How a ferromagnet drives an antiferromagnet in exchange biased CoO/Fe(110) bilayers View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

M. Ślęzak, T. Ślęzak, P. Dróżdż, B. Matlak, K. Matlak, A. Kozioł-Rachwał, M. Zając, J. Korecki

ABSTRACT

Antiferromagnet/ferromagnet (AFM/FM) bilayers that display the exchange bias (EB) effect have been subjected to intensive material research, being the key elements of novel spintronics systems. In a commonly accepted picture, the antiferromagnet, considered as a rigid material due to its high anisotropy and magnetic hardness, controls the magnetic properties of the ferromagnet, such as a shift of the hysteresis loop or coercivity. We show that this AFM-FM master-slave hierarchy is not generally valid and that the influence of the ferromagnet on the magnetic anisotropy (MA) of the neighbouring antiferromagnet must be considered. Our computer simulation and experimental studies of EB in an epitaxial CoO/Fe(110) bilayer show that the ferromagnetic layer with strong uniaxial magnetic anisotropy determines the interfacial spin orientations of the neighbouring AFM layer and rotates its easy axis. This effect has a strong feedback on the EB effect experienced by the FM layer. Our results show new physics behind the EB effect, providing a route for grafting a desired anisotropy onto the AFM and for precise tailoring of EB in AFM/FM systems. More... »

PAGES

889

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-018-37110-8

DOI

http://dx.doi.org/10.1038/s41598-018-37110-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111747618

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30696928


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "AGH University of Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.9922.0", 
          "name": [
            "AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krak\u00f3w, Poland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "\u015al\u0119zak", 
        "givenName": "M.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "AGH University of Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.9922.0", 
          "name": [
            "AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krak\u00f3w, Poland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "\u015al\u0119zak", 
        "givenName": "T.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "AGH University of Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.9922.0", 
          "name": [
            "AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krak\u00f3w, Poland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dr\u00f3\u017cd\u017c", 
        "givenName": "P.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "AGH University of Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.9922.0", 
          "name": [
            "AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krak\u00f3w, Poland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Matlak", 
        "givenName": "B.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "AGH University of Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.9922.0", 
          "name": [
            "AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krak\u00f3w, Poland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Matlak", 
        "givenName": "K.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "AGH University of Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.9922.0", 
          "name": [
            "AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krak\u00f3w, Poland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kozio\u0142-Rachwa\u0142", 
        "givenName": "A.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Jagiellonian University", 
          "id": "https://www.grid.ac/institutes/grid.5522.0", 
          "name": [
            "National Synchrotron Radiation Centre SOLARIS, Jagiellonian University, Krak\u00f3w, Poland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zaj\u0105c", 
        "givenName": "M.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "AGH University of Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.9922.0", 
          "name": [
            "AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krak\u00f3w, Poland", 
            "Jerzy Haber Institute of Catalysis and Surface Chemistry PAS, Krak\u00f3w, Poland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Korecki", 
        "givenName": "J.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevlett.108.017201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006097743"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.108.017201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006097743"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0304-8853(01)00958-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014900974"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00324010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018788837", 
          "https://doi.org/10.1007/bf00324010"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat3629", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020630286", 
          "https://doi.org/10.1038/nmat3629"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physrep.2013.10.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032077451"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0022-3727/33/23/201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033932711"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2016.18", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038406728", 
          "https://doi.org/10.1038/nnano.2016.18"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat4566", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041178718", 
          "https://doi.org/10.1038/nmat4566"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmmm.2013.08.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043510547"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00616826", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046702245", 
          "https://doi.org/10.1007/bf00616826"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00616826", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046702245", 
          "https://doi.org/10.1007/bf00616826"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep09183", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047921051", 
          "https://doi.org/10.1038/srep09183"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2983", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051661791", 
          "https://doi.org/10.1038/nmat2983"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1644613", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057729378"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3367705", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057942476"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.105.904", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060418737"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.105.904", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060418737"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.77.064407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060623801"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.77.064407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060623801"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.87.094423", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060641027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.87.094423", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060641027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.91.104424", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060645490"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.91.104424", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060645490"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.94.014402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060651008"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.94.014402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060651008"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.104.217204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060757029"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.104.217204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060757029"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.105.027206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060757211"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.105.027206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060757211"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.109.137201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060760373"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.109.137201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060760373"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.114.097202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060763432"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.114.097202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060763432"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.247201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060828531"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.247201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060828531"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep43705", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084131612", 
          "https://doi.org/10.1038/srep43705"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1361-6463/aa81a1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091286610"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat5030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092775922", 
          "https://doi.org/10.1038/nmat5030"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat5030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092775922", 
          "https://doi.org/10.1038/nmat5030"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "Antiferromagnet/ferromagnet (AFM/FM) bilayers that display the exchange bias (EB) effect have been subjected to intensive material research, being the key elements of novel spintronics systems. In a commonly accepted picture, the antiferromagnet, considered as a rigid material due to its high anisotropy and magnetic hardness, controls the magnetic properties of the ferromagnet, such as a shift of the hysteresis loop or coercivity. We show that this AFM-FM master-slave hierarchy is not generally valid and that the influence of the ferromagnet on the magnetic anisotropy (MA) of the neighbouring antiferromagnet must be considered. Our computer simulation and experimental studies of EB in an epitaxial CoO/Fe(110) bilayer show that the ferromagnetic layer with strong uniaxial magnetic anisotropy determines the interfacial spin orientations of the neighbouring AFM layer and rotates its easy axis. This effect has a strong feedback on the EB effect experienced by the FM layer. Our results show new physics behind the EB effect, providing a route for grafting a desired anisotropy onto the AFM and for precise tailoring of EB in AFM/FM systems.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-018-37110-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "How a ferromagnet drives an antiferromagnet in exchange biased CoO/Fe(110) bilayers", 
    "pagination": "889", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "0ebbe2685b852c0ddb5478c924841a6369a1f14f20a9258e951c7bf935240d7c"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30696928"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-018-37110-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111747618"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-018-37110-8", 
      "https://app.dimensions.ai/details/publication/pub.1111747618"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:58", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000326_0000000326/records_68460_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-018-37110-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-37110-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-37110-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-37110-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-37110-8'


 

This table displays all metadata directly associated to this object as RDF triples.

203 TRIPLES      21 PREDICATES      56 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-018-37110-8 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N205ae7af5ef04c6385bf25e2d8683b8d
4 schema:citation sg:pub.10.1007/bf00324010
5 sg:pub.10.1007/bf00616826
6 sg:pub.10.1038/nmat2983
7 sg:pub.10.1038/nmat3629
8 sg:pub.10.1038/nmat4566
9 sg:pub.10.1038/nmat5030
10 sg:pub.10.1038/nnano.2016.18
11 sg:pub.10.1038/srep09183
12 sg:pub.10.1038/srep43705
13 https://doi.org/10.1016/j.jmmm.2013.08.024
14 https://doi.org/10.1016/j.physrep.2013.10.002
15 https://doi.org/10.1016/s0304-8853(01)00958-1
16 https://doi.org/10.1063/1.1644613
17 https://doi.org/10.1063/1.3367705
18 https://doi.org/10.1088/0022-3727/33/23/201
19 https://doi.org/10.1088/1361-6463/aa81a1
20 https://doi.org/10.1103/physrev.105.904
21 https://doi.org/10.1103/physrevb.77.064407
22 https://doi.org/10.1103/physrevb.87.094423
23 https://doi.org/10.1103/physrevb.91.104424
24 https://doi.org/10.1103/physrevb.94.014402
25 https://doi.org/10.1103/physrevlett.104.217204
26 https://doi.org/10.1103/physrevlett.105.027206
27 https://doi.org/10.1103/physrevlett.108.017201
28 https://doi.org/10.1103/physrevlett.109.137201
29 https://doi.org/10.1103/physrevlett.114.097202
30 https://doi.org/10.1103/physrevlett.92.247201
31 schema:datePublished 2019-12
32 schema:datePublishedReg 2019-12-01
33 schema:description Antiferromagnet/ferromagnet (AFM/FM) bilayers that display the exchange bias (EB) effect have been subjected to intensive material research, being the key elements of novel spintronics systems. In a commonly accepted picture, the antiferromagnet, considered as a rigid material due to its high anisotropy and magnetic hardness, controls the magnetic properties of the ferromagnet, such as a shift of the hysteresis loop or coercivity. We show that this AFM-FM master-slave hierarchy is not generally valid and that the influence of the ferromagnet on the magnetic anisotropy (MA) of the neighbouring antiferromagnet must be considered. Our computer simulation and experimental studies of EB in an epitaxial CoO/Fe(110) bilayer show that the ferromagnetic layer with strong uniaxial magnetic anisotropy determines the interfacial spin orientations of the neighbouring AFM layer and rotates its easy axis. This effect has a strong feedback on the EB effect experienced by the FM layer. Our results show new physics behind the EB effect, providing a route for grafting a desired anisotropy onto the AFM and for precise tailoring of EB in AFM/FM systems.
34 schema:genre research_article
35 schema:inLanguage en
36 schema:isAccessibleForFree true
37 schema:isPartOf N3ce897b575ff4a76a23dcb7713fd969f
38 N9a873bbb614c4f3b8de650d609b8b13f
39 sg:journal.1045337
40 schema:name How a ferromagnet drives an antiferromagnet in exchange biased CoO/Fe(110) bilayers
41 schema:pagination 889
42 schema:productId N2f5d61c0c70146b1b649cabdde16c772
43 Na1beddef46db446190c1ee0b13877c33
44 Na829e460e67e451e8e459c7e29d70a8c
45 Nb824983344ba48e0a928ae9852258f3f
46 Nec7bb8eaaffa4e859c2dd147d3f146f4
47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111747618
48 https://doi.org/10.1038/s41598-018-37110-8
49 schema:sdDatePublished 2019-04-11T08:58
50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
51 schema:sdPublisher Nf2f545d003294b1da67a2d9c1e37e47d
52 schema:url https://www.nature.com/articles/s41598-018-37110-8
53 sgo:license sg:explorer/license/
54 sgo:sdDataset articles
55 rdf:type schema:ScholarlyArticle
56 N205ae7af5ef04c6385bf25e2d8683b8d rdf:first Neb6fc73b5e3a407aac7e89bdfb880065
57 rdf:rest N64cedd4eb9414faaa48c97612a6801ee
58 N2e058c31c19a4bfa8c53f76068fe2449 schema:affiliation https://www.grid.ac/institutes/grid.9922.0
59 schema:familyName Korecki
60 schema:givenName J.
61 rdf:type schema:Person
62 N2f5d61c0c70146b1b649cabdde16c772 schema:name nlm_unique_id
63 schema:value 101563288
64 rdf:type schema:PropertyValue
65 N3ce897b575ff4a76a23dcb7713fd969f schema:issueNumber 1
66 rdf:type schema:PublicationIssue
67 N45410e96d9344d41a4a1ccd6c2ffd079 schema:affiliation https://www.grid.ac/institutes/grid.5522.0
68 schema:familyName Zając
69 schema:givenName M.
70 rdf:type schema:Person
71 N551a9e185dd9485a95ed805e952d6176 rdf:first Nba3d61d8caa1429bbd42b31dd8247187
72 rdf:rest N809a0c922cf34419863ea439df41279c
73 N606b1a2fcb824878b58cc701de2458c5 rdf:first N2e058c31c19a4bfa8c53f76068fe2449
74 rdf:rest rdf:nil
75 N64cedd4eb9414faaa48c97612a6801ee rdf:first Nfe8cca7025104bb68e71224008701f2c
76 rdf:rest Naaf861f2292e4a9397829940498650e3
77 N809a0c922cf34419863ea439df41279c rdf:first Ncc53018e99484649ae2c363d76d1b078
78 rdf:rest Na69e91cd203045cd93df12be1da4276f
79 N8a53868aba3f465a942e334e8dcf3e03 schema:affiliation https://www.grid.ac/institutes/grid.9922.0
80 schema:familyName Dróżdż
81 schema:givenName P.
82 rdf:type schema:Person
83 N9a873bbb614c4f3b8de650d609b8b13f schema:volumeNumber 9
84 rdf:type schema:PublicationVolume
85 Na1beddef46db446190c1ee0b13877c33 schema:name doi
86 schema:value 10.1038/s41598-018-37110-8
87 rdf:type schema:PropertyValue
88 Na69e91cd203045cd93df12be1da4276f rdf:first N45410e96d9344d41a4a1ccd6c2ffd079
89 rdf:rest N606b1a2fcb824878b58cc701de2458c5
90 Na829e460e67e451e8e459c7e29d70a8c schema:name pubmed_id
91 schema:value 30696928
92 rdf:type schema:PropertyValue
93 Naaf861f2292e4a9397829940498650e3 rdf:first N8a53868aba3f465a942e334e8dcf3e03
94 rdf:rest Nac09f0be5e2d493eba0282b5c5dc2d5c
95 Nac09f0be5e2d493eba0282b5c5dc2d5c rdf:first Ncc9655a96bbc4f57a8b29c415557f0e7
96 rdf:rest N551a9e185dd9485a95ed805e952d6176
97 Nb824983344ba48e0a928ae9852258f3f schema:name readcube_id
98 schema:value 0ebbe2685b852c0ddb5478c924841a6369a1f14f20a9258e951c7bf935240d7c
99 rdf:type schema:PropertyValue
100 Nba3d61d8caa1429bbd42b31dd8247187 schema:affiliation https://www.grid.ac/institutes/grid.9922.0
101 schema:familyName Matlak
102 schema:givenName K.
103 rdf:type schema:Person
104 Ncc53018e99484649ae2c363d76d1b078 schema:affiliation https://www.grid.ac/institutes/grid.9922.0
105 schema:familyName Kozioł-Rachwał
106 schema:givenName A.
107 rdf:type schema:Person
108 Ncc9655a96bbc4f57a8b29c415557f0e7 schema:affiliation https://www.grid.ac/institutes/grid.9922.0
109 schema:familyName Matlak
110 schema:givenName B.
111 rdf:type schema:Person
112 Neb6fc73b5e3a407aac7e89bdfb880065 schema:affiliation https://www.grid.ac/institutes/grid.9922.0
113 schema:familyName Ślęzak
114 schema:givenName M.
115 rdf:type schema:Person
116 Nec7bb8eaaffa4e859c2dd147d3f146f4 schema:name dimensions_id
117 schema:value pub.1111747618
118 rdf:type schema:PropertyValue
119 Nf2f545d003294b1da67a2d9c1e37e47d schema:name Springer Nature - SN SciGraph project
120 rdf:type schema:Organization
121 Nfe8cca7025104bb68e71224008701f2c schema:affiliation https://www.grid.ac/institutes/grid.9922.0
122 schema:familyName Ślęzak
123 schema:givenName T.
124 rdf:type schema:Person
125 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
126 schema:name Engineering
127 rdf:type schema:DefinedTerm
128 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
129 schema:name Materials Engineering
130 rdf:type schema:DefinedTerm
131 sg:journal.1045337 schema:issn 2045-2322
132 schema:name Scientific Reports
133 rdf:type schema:Periodical
134 sg:pub.10.1007/bf00324010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018788837
135 https://doi.org/10.1007/bf00324010
136 rdf:type schema:CreativeWork
137 sg:pub.10.1007/bf00616826 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046702245
138 https://doi.org/10.1007/bf00616826
139 rdf:type schema:CreativeWork
140 sg:pub.10.1038/nmat2983 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051661791
141 https://doi.org/10.1038/nmat2983
142 rdf:type schema:CreativeWork
143 sg:pub.10.1038/nmat3629 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020630286
144 https://doi.org/10.1038/nmat3629
145 rdf:type schema:CreativeWork
146 sg:pub.10.1038/nmat4566 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041178718
147 https://doi.org/10.1038/nmat4566
148 rdf:type schema:CreativeWork
149 sg:pub.10.1038/nmat5030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092775922
150 https://doi.org/10.1038/nmat5030
151 rdf:type schema:CreativeWork
152 sg:pub.10.1038/nnano.2016.18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038406728
153 https://doi.org/10.1038/nnano.2016.18
154 rdf:type schema:CreativeWork
155 sg:pub.10.1038/srep09183 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047921051
156 https://doi.org/10.1038/srep09183
157 rdf:type schema:CreativeWork
158 sg:pub.10.1038/srep43705 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084131612
159 https://doi.org/10.1038/srep43705
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/j.jmmm.2013.08.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043510547
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/j.physrep.2013.10.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032077451
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/s0304-8853(01)00958-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014900974
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1063/1.1644613 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057729378
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1063/1.3367705 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057942476
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1088/0022-3727/33/23/201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033932711
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1088/1361-6463/aa81a1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091286610
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1103/physrev.105.904 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060418737
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1103/physrevb.77.064407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060623801
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1103/physrevb.87.094423 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060641027
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1103/physrevb.91.104424 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060645490
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1103/physrevb.94.014402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060651008
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1103/physrevlett.104.217204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060757029
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1103/physrevlett.105.027206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060757211
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1103/physrevlett.108.017201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006097743
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1103/physrevlett.109.137201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060760373
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1103/physrevlett.114.097202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060763432
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1103/physrevlett.92.247201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060828531
196 rdf:type schema:CreativeWork
197 https://www.grid.ac/institutes/grid.5522.0 schema:alternateName Jagiellonian University
198 schema:name National Synchrotron Radiation Centre SOLARIS, Jagiellonian University, Kraków, Poland
199 rdf:type schema:Organization
200 https://www.grid.ac/institutes/grid.9922.0 schema:alternateName AGH University of Science and Technology
201 schema:name AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Kraków, Poland
202 Jerzy Haber Institute of Catalysis and Surface Chemistry PAS, Kraków, Poland
203 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...