A blood-based signature of cerebrospinal fluid Aβ1–42 status View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Benjamin Goudey, Bowen J. Fung, Christine Schieber, Noel G. Faux, ,

ABSTRACT

It is increasingly recognized that Alzheimer's disease (AD) exists before dementia is present and that shifts in amyloid beta occur long before clinical symptoms can be detected. Early detection of these molecular changes is a key aspect for the success of interventions aimed at slowing down rates of cognitive decline. Recent evidence indicates that of the two established methods for measuring amyloid, a decrease in cerebrospinal fluid (CSF) amyloid β1-42 (Aβ1-42) may be an earlier indicator of Alzheimer's disease risk than measures of amyloid obtained from Positron Emission Tomography (PET). However, CSF collection is highly invasive and expensive. In contrast, blood collection is routinely performed, minimally invasive and cheap. In this work, we develop a blood-based signature that can provide a cheap and minimally invasive estimation of an individual's CSF amyloid status using a machine learning approach. We show that a Random Forest model derived from plasma analytes can accurately predict subjects as having abnormal (low) CSF Aβ1-42 levels indicative of AD risk (0.84 AUC, 0.78 sensitivity, and 0.73 specificity). Refinement of the modeling indicates that only APOEε4 carrier status and four plasma analytes (CGA, Aβ1-42, Eotaxin 3, APOE) are required to achieve a high level of accuracy. Furthermore, we show across an independent validation cohort that individuals with predicted abnormal CSF Aβ1-42 levels transitioned to an AD diagnosis over 120 months significantly faster than those with predicted normal CSF Aβ1-42 levels and that the resulting model also validates reasonably across PET Aβ1-42 status (0.78 AUC). This is the first study to show that a machine learning approach, using plasma protein levels, age and APOEε4 carrier status, is able to predict CSF Aβ1-42 status, the earliest risk indicator for AD, with high accuracy. More... »

PAGES

4163

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-018-37149-7

DOI

http://dx.doi.org/10.1038/s41598-018-37149-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112678077

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30853713


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Melbourne", 
          "id": "https://www.grid.ac/institutes/grid.1008.9", 
          "name": [
            "IBM Research Australia, Carlton, Victoria Australia", 
            "Centre for Epidemiology and Biostatistics, The University of Melbourne, Parkville, Victoria Australia", 
            "Department of Computing and Information System, The University of Melbourne, Parkville, Victoria Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Goudey", 
        "givenName": "Benjamin", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Melbourne", 
          "id": "https://www.grid.ac/institutes/grid.1008.9", 
          "name": [
            "IBM Research Australia, Carlton, Victoria Australia", 
            "School of Psychological Sciences, University of Melbourne, Parkville, Victoria Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fung", 
        "givenName": "Bowen J.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "IBM Research - Australia", 
          "id": "https://www.grid.ac/institutes/grid.481553.e", 
          "name": [
            "IBM Research Australia, Carlton, Victoria Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schieber", 
        "givenName": "Christine", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "IBM Research - Australia", 
          "id": "https://www.grid.ac/institutes/grid.481553.e", 
          "name": [
            "IBM Research Australia, Carlton, Victoria Australia", 
            "The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Faux", 
        "givenName": "Noel G.", 
        "type": "Person"
      }, 
      {}, 
      {}
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/s13195-015-0105-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000133500", 
          "https://doi.org/10.1186/s13195-015-0105-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13195-015-0105-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000133500", 
          "https://doi.org/10.1186/s13195-015-0105-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tips.2015.03.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000298816"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10072-016-2477-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001569251", 
          "https://doi.org/10.1007/s10072-016-2477-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0030525", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003347482"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1159/000337231", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004342927"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1474-4422(13)70044-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005017445"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3233/jad-2010-101350", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008357887"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3233/jad-150020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009825740"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1220484110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010731684"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jalz.2014.02.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011194766"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuron.2008.04.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012205492"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/wad.0000000000000144", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012733765"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/wad.0000000000000144", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012733765"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.2810", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014600221", 
          "https://doi.org/10.1038/nmeth.2810"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neurobiolaging.2006.03.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015513453"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.expneurol.2009.07.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015586629"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep26801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016262465", 
          "https://doi.org/10.1038/srep26801"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00401-014-1266-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016641842", 
          "https://doi.org/10.1007/s00401-014-1266-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/mp.2013.40", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016949515", 
          "https://doi.org/10.1038/mp.2013.40"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/mp.2013.40", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016949515", 
          "https://doi.org/10.1038/mp.2013.40"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/tp.2015.205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018221389", 
          "https://doi.org/10.1038/tp.2015.205"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jalz.2012.12.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022067092"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/alzrt269", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023682464", 
          "https://doi.org/10.1186/alzrt269"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/wnl.34.7.939", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024664401"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1010933404324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024739340", 
          "https://doi.org/10.1023/a:1010933404324"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/brain/awu367", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030984508"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0006-8993(91)90697-t", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031494433"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0006-8993(91)90697-t", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031494433"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.dadm.2014.11.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031948615"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02815140", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035207722", 
          "https://doi.org/10.1007/bf02815140"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02815140", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035207722", 
          "https://doi.org/10.1007/bf02815140"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02815140", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035207722", 
          "https://doi.org/10.1007/bf02815140"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.pharep.2015.07.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036081375"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3233/jad-151155", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036148564"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jalz.2016.02.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038834094"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jalz.2016.02.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038834094"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jalz.2016.02.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038834094"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/wnl.0b013e3181cb3e25", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038946230"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/wnl.0b013e3181cb3e25", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038946230"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa1304839", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042587371"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sam.10103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043001232"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.exger.2003.09.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043326336"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.exger.2003.09.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043326336"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1474-4422(10)70223-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044499508"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(15)01124-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045277840"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/brain/aww015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045665691"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.clim.2016.09.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046470733"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/mcp.m112.018861", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047557936"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2006.10.1535", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048701621"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cn500101j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053884879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/brain/aww025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059445103"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/brain/aww169", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059445190"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/wnl.0000000000003094", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064353803"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/wnl.0000000000003094", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064353803"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/wnl.0000000000003094", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064353803"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.18637/jss.v061.i08", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068672912"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3233/jad-2010-090249", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078149478"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3233/jad-140705", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078959818"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jalz.2017.01.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084084784"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jalz.2017.02.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084084793"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13195-017-0248-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084252358", 
          "https://doi.org/10.1186/s13195-017-0248-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13195-017-0248-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084252358", 
          "https://doi.org/10.1186/s13195-017-0248-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.18637/jss.v077.i01", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084373978"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3233/jad-160907", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084430278"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.trci.2017.05.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085586432"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature25456", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100715012", 
          "https://doi.org/10.1038/nature25456"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature25456", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100715012", 
          "https://doi.org/10.1038/nature25456"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "It is increasingly recognized that Alzheimer's disease (AD) exists before dementia is present and that shifts in amyloid beta occur long before clinical symptoms can be detected. Early detection of these molecular changes is a key aspect for the success of interventions aimed at slowing down rates of cognitive decline. Recent evidence indicates that of the two established methods for measuring amyloid, a decrease in cerebrospinal fluid (CSF) amyloid \u03b21-42 (A\u03b21-42) may be an earlier indicator of Alzheimer's disease risk than measures of amyloid obtained from Positron Emission Tomography (PET). However, CSF collection is highly invasive and expensive. In contrast, blood collection is routinely performed, minimally invasive and cheap. In this work, we develop a blood-based signature that can provide a cheap and minimally invasive estimation of an individual's CSF amyloid status using a machine learning approach. We show that a Random Forest model derived from plasma analytes can accurately predict subjects as having abnormal (low) CSF A\u03b21-42 levels indicative of AD risk (0.84 AUC, 0.78 sensitivity, and 0.73 specificity). Refinement of the modeling indicates that only APOE\u03b54 carrier status and four plasma analytes (CGA, A\u03b21-42, Eotaxin 3, APOE) are required to achieve a high level of accuracy. Furthermore, we show across an independent validation cohort that individuals with predicted abnormal CSF A\u03b21-42 levels transitioned to an AD diagnosis over 120 months significantly faster than those with predicted normal CSF A\u03b21-42 levels and that the resulting model also validates reasonably across PET A\u03b21-42 status (0.78 AUC). This is the first study to show that a machine learning approach, using plasma protein levels, age and APOE\u03b54 carrier status, is able to predict CSF A\u03b21-42 status, the earliest risk indicator for AD, with high accuracy.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-018-37149-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2687006", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.7132465", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "A blood-based signature of cerebrospinal fluid A\u03b21\u201342 status", 
    "pagination": "4163", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ca2ee4176a3104bb6d7877d84a68cd90be6f94ae1642339a53f2fbd1d982c38b"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30853713"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-018-37149-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112678077"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-018-37149-7", 
      "https://app.dimensions.ai/details/publication/pub.1112678077"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:20", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000368_0000000368/records_78964_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-018-37149-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-37149-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-37149-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-37149-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-37149-7'


 

This table displays all metadata directly associated to this object as RDF triples.

274 TRIPLES      21 PREDICATES      83 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-018-37149-7 schema:about anzsrc-for:11
2 anzsrc-for:1103
3 schema:author Ndc07eb0e3ff949e18ab14e4d2be71700
4 schema:citation sg:pub.10.1007/bf02815140
5 sg:pub.10.1007/s00401-014-1266-2
6 sg:pub.10.1007/s10072-016-2477-1
7 sg:pub.10.1023/a:1010933404324
8 sg:pub.10.1038/mp.2013.40
9 sg:pub.10.1038/nature25456
10 sg:pub.10.1038/nmeth.2810
11 sg:pub.10.1038/srep26801
12 sg:pub.10.1038/tp.2015.205
13 sg:pub.10.1186/alzrt269
14 sg:pub.10.1186/s13195-015-0105-6
15 sg:pub.10.1186/s13195-017-0248-8
16 https://doi.org/10.1002/sam.10103
17 https://doi.org/10.1016/0006-8993(91)90697-t
18 https://doi.org/10.1016/j.clim.2016.09.010
19 https://doi.org/10.1016/j.dadm.2014.11.005
20 https://doi.org/10.1016/j.exger.2003.09.018
21 https://doi.org/10.1016/j.expneurol.2009.07.024
22 https://doi.org/10.1016/j.jalz.2012.12.006
23 https://doi.org/10.1016/j.jalz.2014.02.004
24 https://doi.org/10.1016/j.jalz.2016.02.002
25 https://doi.org/10.1016/j.jalz.2017.01.020
26 https://doi.org/10.1016/j.jalz.2017.02.001
27 https://doi.org/10.1016/j.neurobiolaging.2006.03.004
28 https://doi.org/10.1016/j.neuron.2008.04.010
29 https://doi.org/10.1016/j.pharep.2015.07.006
30 https://doi.org/10.1016/j.tips.2015.03.002
31 https://doi.org/10.1016/j.trci.2017.05.002
32 https://doi.org/10.1016/s0140-6736(15)01124-1
33 https://doi.org/10.1016/s1474-4422(10)70223-4
34 https://doi.org/10.1016/s1474-4422(13)70044-9
35 https://doi.org/10.1021/cn500101j
36 https://doi.org/10.1056/nejmoa1304839
37 https://doi.org/10.1073/pnas.1220484110
38 https://doi.org/10.1074/mcp.m112.018861
39 https://doi.org/10.1093/brain/awu367
40 https://doi.org/10.1093/brain/aww015
41 https://doi.org/10.1093/brain/aww025
42 https://doi.org/10.1093/brain/aww169
43 https://doi.org/10.1097/wad.0000000000000144
44 https://doi.org/10.1159/000337231
45 https://doi.org/10.1200/jco.2006.10.1535
46 https://doi.org/10.1212/wnl.0000000000003094
47 https://doi.org/10.1212/wnl.0b013e3181cb3e25
48 https://doi.org/10.1212/wnl.34.7.939
49 https://doi.org/10.1371/journal.pone.0030525
50 https://doi.org/10.18637/jss.v061.i08
51 https://doi.org/10.18637/jss.v077.i01
52 https://doi.org/10.3233/jad-140705
53 https://doi.org/10.3233/jad-150020
54 https://doi.org/10.3233/jad-151155
55 https://doi.org/10.3233/jad-160907
56 https://doi.org/10.3233/jad-2010-090249
57 https://doi.org/10.3233/jad-2010-101350
58 schema:datePublished 2019-12
59 schema:datePublishedReg 2019-12-01
60 schema:description It is increasingly recognized that Alzheimer's disease (AD) exists before dementia is present and that shifts in amyloid beta occur long before clinical symptoms can be detected. Early detection of these molecular changes is a key aspect for the success of interventions aimed at slowing down rates of cognitive decline. Recent evidence indicates that of the two established methods for measuring amyloid, a decrease in cerebrospinal fluid (CSF) amyloid β<sub>1-42</sub> (Aβ<sub>1-42</sub>) may be an earlier indicator of Alzheimer's disease risk than measures of amyloid obtained from Positron Emission Tomography (PET). However, CSF collection is highly invasive and expensive. In contrast, blood collection is routinely performed, minimally invasive and cheap. In this work, we develop a blood-based signature that can provide a cheap and minimally invasive estimation of an individual's CSF amyloid status using a machine learning approach. We show that a Random Forest model derived from plasma analytes can accurately predict subjects as having abnormal (low) CSF Aβ<sub>1-42</sub> levels indicative of AD risk (0.84 AUC, 0.78 sensitivity, and 0.73 specificity). Refinement of the modeling indicates that only APOEε4 carrier status and four plasma analytes (CGA, Aβ<sub>1-42</sub>, Eotaxin 3, APOE) are required to achieve a high level of accuracy. Furthermore, we show across an independent validation cohort that individuals with predicted abnormal CSF Aβ<sub>1-42</sub> levels transitioned to an AD diagnosis over 120 months significantly faster than those with predicted normal CSF Aβ<sub>1-42</sub> levels and that the resulting model also validates reasonably across PET Aβ<sub>1-42</sub> status (0.78 AUC). This is the first study to show that a machine learning approach, using plasma protein levels, age and APOEε4 carrier status, is able to predict CSF Aβ<sub>1-42</sub> status, the earliest risk indicator for AD, with high accuracy.
61 schema:genre research_article
62 schema:inLanguage en
63 schema:isAccessibleForFree true
64 schema:isPartOf N3067fda51d7a4a6195c7a2675b7c796c
65 N63380e6c1186433aa1d604cde7e5ad26
66 sg:journal.1045337
67 schema:name A blood-based signature of cerebrospinal fluid Aβ1–42 status
68 schema:pagination 4163
69 schema:productId N02c47cd648be4fb59eddbbde3f883388
70 N0b8ac160d1684cd6b90afbe9c245cae2
71 N69a6d201a3064968a0b4d85244e3f055
72 N957b63f5e183414d97880312f993c939
73 Nce84c7ad321e425e8dfadf7ed6c92226
74 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112678077
75 https://doi.org/10.1038/s41598-018-37149-7
76 schema:sdDatePublished 2019-04-11T13:20
77 schema:sdLicense https://scigraph.springernature.com/explorer/license/
78 schema:sdPublisher N25f2fcf18fb449198b9a6e0b46fdceef
79 schema:url https://www.nature.com/articles/s41598-018-37149-7
80 sgo:license sg:explorer/license/
81 sgo:sdDataset articles
82 rdf:type schema:ScholarlyArticle
83 N02c47cd648be4fb59eddbbde3f883388 schema:name doi
84 schema:value 10.1038/s41598-018-37149-7
85 rdf:type schema:PropertyValue
86 N0b8ac160d1684cd6b90afbe9c245cae2 schema:name pubmed_id
87 schema:value 30853713
88 rdf:type schema:PropertyValue
89 N25f2fcf18fb449198b9a6e0b46fdceef schema:name Springer Nature - SN SciGraph project
90 rdf:type schema:Organization
91 N3067fda51d7a4a6195c7a2675b7c796c schema:volumeNumber 9
92 rdf:type schema:PublicationVolume
93 N4b0dcc4192a947f786ff7fa39e015259 rdf:first N5d3e4bbbc57d4ef7aea21793dc69b695
94 rdf:rest Nf43830362d37441a93000360cb9076e5
95 N54f425d62d5342398622679c77c35450 rdf:first Ndc81396fd695472884c94857f3f67c3e
96 rdf:rest Nc6d5c1b654894601b6b49693572d84b0
97 N5cee0a975a4c4dfa9df63390a1c220bf schema:affiliation https://www.grid.ac/institutes/grid.1008.9
98 schema:familyName Goudey
99 schema:givenName Benjamin
100 rdf:type schema:Person
101 N5d3e4bbbc57d4ef7aea21793dc69b695 schema:affiliation https://www.grid.ac/institutes/grid.1008.9
102 schema:familyName Fung
103 schema:givenName Bowen J.
104 rdf:type schema:Person
105 N63380e6c1186433aa1d604cde7e5ad26 schema:issueNumber 1
106 rdf:type schema:PublicationIssue
107 N69a6d201a3064968a0b4d85244e3f055 schema:name dimensions_id
108 schema:value pub.1112678077
109 rdf:type schema:PropertyValue
110 N6c39c0a1273b4741ad554634d9856fc8 rdf:first N5a9b6e93d4fe4a6cb590caa0d038e4ff
111 rdf:rest rdf:nil
112 N935a99e02d8f4bb9807d3ee3eb55c342 schema:affiliation https://www.grid.ac/institutes/grid.481553.e
113 schema:familyName Schieber
114 schema:givenName Christine
115 rdf:type schema:Person
116 N957b63f5e183414d97880312f993c939 schema:name nlm_unique_id
117 schema:value 101563288
118 rdf:type schema:PropertyValue
119 Nc6d5c1b654894601b6b49693572d84b0 rdf:first Ne3a1a979033d44dd8ef77b914eb97344
120 rdf:rest N6c39c0a1273b4741ad554634d9856fc8
121 Nce84c7ad321e425e8dfadf7ed6c92226 schema:name readcube_id
122 schema:value ca2ee4176a3104bb6d7877d84a68cd90be6f94ae1642339a53f2fbd1d982c38b
123 rdf:type schema:PropertyValue
124 Ndc07eb0e3ff949e18ab14e4d2be71700 rdf:first N5cee0a975a4c4dfa9df63390a1c220bf
125 rdf:rest N4b0dcc4192a947f786ff7fa39e015259
126 Ndc81396fd695472884c94857f3f67c3e schema:affiliation https://www.grid.ac/institutes/grid.481553.e
127 schema:familyName Faux
128 schema:givenName Noel G.
129 rdf:type schema:Person
130 Nf43830362d37441a93000360cb9076e5 rdf:first N935a99e02d8f4bb9807d3ee3eb55c342
131 rdf:rest N54f425d62d5342398622679c77c35450
132 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
133 schema:name Medical and Health Sciences
134 rdf:type schema:DefinedTerm
135 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
136 schema:name Clinical Sciences
137 rdf:type schema:DefinedTerm
138 sg:grant.2687006 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-018-37149-7
139 rdf:type schema:MonetaryGrant
140 sg:grant.7132465 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-018-37149-7
141 rdf:type schema:MonetaryGrant
142 sg:journal.1045337 schema:issn 2045-2322
143 schema:name Scientific Reports
144 rdf:type schema:Periodical
145 sg:pub.10.1007/bf02815140 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035207722
146 https://doi.org/10.1007/bf02815140
147 rdf:type schema:CreativeWork
148 sg:pub.10.1007/s00401-014-1266-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016641842
149 https://doi.org/10.1007/s00401-014-1266-2
150 rdf:type schema:CreativeWork
151 sg:pub.10.1007/s10072-016-2477-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001569251
152 https://doi.org/10.1007/s10072-016-2477-1
153 rdf:type schema:CreativeWork
154 sg:pub.10.1023/a:1010933404324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024739340
155 https://doi.org/10.1023/a:1010933404324
156 rdf:type schema:CreativeWork
157 sg:pub.10.1038/mp.2013.40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016949515
158 https://doi.org/10.1038/mp.2013.40
159 rdf:type schema:CreativeWork
160 sg:pub.10.1038/nature25456 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100715012
161 https://doi.org/10.1038/nature25456
162 rdf:type schema:CreativeWork
163 sg:pub.10.1038/nmeth.2810 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014600221
164 https://doi.org/10.1038/nmeth.2810
165 rdf:type schema:CreativeWork
166 sg:pub.10.1038/srep26801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016262465
167 https://doi.org/10.1038/srep26801
168 rdf:type schema:CreativeWork
169 sg:pub.10.1038/tp.2015.205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018221389
170 https://doi.org/10.1038/tp.2015.205
171 rdf:type schema:CreativeWork
172 sg:pub.10.1186/alzrt269 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023682464
173 https://doi.org/10.1186/alzrt269
174 rdf:type schema:CreativeWork
175 sg:pub.10.1186/s13195-015-0105-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000133500
176 https://doi.org/10.1186/s13195-015-0105-6
177 rdf:type schema:CreativeWork
178 sg:pub.10.1186/s13195-017-0248-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084252358
179 https://doi.org/10.1186/s13195-017-0248-8
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1002/sam.10103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043001232
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/0006-8993(91)90697-t schema:sameAs https://app.dimensions.ai/details/publication/pub.1031494433
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1016/j.clim.2016.09.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046470733
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1016/j.dadm.2014.11.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031948615
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1016/j.exger.2003.09.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043326336
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1016/j.expneurol.2009.07.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015586629
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1016/j.jalz.2012.12.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022067092
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1016/j.jalz.2014.02.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011194766
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1016/j.jalz.2016.02.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038834094
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1016/j.jalz.2017.01.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084084784
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1016/j.jalz.2017.02.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084084793
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1016/j.neurobiolaging.2006.03.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015513453
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1016/j.neuron.2008.04.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012205492
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1016/j.pharep.2015.07.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036081375
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1016/j.tips.2015.03.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000298816
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1016/j.trci.2017.05.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085586432
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1016/s0140-6736(15)01124-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045277840
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1016/s1474-4422(10)70223-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044499508
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1016/s1474-4422(13)70044-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005017445
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1021/cn500101j schema:sameAs https://app.dimensions.ai/details/publication/pub.1053884879
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1056/nejmoa1304839 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042587371
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1073/pnas.1220484110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010731684
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1074/mcp.m112.018861 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047557936
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1093/brain/awu367 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030984508
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1093/brain/aww015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045665691
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1093/brain/aww025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059445103
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1093/brain/aww169 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059445190
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1097/wad.0000000000000144 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012733765
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1159/000337231 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004342927
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1200/jco.2006.10.1535 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048701621
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1212/wnl.0000000000003094 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064353803
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1212/wnl.0b013e3181cb3e25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038946230
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1212/wnl.34.7.939 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024664401
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1371/journal.pone.0030525 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003347482
248 rdf:type schema:CreativeWork
249 https://doi.org/10.18637/jss.v061.i08 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068672912
250 rdf:type schema:CreativeWork
251 https://doi.org/10.18637/jss.v077.i01 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084373978
252 rdf:type schema:CreativeWork
253 https://doi.org/10.3233/jad-140705 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078959818
254 rdf:type schema:CreativeWork
255 https://doi.org/10.3233/jad-150020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009825740
256 rdf:type schema:CreativeWork
257 https://doi.org/10.3233/jad-151155 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036148564
258 rdf:type schema:CreativeWork
259 https://doi.org/10.3233/jad-160907 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084430278
260 rdf:type schema:CreativeWork
261 https://doi.org/10.3233/jad-2010-090249 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078149478
262 rdf:type schema:CreativeWork
263 https://doi.org/10.3233/jad-2010-101350 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008357887
264 rdf:type schema:CreativeWork
265 https://www.grid.ac/institutes/grid.1008.9 schema:alternateName University of Melbourne
266 schema:name Centre for Epidemiology and Biostatistics, The University of Melbourne, Parkville, Victoria Australia
267 Department of Computing and Information System, The University of Melbourne, Parkville, Victoria Australia
268 IBM Research Australia, Carlton, Victoria Australia
269 School of Psychological Sciences, University of Melbourne, Parkville, Victoria Australia
270 rdf:type schema:Organization
271 https://www.grid.ac/institutes/grid.481553.e schema:alternateName IBM Research - Australia
272 schema:name IBM Research Australia, Carlton, Victoria Australia
273 The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria Australia
274 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...