schema:CreativeWork
314 https://doi.org/10.1523/jneurosci.3539-11.2011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051512745
315 rdf:type schema:CreativeWork
316 https://doi.org/10.3389/fncom.2013.00171 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043867737
317 rdf:type schema:CreativeWork
318 https://doi.org/10.3389/fnsys.2012.00059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021123783
319 rdf:type schema:CreativeWork
320 https://doi.org/10.3389/fpsyt.2011.00077 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041482830
321 rdf:type schema:CreativeWork
322 https://www.grid.ac/institutes/grid.11469.3b schema:alternateName Fondazione Bruno Kessler
323 schema:name Neuroinformatics Laboratory, Fondazione Bruno Kessler, Trento, Italy
324 Pattern Analysis and Computer Vision, Istituto Italiano di Tecnologia, Genova, Italy
325 rdf:type schema:Organization
326 https://www.grid.ac/institutes/grid.25786.3e schema:alternateName Italian Institute of Technology
327 schema:name Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Rovereto, Italy
328 rdf:type schema:Organization
329 https://www.grid.ac/institutes/grid.267308.8 schema:alternateName The University of Texas Health Science Center at Houston
330 schema:name Center for Precision Health, School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, USA
331 Pattern Analysis and Computer Vision, Istituto Italiano di Tecnologia, Genova, Italy
332 rdf:type schema:Organization
333 https://www.grid.ac/institutes/grid.412004.3 schema:alternateName University Hospital of Zurich
334 schema:name Institute of Neuropathology, University Hospital of Zürich, Zürich, Switzerland
335 Pattern Analysis and Computer Vision, Istituto Italiano di Tecnologia, Genova, Italy
336 rdf:type schema:Organization
337 https://www.grid.ac/institutes/grid.5390.f schema:alternateName University of Udine
338 schema:name Department of Experimental and Clinical Medical Sciences, University of Udine, Udine, Italy
339 rdf:type schema:Organization
340 https://www.grid.ac/institutes/grid.5611.3 schema:alternateName University of Verona
341 schema:name Department of Computer Science, University of Verona, Verona, Italy
342 Pattern Analysis and Computer Vision, Istituto Italiano di Tecnologia, Genova, Italy
343 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...