Third Trimester Cerebellar Metabolite Concentrations are Decreased in Very Premature Infants with Structural Brain Injury View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Sudeepta K. Basu, Subechhya Pradhan, Kushal Kapse, Robert McCarter, Jonathan Murnick, Taeun Chang, Catherine Limperopoulos

ABSTRACT

Advanced neuroimaging techniques have improved our understanding of microstructural changes in the preterm supratentorial brain as well as the cerebellum and its association with impaired neurodevelopmental outcomes. However, the metabolic interrogation of the developing cerebellum during the early postnatal period after preterm birth remains largely unknown. Our study investigates the relationship between cerebellar neurometabolites measured by proton magnetic spectroscopy (1H-MRS) in preterm infants with advancing post-menstrual age (PMA) and brain injury during ex-utero third trimester prior to term equivalent age (TEA). We prospectively enrolled and acquired high quality 1H-MRS at median 33.0 (IQR 31.6-35.2) weeks PMA from a voxel placed in the cerebellum of 53 premature infants born at a median gestational age of 27.0 (IQR 25.0-29.0) weeks. 1H-MRS data were processed using LCModel software to calculate absolute metabolite concentrations of N-acetylaspartate (NAA), choline (Cho) and creatine (Cr). We noted positive correlations of cerebellar concentrations of NAA, Cho and Cr (Spearman correlations of 0.59, 0.64 and 0.52, respectively, p value < 0.0001) and negative correlation of Cho/Cr ratio (R -0.5, p value 0.0002) with advancing PMA. Moderate-to-severe cerebellar injury was noted on conventional magnetic resonance imaging (MRI) in 14 (26.4%) of the infants and were noted to have lower cerebellar NAA, Cho and Cr concentrations compared with those without injury (p value < 0.001). Several clinical complications of prematurity including necrotizing enterocolitis, systemic infections and bronchopulmonary dysplasia were associated with altered metabolite concentrations in the developing cerebellum. We report for the first time that ex-utero third trimester cerebellar metabolite concentrations are decreased in very preterm infants with moderate-to-severe structural cerebellar injury. We report increasing temporal trends of metabolite concentrations in the cerebellum with advancing PMA, which was impaired in infants with brain injury on MRI and may have early diagnostic and prognostic value in predicting neurodevelopmental outcomes in very preterm infants. More... »

PAGES

1212

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-018-37203-4

DOI

http://dx.doi.org/10.1038/s41598-018-37203-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111907858

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30718546


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1114", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Paediatrics and Reproductive Medicine", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "George Washington University", 
          "id": "https://www.grid.ac/institutes/grid.253615.6", 
          "name": [
            "Neonatology, Children\u2019s National Health System, Washington, D.C., USA", 
            "Developing Brain Research Laboratory, Children\u2019s National Health System, Washington, D.C., USA", 
            "The George Washington University School of Medicine, Washington, D.C., USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Basu", 
        "givenName": "Sudeepta K.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "George Washington University", 
          "id": "https://www.grid.ac/institutes/grid.253615.6", 
          "name": [
            "Developing Brain Research Laboratory, Children\u2019s National Health System, Washington, D.C., USA", 
            "The George Washington University School of Medicine, Washington, D.C., USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pradhan", 
        "givenName": "Subechhya", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Children\u2019s National Health System", 
          "id": "https://www.grid.ac/institutes/grid.239560.b", 
          "name": [
            "Developing Brain Research Laboratory, Children\u2019s National Health System, Washington, D.C., USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kapse", 
        "givenName": "Kushal", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "George Washington University", 
          "id": "https://www.grid.ac/institutes/grid.253615.6", 
          "name": [
            "Division of Bio-Statistics, Children\u2019s National Health System, Washington, D.C., USA", 
            "The George Washington University School of Medicine, Washington, D.C., USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "McCarter", 
        "givenName": "Robert", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "George Washington University", 
          "id": "https://www.grid.ac/institutes/grid.253615.6", 
          "name": [
            "Division of Diagnostic Imaging and Radiology, Children\u2019s National Health System, Washington, D.C., USA", 
            "The George Washington University School of Medicine, Washington, D.C., USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Murnick", 
        "givenName": "Jonathan", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "George Washington University", 
          "id": "https://www.grid.ac/institutes/grid.253615.6", 
          "name": [
            "Division of Neurology, Children\u2019s National Health System, Washington, D.C., USA", 
            "The George Washington University School of Medicine, Washington, D.C., USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chang", 
        "givenName": "Taeun", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "George Washington University", 
          "id": "https://www.grid.ac/institutes/grid.253615.6", 
          "name": [
            "Developing Brain Research Laboratory, Children\u2019s National Health System, Washington, D.C., USA", 
            "Division of Diagnostic Imaging and Radiology, Children\u2019s National Health System, Washington, D.C., USA", 
            "The George Washington University School of Medicine, Washington, D.C., USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Limperopoulos", 
        "givenName": "Catherine", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1097/nen.0b013e31822f471c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001320261"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12098-016-2215-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004535832", 
          "https://doi.org/10.1007/s12098-016-2215-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12098-016-2215-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004535832", 
          "https://doi.org/10.1007/s12098-016-2215-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mri.2015.06.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006186553"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1542/peds.2009-1046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007259073"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12311-014-0597-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009579544", 
          "https://doi.org/10.1007/s12311-014-0597-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3174/ajnr.a3521", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010686746"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12311-016-0766-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012587164", 
          "https://doi.org/10.1007/s12311-016-0766-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.10497", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014932956"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12311-013-0487-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015704409", 
          "https://doi.org/10.1007/s12311-013-0487-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/nbm.698", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017303756"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jpeds.2016.05.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021326166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.25568", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023915684"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2463/mrms.mp.2015-0041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025553964"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.braindev.2016.10.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025769745"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/1522-2594(200008)44:2<185::aid-mrm4>3.0.co;2-v", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026472188"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/nbm.701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027846676"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/cercor/bhs283", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029603560"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jpeds.2016.10.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031457997"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.1910300405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032377665"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/cercor/bhs354", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032424611"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/cercor/bhq035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034783254"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0082746", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035547197"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0160990", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038099568"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.braindev.2015.01.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038131666"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.25098", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039069796"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/pr.2011.40", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042438621", 
          "https://doi.org/10.1038/pr.2011.40"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/pr.2013.62", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043823476", 
          "https://doi.org/10.1038/pr.2013.62"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-3476(78)80282-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045898436"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1471-4159.2001.00285.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046193988"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cne.901390407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048449503"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1469-8749.2011.04168.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050794748"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1542/peds.2004-1169", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067823836"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0180973", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090586590"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/archdischild-2016-311403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090809482"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bbi.2017.07.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090903498"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-017-08195-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091119487", 
          "https://doi.org/10.1038/s41598-017-08195-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-017-08195-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091119487", 
          "https://doi.org/10.1038/s41598-017-08195-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-017-08195-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091119487", 
          "https://doi.org/10.1038/s41598-017-08195-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1159/000480695", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092591899"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/pr.2018.2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100289190", 
          "https://doi.org/10.1038/pr.2018.2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/cercor/bhy023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100395448"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/cercor/bhy023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100395448"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/cercor/bhy023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100395448"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1159/000487847", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103236004"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "Advanced neuroimaging techniques have improved our understanding of microstructural changes in the preterm supratentorial brain as well as the cerebellum and its association with impaired neurodevelopmental outcomes. However, the metabolic interrogation of the developing cerebellum during the early postnatal period after preterm birth remains largely unknown. Our study investigates the relationship between cerebellar neurometabolites measured by proton magnetic spectroscopy (1H-MRS) in preterm infants with advancing post-menstrual age (PMA) and brain injury during ex-utero third trimester prior to term equivalent age (TEA). We prospectively enrolled and acquired high quality 1H-MRS at median 33.0 (IQR 31.6-35.2) weeks PMA from a voxel placed in the cerebellum of 53 premature infants born at a median gestational age of 27.0 (IQR 25.0-29.0) weeks. 1H-MRS data were processed using LCModel software to calculate absolute metabolite concentrations of N-acetylaspartate (NAA), choline (Cho) and creatine (Cr). We noted positive correlations of cerebellar concentrations of NAA, Cho and Cr (Spearman correlations of 0.59, 0.64 and 0.52, respectively, p value\u2009<\u20090.0001) and negative correlation of Cho/Cr ratio (R -0.5, p value 0.0002) with advancing PMA. Moderate-to-severe cerebellar injury was noted on conventional magnetic resonance imaging (MRI) in 14 (26.4%) of the infants and were noted to have lower cerebellar NAA, Cho and Cr concentrations compared with those without injury (p value\u2009<\u20090.001). Several clinical complications of prematurity including necrotizing enterocolitis, systemic infections and bronchopulmonary dysplasia were associated with altered metabolite concentrations in the developing cerebellum. We report for the first time that ex-utero third trimester cerebellar metabolite concentrations are decreased in very preterm infants with moderate-to-severe structural cerebellar injury. We report increasing temporal trends of metabolite concentrations in the cerebellum with advancing PMA, which was impaired in infants with brain injury on MRI and may have early diagnostic and prognostic value in predicting neurodevelopmental outcomes in very preterm infants.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-018-37203-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6443945", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "Third Trimester Cerebellar Metabolite Concentrations are Decreased in Very Premature Infants with Structural Brain Injury", 
    "pagination": "1212", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "1e6111b1361c344fdde3131235d2cbd03b7e780126ed8c39a0bc9adb4185dc15"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30718546"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-018-37203-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111907858"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-018-37203-4", 
      "https://app.dimensions.ai/details/publication/pub.1111907858"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:01", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000330_0000000330/records_116350_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-018-37203-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-37203-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-37203-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-37203-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-37203-4'


 

This table displays all metadata directly associated to this object as RDF triples.

241 TRIPLES      21 PREDICATES      69 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-018-37203-4 schema:about anzsrc-for:11
2 anzsrc-for:1114
3 schema:author N6ed0fd9bde974cbfa611eba5bcd8b3cd
4 schema:citation sg:pub.10.1007/s12098-016-2215-y
5 sg:pub.10.1007/s12311-013-0487-6
6 sg:pub.10.1007/s12311-014-0597-9
7 sg:pub.10.1007/s12311-016-0766-0
8 sg:pub.10.1038/pr.2011.40
9 sg:pub.10.1038/pr.2013.62
10 sg:pub.10.1038/pr.2018.2
11 sg:pub.10.1038/s41598-017-08195-4
12 https://doi.org/10.1002/1522-2594(200008)44:2<185::aid-mrm4>3.0.co;2-v
13 https://doi.org/10.1002/cne.901390407
14 https://doi.org/10.1002/jmri.25098
15 https://doi.org/10.1002/mrm.10497
16 https://doi.org/10.1002/mrm.1910300405
17 https://doi.org/10.1002/mrm.25568
18 https://doi.org/10.1002/nbm.698
19 https://doi.org/10.1002/nbm.701
20 https://doi.org/10.1016/j.bbi.2017.07.013
21 https://doi.org/10.1016/j.braindev.2015.01.009
22 https://doi.org/10.1016/j.braindev.2016.10.006
23 https://doi.org/10.1016/j.jpeds.2016.05.010
24 https://doi.org/10.1016/j.jpeds.2016.10.034
25 https://doi.org/10.1016/j.mri.2015.06.003
26 https://doi.org/10.1016/s0022-3476(78)80282-0
27 https://doi.org/10.1046/j.1471-4159.2001.00285.x
28 https://doi.org/10.1093/cercor/bhq035
29 https://doi.org/10.1093/cercor/bhs283
30 https://doi.org/10.1093/cercor/bhs354
31 https://doi.org/10.1093/cercor/bhy023
32 https://doi.org/10.1097/nen.0b013e31822f471c
33 https://doi.org/10.1111/j.1469-8749.2011.04168.x
34 https://doi.org/10.1136/archdischild-2016-311403
35 https://doi.org/10.1159/000480695
36 https://doi.org/10.1159/000487847
37 https://doi.org/10.1371/journal.pone.0082746
38 https://doi.org/10.1371/journal.pone.0160990
39 https://doi.org/10.1371/journal.pone.0180973
40 https://doi.org/10.1542/peds.2004-1169
41 https://doi.org/10.1542/peds.2009-1046
42 https://doi.org/10.2463/mrms.mp.2015-0041
43 https://doi.org/10.3174/ajnr.a3521
44 schema:datePublished 2019-12
45 schema:datePublishedReg 2019-12-01
46 schema:description Advanced neuroimaging techniques have improved our understanding of microstructural changes in the preterm supratentorial brain as well as the cerebellum and its association with impaired neurodevelopmental outcomes. However, the metabolic interrogation of the developing cerebellum during the early postnatal period after preterm birth remains largely unknown. Our study investigates the relationship between cerebellar neurometabolites measured by proton magnetic spectroscopy (<sup>1</sup>H-MRS) in preterm infants with advancing post-menstrual age (PMA) and brain injury during ex-utero third trimester prior to term equivalent age (TEA). We prospectively enrolled and acquired high quality <sup>1</sup>H-MRS at median 33.0 (IQR 31.6-35.2) weeks PMA from a voxel placed in the cerebellum of 53 premature infants born at a median gestational age of 27.0 (IQR 25.0-29.0) weeks. <sup>1</sup>H-MRS data were processed using LCModel software to calculate absolute metabolite concentrations of N-acetylaspartate (NAA), choline (Cho) and creatine (Cr). We noted positive correlations of cerebellar concentrations of NAA, Cho and Cr (Spearman correlations of 0.59, 0.64 and 0.52, respectively, p value &lt; 0.0001) and negative correlation of Cho/Cr ratio (R -0.5, p value 0.0002) with advancing PMA. Moderate-to-severe cerebellar injury was noted on conventional magnetic resonance imaging (MRI) in 14 (26.4%) of the infants and were noted to have lower cerebellar NAA, Cho and Cr concentrations compared with those without injury (p value &lt; 0.001). Several clinical complications of prematurity including necrotizing enterocolitis, systemic infections and bronchopulmonary dysplasia were associated with altered metabolite concentrations in the developing cerebellum. We report for the first time that ex-utero third trimester cerebellar metabolite concentrations are decreased in very preterm infants with moderate-to-severe structural cerebellar injury. We report increasing temporal trends of metabolite concentrations in the cerebellum with advancing PMA, which was impaired in infants with brain injury on MRI and may have early diagnostic and prognostic value in predicting neurodevelopmental outcomes in very preterm infants.
47 schema:genre research_article
48 schema:inLanguage en
49 schema:isAccessibleForFree true
50 schema:isPartOf N0e48cd4fd50b429e8a52d6cef5362434
51 N7061562a82b9440d893e84ebcdfc8bf6
52 sg:journal.1045337
53 schema:name Third Trimester Cerebellar Metabolite Concentrations are Decreased in Very Premature Infants with Structural Brain Injury
54 schema:pagination 1212
55 schema:productId N49f21f83139540d2a39c9245412ee264
56 N898eb4035ea64f0192a17ae9640c00df
57 N9adebd242a8b4fa1bbee6e6e506a86ca
58 Na91eeaec4e6e40b799dea6006b02c72f
59 Nc9ac925ff21c48549b43e575a26a8f6c
60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111907858
61 https://doi.org/10.1038/s41598-018-37203-4
62 schema:sdDatePublished 2019-04-11T09:01
63 schema:sdLicense https://scigraph.springernature.com/explorer/license/
64 schema:sdPublisher N6e7cdbd928824aa29dc2f5910b8ca67b
65 schema:url https://www.nature.com/articles/s41598-018-37203-4
66 sgo:license sg:explorer/license/
67 sgo:sdDataset articles
68 rdf:type schema:ScholarlyArticle
69 N0e48cd4fd50b429e8a52d6cef5362434 schema:issueNumber 1
70 rdf:type schema:PublicationIssue
71 N1d74c4b7379c48e595de05cb4a0601bb rdf:first Nfafb0df8ccf74605861ec3fc7f5e43fe
72 rdf:rest N375b5903f7d148eab5f539da4cd4022a
73 N375b5903f7d148eab5f539da4cd4022a rdf:first N86614f77139249789185e5e90e023d19
74 rdf:rest Nf435dee248de48a9a5f15a6e8313d7a8
75 N485809d6767f45e9b4c4ca7af5dafe3b schema:affiliation https://www.grid.ac/institutes/grid.253615.6
76 schema:familyName Chang
77 schema:givenName Taeun
78 rdf:type schema:Person
79 N49f21f83139540d2a39c9245412ee264 schema:name pubmed_id
80 schema:value 30718546
81 rdf:type schema:PropertyValue
82 N61e054778503494e8a7d921ceea078f6 schema:affiliation https://www.grid.ac/institutes/grid.253615.6
83 schema:familyName Limperopoulos
84 schema:givenName Catherine
85 rdf:type schema:Person
86 N664ee864b6614af7bd615c3e2d801f21 rdf:first N485809d6767f45e9b4c4ca7af5dafe3b
87 rdf:rest Nda07f151405848b68c2e8b5dd3e83e9b
88 N6bd81f9f21ad41b68693d2c61388760c schema:affiliation https://www.grid.ac/institutes/grid.253615.6
89 schema:familyName Pradhan
90 schema:givenName Subechhya
91 rdf:type schema:Person
92 N6e7cdbd928824aa29dc2f5910b8ca67b schema:name Springer Nature - SN SciGraph project
93 rdf:type schema:Organization
94 N6ed0fd9bde974cbfa611eba5bcd8b3cd rdf:first Nd84f2714434d4843bccbcfdfed16def9
95 rdf:rest Nd017adbf87e24df4bb1526c118a7557e
96 N7061562a82b9440d893e84ebcdfc8bf6 schema:volumeNumber 9
97 rdf:type schema:PublicationVolume
98 N86614f77139249789185e5e90e023d19 schema:affiliation https://www.grid.ac/institutes/grid.253615.6
99 schema:familyName McCarter
100 schema:givenName Robert
101 rdf:type schema:Person
102 N898eb4035ea64f0192a17ae9640c00df schema:name doi
103 schema:value 10.1038/s41598-018-37203-4
104 rdf:type schema:PropertyValue
105 N9adebd242a8b4fa1bbee6e6e506a86ca schema:name readcube_id
106 schema:value 1e6111b1361c344fdde3131235d2cbd03b7e780126ed8c39a0bc9adb4185dc15
107 rdf:type schema:PropertyValue
108 Na91eeaec4e6e40b799dea6006b02c72f schema:name dimensions_id
109 schema:value pub.1111907858
110 rdf:type schema:PropertyValue
111 Nb097f07ddd724b7eb63077bdddac18c8 schema:affiliation https://www.grid.ac/institutes/grid.253615.6
112 schema:familyName Murnick
113 schema:givenName Jonathan
114 rdf:type schema:Person
115 Nc9ac925ff21c48549b43e575a26a8f6c schema:name nlm_unique_id
116 schema:value 101563288
117 rdf:type schema:PropertyValue
118 Nd017adbf87e24df4bb1526c118a7557e rdf:first N6bd81f9f21ad41b68693d2c61388760c
119 rdf:rest N1d74c4b7379c48e595de05cb4a0601bb
120 Nd84f2714434d4843bccbcfdfed16def9 schema:affiliation https://www.grid.ac/institutes/grid.253615.6
121 schema:familyName Basu
122 schema:givenName Sudeepta K.
123 rdf:type schema:Person
124 Nda07f151405848b68c2e8b5dd3e83e9b rdf:first N61e054778503494e8a7d921ceea078f6
125 rdf:rest rdf:nil
126 Nf435dee248de48a9a5f15a6e8313d7a8 rdf:first Nb097f07ddd724b7eb63077bdddac18c8
127 rdf:rest N664ee864b6614af7bd615c3e2d801f21
128 Nfafb0df8ccf74605861ec3fc7f5e43fe schema:affiliation https://www.grid.ac/institutes/grid.239560.b
129 schema:familyName Kapse
130 schema:givenName Kushal
131 rdf:type schema:Person
132 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
133 schema:name Medical and Health Sciences
134 rdf:type schema:DefinedTerm
135 anzsrc-for:1114 schema:inDefinedTermSet anzsrc-for:
136 schema:name Paediatrics and Reproductive Medicine
137 rdf:type schema:DefinedTerm
138 sg:grant.6443945 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-018-37203-4
139 rdf:type schema:MonetaryGrant
140 sg:journal.1045337 schema:issn 2045-2322
141 schema:name Scientific Reports
142 rdf:type schema:Periodical
143 sg:pub.10.1007/s12098-016-2215-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1004535832
144 https://doi.org/10.1007/s12098-016-2215-y
145 rdf:type schema:CreativeWork
146 sg:pub.10.1007/s12311-013-0487-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015704409
147 https://doi.org/10.1007/s12311-013-0487-6
148 rdf:type schema:CreativeWork
149 sg:pub.10.1007/s12311-014-0597-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009579544
150 https://doi.org/10.1007/s12311-014-0597-9
151 rdf:type schema:CreativeWork
152 sg:pub.10.1007/s12311-016-0766-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012587164
153 https://doi.org/10.1007/s12311-016-0766-0
154 rdf:type schema:CreativeWork
155 sg:pub.10.1038/pr.2011.40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042438621
156 https://doi.org/10.1038/pr.2011.40
157 rdf:type schema:CreativeWork
158 sg:pub.10.1038/pr.2013.62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043823476
159 https://doi.org/10.1038/pr.2013.62
160 rdf:type schema:CreativeWork
161 sg:pub.10.1038/pr.2018.2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100289190
162 https://doi.org/10.1038/pr.2018.2
163 rdf:type schema:CreativeWork
164 sg:pub.10.1038/s41598-017-08195-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091119487
165 https://doi.org/10.1038/s41598-017-08195-4
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1002/1522-2594(200008)44:2<185::aid-mrm4>3.0.co;2-v schema:sameAs https://app.dimensions.ai/details/publication/pub.1026472188
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1002/cne.901390407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048449503
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1002/jmri.25098 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039069796
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1002/mrm.10497 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014932956
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1002/mrm.1910300405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032377665
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1002/mrm.25568 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023915684
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1002/nbm.698 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017303756
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1002/nbm.701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027846676
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/j.bbi.2017.07.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090903498
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1016/j.braindev.2015.01.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038131666
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1016/j.braindev.2016.10.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025769745
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1016/j.jpeds.2016.05.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021326166
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1016/j.jpeds.2016.10.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031457997
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1016/j.mri.2015.06.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006186553
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1016/s0022-3476(78)80282-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045898436
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1046/j.1471-4159.2001.00285.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1046193988
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1093/cercor/bhq035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034783254
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1093/cercor/bhs283 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029603560
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1093/cercor/bhs354 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032424611
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1093/cercor/bhy023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100395448
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1097/nen.0b013e31822f471c schema:sameAs https://app.dimensions.ai/details/publication/pub.1001320261
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1111/j.1469-8749.2011.04168.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1050794748
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1136/archdischild-2016-311403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090809482
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1159/000480695 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092591899
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1159/000487847 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103236004
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1371/journal.pone.0082746 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035547197
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1371/journal.pone.0160990 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038099568
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1371/journal.pone.0180973 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090586590
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1542/peds.2004-1169 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067823836
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1542/peds.2009-1046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007259073
226 rdf:type schema:CreativeWork
227 https://doi.org/10.2463/mrms.mp.2015-0041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025553964
228 rdf:type schema:CreativeWork
229 https://doi.org/10.3174/ajnr.a3521 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010686746
230 rdf:type schema:CreativeWork
231 https://www.grid.ac/institutes/grid.239560.b schema:alternateName Children’s National Health System
232 schema:name Developing Brain Research Laboratory, Children’s National Health System, Washington, D.C., USA
233 rdf:type schema:Organization
234 https://www.grid.ac/institutes/grid.253615.6 schema:alternateName George Washington University
235 schema:name Developing Brain Research Laboratory, Children’s National Health System, Washington, D.C., USA
236 Division of Bio-Statistics, Children’s National Health System, Washington, D.C., USA
237 Division of Diagnostic Imaging and Radiology, Children’s National Health System, Washington, D.C., USA
238 Division of Neurology, Children’s National Health System, Washington, D.C., USA
239 Neonatology, Children’s National Health System, Washington, D.C., USA
240 The George Washington University School of Medicine, Washington, D.C., USA
241 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...