Transport mechanism of deformable micro-gel particle through micropores with mechanical properties characterized by AFM View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Wenhai Lei, Chiyu Xie, Tianjiang Wu, Xingcai Wu, Moran Wang

ABSTRACT

Deformable micro-gel particles (DMP) have been used to enhanced oil recovery (EOR) in reservoirs with unfavourable conditions. Direct pore-scale understanding of the DMP transport mechanism is important for further improvements of its EOR performance. To consider the interaction between soft particle and fluid in complex pore-throat geometries, we perform an Immersed Boundary-Lattice Boltzmann (IB-LB) simulation of DMP passing through a throat. A spring-network model is used to capture the deformation of DMP. In order to obtain appropriate simulation parameters that represent the real mechanical properties of DMP, we propose a procedure via fitting the DMP elastic modulus data measured by the nano-indentation experiments using Atomic Force Microscope (AFM). The pore-scale modelling obtains the critical pressure of the DMP for different particle-throat diameter ratios and elastic modulus. It is found that two-clog particle transport mode is observed in a contracted throat, the relationship between the critical pressure and the elastic modulus/particle-throat diameter ratio follows a power law. The particle-throat diameter ratio shows a greater impact on the critical pressure difference than the elastic modulus of particles. More... »

PAGES

1453

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-018-37270-7

DOI

http://dx.doi.org/10.1038/s41598-018-37270-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111911961

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30723227


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0914", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Resources Engineering and Extractive Metallurgy", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Tsinghua University", 
          "id": "https://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "Department of Engineering Mechanics, Tsinghua University, 100084, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lei", 
        "givenName": "Wenhai", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The University of Texas at Austin", 
          "id": "https://www.grid.ac/institutes/grid.89336.37", 
          "name": [
            "Department of Engineering Mechanics, Tsinghua University, 100084, Beijing, China", 
            "Department of Petroleum and Geosystems Engineering, The University of Texas at Austin, 78712, Austin, Texas, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xie", 
        "givenName": "Chiyu", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "China National Petroleum Corporation (China)", 
          "id": "https://www.grid.ac/institutes/grid.453058.f", 
          "name": [
            "Changqing Oilfield, PetroChina, 710018, Xi\u2019an, Shaanxi, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wu", 
        "givenName": "Tianjiang", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sinopec (China)", 
          "id": "https://www.grid.ac/institutes/grid.418531.a", 
          "name": [
            "Research Institute of Petroleum Exploration & Development of PetroChina, 100083, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wu", 
        "givenName": "Xingcai", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tsinghua University", 
          "id": "https://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "Department of Engineering Mechanics, Tsinghua University, 100084, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Moran", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.petrol.2013.03.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000232401"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fuel.2015.01.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003900597"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fuel.2015.01.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003900597"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fuel.2015.01.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003900597"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fuel.2015.01.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003900597"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0021-9991(77)90100-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007370794"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c2lc20857a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014270110"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00424-008-0524-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016861309", 
          "https://doi.org/10.1007/s00424-008-0524-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00424-008-0524-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016861309", 
          "https://doi.org/10.1007/s00424-008-0524-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijmultiphaseflow.2009.02.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018584312"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.83.066319", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021375849"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.83.066319", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021375849"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.90.033006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022356493"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.90.033006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022356493"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1478-3975/4/4/005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027069095"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/fld.798", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029310111"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep17017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031124509", 
          "https://doi.org/10.1038/srep17017"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0301-9322(82)90029-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032620395"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0301-9322(82)90029-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032620395"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcp.2003.10.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039866760"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.petrol.2011.07.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041196942"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/15583724.2014.982821", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042144042"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cis.2013.07.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044250557"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.colsurfa.2015.03.042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045711185"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature11475", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045741773", 
          "https://doi.org/10.1038/nature11475"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-8348-2376-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049351150", 
          "https://doi.org/10.1007/978-3-8348-2376-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-8348-2376-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049351150", 
          "https://doi.org/10.1007/978-3-8348-2376-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1299/jbse.1.159", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053418099"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/jfm.2014.315", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053942216"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/jfm.2014.315", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053942216"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0962492902000077", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054905225"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.jpcc.6b04832", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055112041"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.langmuir.5b03733", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055116712"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/es500077s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055507595"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c3sm51645h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056651332"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.65.046308", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060728338"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.65.046308", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060728338"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.81.011910", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060740011"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.81.011910", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060740011"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.83.036707", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060741639"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.83.036707", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060741639"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2118/179691-pa", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068953186"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c6ra26849h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074202738"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ces.2017.04.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084902819"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ces.2017.04.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084902819"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ces.2017.04.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084902819"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/en10070951", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090383469"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cplett.2017.07.075", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090924112"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-017-11950-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091688660", 
          "https://doi.org/10.1038/s41598-017-11950-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.petrol.2017.11.049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092958828"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.petrol.2017.11.070", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099603793"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12938-017-0429-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099716547", 
          "https://doi.org/10.1186/s12938-017-0429-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c7ra13152f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100683967"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.97.023312", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101247066"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.97.023312", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101247066"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.petrol.2018.05.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103781167"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fuel.2018.05.099", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104298904"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "Deformable micro-gel particles (DMP) have been used to enhanced oil recovery (EOR) in reservoirs with unfavourable conditions. Direct pore-scale understanding of the DMP transport mechanism is important for further improvements of its EOR performance. To consider the interaction between soft particle and fluid in complex pore-throat geometries, we perform an Immersed Boundary-Lattice Boltzmann (IB-LB) simulation of DMP passing through a throat. A spring-network model is used to capture the deformation of DMP. In order to obtain appropriate simulation parameters that represent the real mechanical properties of DMP, we propose a procedure via fitting the DMP elastic modulus data measured by the nano-indentation experiments using Atomic Force Microscope (AFM). The pore-scale modelling obtains the critical pressure of the DMP for different particle-throat diameter ratios and elastic modulus. It is found that two-clog particle transport mode is observed in a contracted throat, the relationship between the critical pressure and the elastic modulus/particle-throat diameter ratio follows a power law. The particle-throat diameter ratio shows a greater impact on the critical pressure difference than the elastic modulus of particles.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-018-37270-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "Transport mechanism of deformable micro-gel particle through micropores with mechanical properties characterized by AFM", 
    "pagination": "1453", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6dbdedb2ddcd3ebdad10d873428db4917bd7abc4522bff17f04dcdfbb1655758"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30723227"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-018-37270-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111911961"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-018-37270-7", 
      "https://app.dimensions.ai/details/publication/pub.1111911961"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:02", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000331_0000000331/records_105412_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-018-37270-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-37270-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-37270-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-37270-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-37270-7'


 

This table displays all metadata directly associated to this object as RDF triples.

233 TRIPLES      21 PREDICATES      71 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-018-37270-7 schema:about anzsrc-for:09
2 anzsrc-for:0914
3 schema:author N6970187e0bb5424caf535a6eda368af4
4 schema:citation sg:pub.10.1007/978-3-8348-2376-2
5 sg:pub.10.1007/s00424-008-0524-3
6 sg:pub.10.1038/nature11475
7 sg:pub.10.1038/s41598-017-11950-2
8 sg:pub.10.1038/srep17017
9 sg:pub.10.1186/s12938-017-0429-5
10 https://doi.org/10.1002/fld.798
11 https://doi.org/10.1016/0021-9991(77)90100-0
12 https://doi.org/10.1016/0301-9322(82)90029-5
13 https://doi.org/10.1016/j.ces.2017.04.026
14 https://doi.org/10.1016/j.cis.2013.07.002
15 https://doi.org/10.1016/j.colsurfa.2015.03.042
16 https://doi.org/10.1016/j.cplett.2017.07.075
17 https://doi.org/10.1016/j.fuel.2015.01.022
18 https://doi.org/10.1016/j.fuel.2018.05.099
19 https://doi.org/10.1016/j.ijmultiphaseflow.2009.02.018
20 https://doi.org/10.1016/j.jcp.2003.10.013
21 https://doi.org/10.1016/j.petrol.2011.07.005
22 https://doi.org/10.1016/j.petrol.2013.03.008
23 https://doi.org/10.1016/j.petrol.2017.11.049
24 https://doi.org/10.1016/j.petrol.2017.11.070
25 https://doi.org/10.1016/j.petrol.2018.05.005
26 https://doi.org/10.1017/jfm.2014.315
27 https://doi.org/10.1017/s0962492902000077
28 https://doi.org/10.1021/acs.jpcc.6b04832
29 https://doi.org/10.1021/acs.langmuir.5b03733
30 https://doi.org/10.1021/es500077s
31 https://doi.org/10.1039/c2lc20857a
32 https://doi.org/10.1039/c3sm51645h
33 https://doi.org/10.1039/c6ra26849h
34 https://doi.org/10.1039/c7ra13152f
35 https://doi.org/10.1080/15583724.2014.982821
36 https://doi.org/10.1088/1478-3975/4/4/005
37 https://doi.org/10.1103/physreve.65.046308
38 https://doi.org/10.1103/physreve.81.011910
39 https://doi.org/10.1103/physreve.83.036707
40 https://doi.org/10.1103/physreve.83.066319
41 https://doi.org/10.1103/physreve.90.033006
42 https://doi.org/10.1103/physreve.97.023312
43 https://doi.org/10.1299/jbse.1.159
44 https://doi.org/10.2118/179691-pa
45 https://doi.org/10.3390/en10070951
46 schema:datePublished 2019-12
47 schema:datePublishedReg 2019-12-01
48 schema:description Deformable micro-gel particles (DMP) have been used to enhanced oil recovery (EOR) in reservoirs with unfavourable conditions. Direct pore-scale understanding of the DMP transport mechanism is important for further improvements of its EOR performance. To consider the interaction between soft particle and fluid in complex pore-throat geometries, we perform an Immersed Boundary-Lattice Boltzmann (IB-LB) simulation of DMP passing through a throat. A spring-network model is used to capture the deformation of DMP. In order to obtain appropriate simulation parameters that represent the real mechanical properties of DMP, we propose a procedure via fitting the DMP elastic modulus data measured by the nano-indentation experiments using Atomic Force Microscope (AFM). The pore-scale modelling obtains the critical pressure of the DMP for different particle-throat diameter ratios and elastic modulus. It is found that two-clog particle transport mode is observed in a contracted throat, the relationship between the critical pressure and the elastic modulus/particle-throat diameter ratio follows a power law. The particle-throat diameter ratio shows a greater impact on the critical pressure difference than the elastic modulus of particles.
49 schema:genre research_article
50 schema:inLanguage en
51 schema:isAccessibleForFree true
52 schema:isPartOf Naa91f1116d2640bc8d3ae5cda120f926
53 Ne52b23bd29b2471a955dc961c5818834
54 sg:journal.1045337
55 schema:name Transport mechanism of deformable micro-gel particle through micropores with mechanical properties characterized by AFM
56 schema:pagination 1453
57 schema:productId N13de399a0e914d7483f314e28989ce65
58 N3a95c5db86e948529a3969969e82ad3e
59 N416375fe02d644ec8890c869c5f45443
60 N7ce9fcf9775f41e7864ae82c1a75089b
61 Nf42237b6d73f41ef9378453ddacf3201
62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111911961
63 https://doi.org/10.1038/s41598-018-37270-7
64 schema:sdDatePublished 2019-04-11T09:02
65 schema:sdLicense https://scigraph.springernature.com/explorer/license/
66 schema:sdPublisher N25b93e53a3024142a3e4413352c752a8
67 schema:url https://www.nature.com/articles/s41598-018-37270-7
68 sgo:license sg:explorer/license/
69 sgo:sdDataset articles
70 rdf:type schema:ScholarlyArticle
71 N06706076052f47d9aa40aca935cc05a5 rdf:first Nb13569025f4246df9bdbd7dedb275d70
72 rdf:rest N258f937b086d409da33155727f49bc3c
73 N13de399a0e914d7483f314e28989ce65 schema:name nlm_unique_id
74 schema:value 101563288
75 rdf:type schema:PropertyValue
76 N258f937b086d409da33155727f49bc3c rdf:first N8ff9aa6f0f5b42efbc2182218ed711e6
77 rdf:rest Ncda51c7fb0884513a0f7e2ac76ecf2a1
78 N25b93e53a3024142a3e4413352c752a8 schema:name Springer Nature - SN SciGraph project
79 rdf:type schema:Organization
80 N3a95c5db86e948529a3969969e82ad3e schema:name doi
81 schema:value 10.1038/s41598-018-37270-7
82 rdf:type schema:PropertyValue
83 N416375fe02d644ec8890c869c5f45443 schema:name readcube_id
84 schema:value 6dbdedb2ddcd3ebdad10d873428db4917bd7abc4522bff17f04dcdfbb1655758
85 rdf:type schema:PropertyValue
86 N6970187e0bb5424caf535a6eda368af4 rdf:first Nb497fd9947e64720bb6dad8d392e58d6
87 rdf:rest N6fff6435178a4928933c73b8b5d4510b
88 N6fff6435178a4928933c73b8b5d4510b rdf:first Nfb12ee1753ab4073a4ad88a9c03855f2
89 rdf:rest N06706076052f47d9aa40aca935cc05a5
90 N727c9ba3647f42ad93406ec699b91185 schema:affiliation https://www.grid.ac/institutes/grid.12527.33
91 schema:familyName Wang
92 schema:givenName Moran
93 rdf:type schema:Person
94 N7ce9fcf9775f41e7864ae82c1a75089b schema:name pubmed_id
95 schema:value 30723227
96 rdf:type schema:PropertyValue
97 N8ff9aa6f0f5b42efbc2182218ed711e6 schema:affiliation https://www.grid.ac/institutes/grid.418531.a
98 schema:familyName Wu
99 schema:givenName Xingcai
100 rdf:type schema:Person
101 Naa91f1116d2640bc8d3ae5cda120f926 schema:issueNumber 1
102 rdf:type schema:PublicationIssue
103 Nb13569025f4246df9bdbd7dedb275d70 schema:affiliation https://www.grid.ac/institutes/grid.453058.f
104 schema:familyName Wu
105 schema:givenName Tianjiang
106 rdf:type schema:Person
107 Nb497fd9947e64720bb6dad8d392e58d6 schema:affiliation https://www.grid.ac/institutes/grid.12527.33
108 schema:familyName Lei
109 schema:givenName Wenhai
110 rdf:type schema:Person
111 Ncda51c7fb0884513a0f7e2ac76ecf2a1 rdf:first N727c9ba3647f42ad93406ec699b91185
112 rdf:rest rdf:nil
113 Ne52b23bd29b2471a955dc961c5818834 schema:volumeNumber 9
114 rdf:type schema:PublicationVolume
115 Nf42237b6d73f41ef9378453ddacf3201 schema:name dimensions_id
116 schema:value pub.1111911961
117 rdf:type schema:PropertyValue
118 Nfb12ee1753ab4073a4ad88a9c03855f2 schema:affiliation https://www.grid.ac/institutes/grid.89336.37
119 schema:familyName Xie
120 schema:givenName Chiyu
121 rdf:type schema:Person
122 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
123 schema:name Engineering
124 rdf:type schema:DefinedTerm
125 anzsrc-for:0914 schema:inDefinedTermSet anzsrc-for:
126 schema:name Resources Engineering and Extractive Metallurgy
127 rdf:type schema:DefinedTerm
128 sg:journal.1045337 schema:issn 2045-2322
129 schema:name Scientific Reports
130 rdf:type schema:Periodical
131 sg:pub.10.1007/978-3-8348-2376-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049351150
132 https://doi.org/10.1007/978-3-8348-2376-2
133 rdf:type schema:CreativeWork
134 sg:pub.10.1007/s00424-008-0524-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016861309
135 https://doi.org/10.1007/s00424-008-0524-3
136 rdf:type schema:CreativeWork
137 sg:pub.10.1038/nature11475 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045741773
138 https://doi.org/10.1038/nature11475
139 rdf:type schema:CreativeWork
140 sg:pub.10.1038/s41598-017-11950-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091688660
141 https://doi.org/10.1038/s41598-017-11950-2
142 rdf:type schema:CreativeWork
143 sg:pub.10.1038/srep17017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031124509
144 https://doi.org/10.1038/srep17017
145 rdf:type schema:CreativeWork
146 sg:pub.10.1186/s12938-017-0429-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099716547
147 https://doi.org/10.1186/s12938-017-0429-5
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1002/fld.798 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029310111
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/0021-9991(77)90100-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007370794
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/0301-9322(82)90029-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032620395
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/j.ces.2017.04.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084902819
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/j.cis.2013.07.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044250557
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/j.colsurfa.2015.03.042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045711185
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/j.cplett.2017.07.075 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090924112
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/j.fuel.2015.01.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003900597
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/j.fuel.2018.05.099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104298904
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/j.ijmultiphaseflow.2009.02.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018584312
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/j.jcp.2003.10.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039866760
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/j.petrol.2011.07.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041196942
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/j.petrol.2013.03.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000232401
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/j.petrol.2017.11.049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092958828
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/j.petrol.2017.11.070 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099603793
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/j.petrol.2018.05.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103781167
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1017/jfm.2014.315 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053942216
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1017/s0962492902000077 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054905225
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1021/acs.jpcc.6b04832 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055112041
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1021/acs.langmuir.5b03733 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055116712
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1021/es500077s schema:sameAs https://app.dimensions.ai/details/publication/pub.1055507595
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1039/c2lc20857a schema:sameAs https://app.dimensions.ai/details/publication/pub.1014270110
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1039/c3sm51645h schema:sameAs https://app.dimensions.ai/details/publication/pub.1056651332
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1039/c6ra26849h schema:sameAs https://app.dimensions.ai/details/publication/pub.1074202738
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1039/c7ra13152f schema:sameAs https://app.dimensions.ai/details/publication/pub.1100683967
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1080/15583724.2014.982821 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042144042
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1088/1478-3975/4/4/005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027069095
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1103/physreve.65.046308 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060728338
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1103/physreve.81.011910 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060740011
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1103/physreve.83.036707 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060741639
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1103/physreve.83.066319 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021375849
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1103/physreve.90.033006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022356493
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1103/physreve.97.023312 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101247066
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1299/jbse.1.159 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053418099
216 rdf:type schema:CreativeWork
217 https://doi.org/10.2118/179691-pa schema:sameAs https://app.dimensions.ai/details/publication/pub.1068953186
218 rdf:type schema:CreativeWork
219 https://doi.org/10.3390/en10070951 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090383469
220 rdf:type schema:CreativeWork
221 https://www.grid.ac/institutes/grid.12527.33 schema:alternateName Tsinghua University
222 schema:name Department of Engineering Mechanics, Tsinghua University, 100084, Beijing, China
223 rdf:type schema:Organization
224 https://www.grid.ac/institutes/grid.418531.a schema:alternateName Sinopec (China)
225 schema:name Research Institute of Petroleum Exploration & Development of PetroChina, 100083, Beijing, China
226 rdf:type schema:Organization
227 https://www.grid.ac/institutes/grid.453058.f schema:alternateName China National Petroleum Corporation (China)
228 schema:name Changqing Oilfield, PetroChina, 710018, Xi’an, Shaanxi, China
229 rdf:type schema:Organization
230 https://www.grid.ac/institutes/grid.89336.37 schema:alternateName The University of Texas at Austin
231 schema:name Department of Engineering Mechanics, Tsinghua University, 100084, Beijing, China
232 Department of Petroleum and Geosystems Engineering, The University of Texas at Austin, 78712, Austin, Texas, USA
233 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...