Improved Detection of Visual Field Progression Using a Spatiotemporal Boundary Detection Method View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Samuel I. Berchuck, Jean-Claude Mwanza, Angelo P. Tanna, Donald L. Budenz, Joshua L. Warren

ABSTRACT

Glaucoma is the leading cause of irreversible blindness worldwide and requires regular monitoring upon diagnosis to ascertain whether the disease is stable or progressing. However, making this determination remains a difficult clinical task. Recently, a novel spatiotemporal boundary detection predictor of glaucomatous visual field (VF) progression (STBound) was developed. In this work, we explore the ability of STBound to differentiate progressing and non-progressing glaucoma patients in comparison to existing methods. STBound, Spatial PROGgression, and traditional trend-based progression methods (global index (GI) regression, mean regression slope, point-wise linear regression, permutation of pointwise linear regression) were applied to longitudinal VF data from 191 eyes of 91 glaucoma patients. The ability of each method to identify progression was compared using Akaike information criterion (AIC), full/partial area under the receiver operating characteristic curve (AUC/pAUC), sensitivity, and specificity. STBound offered improved diagnostic ability (AIC: 197.77 vs. 204.11-217.55; AUC: 0.74 vs. 0.63-0.70) and showed no correlation (r: -0.01-0.11; p-values: 0.11-0.93) with the competing methods. STBound combined with GI (the top performing competitor) provided improved performance over all individual metrics and compared to all metrics combined with GI (all p-values < 0.05). STBound may be a valuable diagnostic tool and can be used in conjunction with existing methods. More... »

PAGES

4642

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-018-37127-z

DOI

http://dx.doi.org/10.1038/s41598-018-37127-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112764087

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30874616


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1113", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Ophthalmology and Optometry", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Duke University", 
          "id": "https://www.grid.ac/institutes/grid.26009.3d", 
          "name": [
            "Department of Statistical Science and Forge, Duke University, Durham, NC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Berchuck", 
        "givenName": "Samuel I.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of North Carolina at Chapel Hill", 
          "id": "https://www.grid.ac/institutes/grid.10698.36", 
          "name": [
            "Department of Ophthalmology, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mwanza", 
        "givenName": "Jean-Claude", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Northwestern University", 
          "id": "https://www.grid.ac/institutes/grid.16753.36", 
          "name": [
            "Department of Ophthalmology, Northwestern University, Illinois, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tanna", 
        "givenName": "Angelo P.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of North Carolina at Chapel Hill", 
          "id": "https://www.grid.ac/institutes/grid.10698.36", 
          "name": [
            "Department of Ophthalmology, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Budenz", 
        "givenName": "Donald L.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yale University", 
          "id": "https://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Department of Biostatistics, Yale University, Connecticut, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Warren", 
        "givenName": "Joshua L.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1371/journal.pone.0085654", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001597754"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1167/iovs.06-0576", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004527276"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1167/iovs.12-10049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004807025"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/archopht.117.9.1137", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005146624"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/archophthalmol.2009.297", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012543107"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1167/iovs.12-11226", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012555132"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1167/iovs.12-10428", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014388242"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/archopht.120.10.1268", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017625910"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0039-6257(01)00299-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018912721"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1167/iovs.15-16957", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019176789"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0161-6420(97)30172-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020085278"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ophtha.2008.02.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021435800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1167/iovs.05-0827", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025068610"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1167/tvst.5.4.14", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027725305"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ajo.2007.09.038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029128088"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0042-6989(03)00474-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029591045"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0161-6420(95)30885-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030359958"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0161-6420(00)00284-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031148363"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(14)62111-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031207360"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ophtha.2008.08.051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032997947"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/archophthalmol.2010.196", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033496180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ophtha.2016.03.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034629056"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/archopht.120.6.714", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036632150"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1167/iovs.10-6905", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037229403"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1541-0420.00071", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038620183"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ophtha.2007.03.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048609675"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ajo.2012.04.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049704339"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1988.10478639", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058303616"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tbme.2013.2295605", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061529467"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1198/tech.2005.s278", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064202211"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1075042893", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1078653087", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082890360", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sim.7235", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083523391"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.2018.1537911", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110424190"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.2018.1537911", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110424190"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.2018.1537911", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110424190"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "Glaucoma is the leading cause of irreversible blindness worldwide and requires regular monitoring upon diagnosis to ascertain whether the disease is stable or progressing. However, making this determination remains a difficult clinical task. Recently, a novel spatiotemporal boundary detection predictor of glaucomatous visual field (VF) progression (STBound) was developed. In this work, we explore the ability of STBound to differentiate progressing and non-progressing glaucoma patients in comparison to existing methods. STBound, Spatial PROGgression, and traditional trend-based progression methods (global index (GI) regression, mean regression slope, point-wise linear regression, permutation of pointwise linear regression) were applied to longitudinal VF data from 191 eyes of 91 glaucoma patients. The ability of each method to identify progression was compared using Akaike information criterion (AIC), full/partial area under the receiver operating characteristic curve (AUC/pAUC), sensitivity, and specificity. STBound offered improved diagnostic ability (AIC: 197.77 vs. 204.11-217.55; AUC: 0.74 vs. 0.63-0.70) and showed no correlation (r: -0.01-0.11; p-values: 0.11-0.93) with the competing methods. STBound combined with GI (the top performing competitor) provided improved performance over all individual metrics and compared to all metrics combined with GI (all p-values\u2009<\u20090.05). STBound may be a valuable diagnostic tool and can be used in conjunction with existing methods.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-018-37127-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.5475983", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.5475715", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2683480", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "Improved Detection of Visual Field Progression Using a Spatiotemporal Boundary Detection Method", 
    "pagination": "4642", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "882ee6a740a16506c855077edf57b218774e444d4ea55de7af03d710fd1709de"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30874616"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-018-37127-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112764087"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-018-37127-z", 
      "https://app.dimensions.ai/details/publication/pub.1112764087"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:21", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000368_0000000368/records_78974_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-018-37127-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-37127-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-37127-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-37127-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-37127-z'


 

This table displays all metadata directly associated to this object as RDF triples.

208 TRIPLES      21 PREDICATES      64 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-018-37127-z schema:about anzsrc-for:11
2 anzsrc-for:1113
3 schema:author N3aa9f75c48f24b41a9405914c7a5725b
4 schema:citation https://app.dimensions.ai/details/publication/pub.1075042893
5 https://app.dimensions.ai/details/publication/pub.1078653087
6 https://app.dimensions.ai/details/publication/pub.1082890360
7 https://doi.org/10.1001/archopht.117.9.1137
8 https://doi.org/10.1001/archopht.120.10.1268
9 https://doi.org/10.1001/archopht.120.6.714
10 https://doi.org/10.1001/archophthalmol.2009.297
11 https://doi.org/10.1001/archophthalmol.2010.196
12 https://doi.org/10.1002/sim.7235
13 https://doi.org/10.1016/j.ajo.2007.09.038
14 https://doi.org/10.1016/j.ajo.2012.04.015
15 https://doi.org/10.1016/j.ophtha.2007.03.016
16 https://doi.org/10.1016/j.ophtha.2008.02.005
17 https://doi.org/10.1016/j.ophtha.2008.08.051
18 https://doi.org/10.1016/j.ophtha.2016.03.023
19 https://doi.org/10.1016/s0039-6257(01)00299-5
20 https://doi.org/10.1016/s0042-6989(03)00474-7
21 https://doi.org/10.1016/s0140-6736(14)62111-5
22 https://doi.org/10.1016/s0161-6420(00)00284-0
23 https://doi.org/10.1016/s0161-6420(95)30885-8
24 https://doi.org/10.1016/s0161-6420(97)30172-9
25 https://doi.org/10.1080/01621459.1988.10478639
26 https://doi.org/10.1080/01621459.2018.1537911
27 https://doi.org/10.1109/tbme.2013.2295605
28 https://doi.org/10.1111/1541-0420.00071
29 https://doi.org/10.1167/iovs.05-0827
30 https://doi.org/10.1167/iovs.06-0576
31 https://doi.org/10.1167/iovs.10-6905
32 https://doi.org/10.1167/iovs.12-10049
33 https://doi.org/10.1167/iovs.12-10428
34 https://doi.org/10.1167/iovs.12-11226
35 https://doi.org/10.1167/iovs.15-16957
36 https://doi.org/10.1167/tvst.5.4.14
37 https://doi.org/10.1198/tech.2005.s278
38 https://doi.org/10.1371/journal.pone.0085654
39 schema:datePublished 2019-12
40 schema:datePublishedReg 2019-12-01
41 schema:description Glaucoma is the leading cause of irreversible blindness worldwide and requires regular monitoring upon diagnosis to ascertain whether the disease is stable or progressing. However, making this determination remains a difficult clinical task. Recently, a novel spatiotemporal boundary detection predictor of glaucomatous visual field (VF) progression (STBound) was developed. In this work, we explore the ability of STBound to differentiate progressing and non-progressing glaucoma patients in comparison to existing methods. STBound, Spatial PROGgression, and traditional trend-based progression methods (global index (GI) regression, mean regression slope, point-wise linear regression, permutation of pointwise linear regression) were applied to longitudinal VF data from 191 eyes of 91 glaucoma patients. The ability of each method to identify progression was compared using Akaike information criterion (AIC), full/partial area under the receiver operating characteristic curve (AUC/pAUC), sensitivity, and specificity. STBound offered improved diagnostic ability (AIC: 197.77 vs. 204.11-217.55; AUC: 0.74 vs. 0.63-0.70) and showed no correlation (r: -0.01-0.11; p-values: 0.11-0.93) with the competing methods. STBound combined with GI (the top performing competitor) provided improved performance over all individual metrics and compared to all metrics combined with GI (all p-values < 0.05). STBound may be a valuable diagnostic tool and can be used in conjunction with existing methods.
42 schema:genre research_article
43 schema:inLanguage en
44 schema:isAccessibleForFree true
45 schema:isPartOf N6fc4a8a2017f468db5bd6ab4facbd167
46 Nc62f99783d7b4b499a070bb726a39b9d
47 sg:journal.1045337
48 schema:name Improved Detection of Visual Field Progression Using a Spatiotemporal Boundary Detection Method
49 schema:pagination 4642
50 schema:productId N15cb1cb517154ebabd319cba356c5965
51 N2f4fb2e16ed1483d911a6554581d0642
52 N7e2800362e1d4247941534201ae9bab3
53 Nd1b95950183c45c186b2173d0628c293
54 Ndf9ac6e459874ab8bf6d4dd9e8273870
55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112764087
56 https://doi.org/10.1038/s41598-018-37127-z
57 schema:sdDatePublished 2019-04-11T13:21
58 schema:sdLicense https://scigraph.springernature.com/explorer/license/
59 schema:sdPublisher N9ae829d6bc4a4277902307ef20d2036c
60 schema:url https://www.nature.com/articles/s41598-018-37127-z
61 sgo:license sg:explorer/license/
62 sgo:sdDataset articles
63 rdf:type schema:ScholarlyArticle
64 N120f46de4bde445196df77787b1214a9 schema:affiliation https://www.grid.ac/institutes/grid.10698.36
65 schema:familyName Budenz
66 schema:givenName Donald L.
67 rdf:type schema:Person
68 N15cb1cb517154ebabd319cba356c5965 schema:name readcube_id
69 schema:value 882ee6a740a16506c855077edf57b218774e444d4ea55de7af03d710fd1709de
70 rdf:type schema:PropertyValue
71 N2f4fb2e16ed1483d911a6554581d0642 schema:name nlm_unique_id
72 schema:value 101563288
73 rdf:type schema:PropertyValue
74 N33044665a220469a9a2ff3fa15302505 schema:affiliation https://www.grid.ac/institutes/grid.10698.36
75 schema:familyName Mwanza
76 schema:givenName Jean-Claude
77 rdf:type schema:Person
78 N3aa9f75c48f24b41a9405914c7a5725b rdf:first N62a15889af5449a58421576852b22749
79 rdf:rest Nb67225526d414d5b87df5090ba50b292
80 N58660a39e3cb42068924d87b3c86e3dd rdf:first Naed96da2534640cf9cb4678aeb264627
81 rdf:rest N5e6e790f1e8c414da82224fabe294281
82 N5e6e790f1e8c414da82224fabe294281 rdf:first N120f46de4bde445196df77787b1214a9
83 rdf:rest N6ca5bb4b4d934810816cc281958c0c2f
84 N62a15889af5449a58421576852b22749 schema:affiliation https://www.grid.ac/institutes/grid.26009.3d
85 schema:familyName Berchuck
86 schema:givenName Samuel I.
87 rdf:type schema:Person
88 N6ca5bb4b4d934810816cc281958c0c2f rdf:first Nd711fc0b689a44caad1f85598682e5e9
89 rdf:rest rdf:nil
90 N6fc4a8a2017f468db5bd6ab4facbd167 schema:volumeNumber 9
91 rdf:type schema:PublicationVolume
92 N7e2800362e1d4247941534201ae9bab3 schema:name dimensions_id
93 schema:value pub.1112764087
94 rdf:type schema:PropertyValue
95 N9ae829d6bc4a4277902307ef20d2036c schema:name Springer Nature - SN SciGraph project
96 rdf:type schema:Organization
97 Naed96da2534640cf9cb4678aeb264627 schema:affiliation https://www.grid.ac/institutes/grid.16753.36
98 schema:familyName Tanna
99 schema:givenName Angelo P.
100 rdf:type schema:Person
101 Nb67225526d414d5b87df5090ba50b292 rdf:first N33044665a220469a9a2ff3fa15302505
102 rdf:rest N58660a39e3cb42068924d87b3c86e3dd
103 Nc62f99783d7b4b499a070bb726a39b9d schema:issueNumber 1
104 rdf:type schema:PublicationIssue
105 Nd1b95950183c45c186b2173d0628c293 schema:name doi
106 schema:value 10.1038/s41598-018-37127-z
107 rdf:type schema:PropertyValue
108 Nd711fc0b689a44caad1f85598682e5e9 schema:affiliation https://www.grid.ac/institutes/grid.47100.32
109 schema:familyName Warren
110 schema:givenName Joshua L.
111 rdf:type schema:Person
112 Ndf9ac6e459874ab8bf6d4dd9e8273870 schema:name pubmed_id
113 schema:value 30874616
114 rdf:type schema:PropertyValue
115 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
116 schema:name Medical and Health Sciences
117 rdf:type schema:DefinedTerm
118 anzsrc-for:1113 schema:inDefinedTermSet anzsrc-for:
119 schema:name Ophthalmology and Optometry
120 rdf:type schema:DefinedTerm
121 sg:grant.2683480 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-018-37127-z
122 rdf:type schema:MonetaryGrant
123 sg:grant.5475715 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-018-37127-z
124 rdf:type schema:MonetaryGrant
125 sg:grant.5475983 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-018-37127-z
126 rdf:type schema:MonetaryGrant
127 sg:journal.1045337 schema:issn 2045-2322
128 schema:name Scientific Reports
129 rdf:type schema:Periodical
130 https://app.dimensions.ai/details/publication/pub.1075042893 schema:CreativeWork
131 https://app.dimensions.ai/details/publication/pub.1078653087 schema:CreativeWork
132 https://app.dimensions.ai/details/publication/pub.1082890360 schema:CreativeWork
133 https://doi.org/10.1001/archopht.117.9.1137 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005146624
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1001/archopht.120.10.1268 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017625910
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1001/archopht.120.6.714 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036632150
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1001/archophthalmol.2009.297 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012543107
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1001/archophthalmol.2010.196 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033496180
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1002/sim.7235 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083523391
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.ajo.2007.09.038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029128088
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.ajo.2012.04.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049704339
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/j.ophtha.2007.03.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048609675
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.ophtha.2008.02.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021435800
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/j.ophtha.2008.08.051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032997947
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/j.ophtha.2016.03.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034629056
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/s0039-6257(01)00299-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018912721
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/s0042-6989(03)00474-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029591045
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/s0140-6736(14)62111-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031207360
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/s0161-6420(00)00284-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031148363
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/s0161-6420(95)30885-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030359958
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/s0161-6420(97)30172-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020085278
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1080/01621459.1988.10478639 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058303616
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1080/01621459.2018.1537911 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110424190
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1109/tbme.2013.2295605 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061529467
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1111/1541-0420.00071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038620183
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1167/iovs.05-0827 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025068610
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1167/iovs.06-0576 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004527276
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1167/iovs.10-6905 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037229403
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1167/iovs.12-10049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004807025
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1167/iovs.12-10428 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014388242
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1167/iovs.12-11226 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012555132
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1167/iovs.15-16957 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019176789
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1167/tvst.5.4.14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027725305
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1198/tech.2005.s278 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064202211
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1371/journal.pone.0085654 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001597754
196 rdf:type schema:CreativeWork
197 https://www.grid.ac/institutes/grid.10698.36 schema:alternateName University of North Carolina at Chapel Hill
198 schema:name Department of Ophthalmology, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
199 rdf:type schema:Organization
200 https://www.grid.ac/institutes/grid.16753.36 schema:alternateName Northwestern University
201 schema:name Department of Ophthalmology, Northwestern University, Illinois, USA
202 rdf:type schema:Organization
203 https://www.grid.ac/institutes/grid.26009.3d schema:alternateName Duke University
204 schema:name Department of Statistical Science and Forge, Duke University, Durham, NC, USA
205 rdf:type schema:Organization
206 https://www.grid.ac/institutes/grid.47100.32 schema:alternateName Yale University
207 schema:name Department of Biostatistics, Yale University, Connecticut, USA
208 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...