Comparison between dopaminergic and non-dopaminergic neurons in the VTA following chronic nicotine exposure during pregnancy View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Renee F. Keller, Tina Kazemi, Andrei Dragomir, Yasemin M. Akay, Metin Akay

ABSTRACT

Exposure to nicotine during pregnancy through maternal smoking or nicotine replacement therapy is associated with adverse birth outcomes as well as several cognitive and neurobehavioral deficits. Several studies have shown that nicotine produces long-lasting effects on gene expression within many brain regions, including the ventral tegmental area (VTA), which is the origin of dopaminergic neurons and the dopamine reward pathway. Using a well-established rat model for perinatal nicotine exposure, we sought to investigate altered biological pathways using mRNA and miRNA expression profiles of dopaminergic (DA) and non-dopaminergic (non-DA) neurons in this highly-valuable area. Putative miRNA-gene target interactions were assessed as well as miRNA-pathway interactions. Our results indicate that extracellular matrix (ECM) receptor interactions were significantly altered in DA and non-DA neurons due to chronic nicotine exposure during pregnancy. They also show that the PI3K/AKT signaling pathway was enriched in DA neurons with multiple significant miRNA-gene targets, but the same changes were not seen in non-DA neurons. We speculate that nicotine exposure during pregnancy could differentially affect the gene expression of DA and non-DA neurons in the VTA. More... »

PAGES

445

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-018-37098-1

DOI

http://dx.doi.org/10.1038/s41598-018-37098-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111641367

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30679632


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Neurosciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Houston", 
          "id": "https://www.grid.ac/institutes/grid.266436.3", 
          "name": [
            "University of Houston, Department of Biomedical Engineering, 77204, Houston, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Keller", 
        "givenName": "Renee F.", 
        "id": "sg:person.010476545374.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010476545374.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Houston", 
          "id": "https://www.grid.ac/institutes/grid.266436.3", 
          "name": [
            "University of Houston, Department of Biomedical Engineering, 77204, Houston, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kazemi", 
        "givenName": "Tina", 
        "id": "sg:person.016164135415.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016164135415.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Houston", 
          "id": "https://www.grid.ac/institutes/grid.266436.3", 
          "name": [
            "University of Houston, Department of Biomedical Engineering, 77204, Houston, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dragomir", 
        "givenName": "Andrei", 
        "id": "sg:person.01352176643.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01352176643.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Houston", 
          "id": "https://www.grid.ac/institutes/grid.266436.3", 
          "name": [
            "University of Houston, Department of Biomedical Engineering, 77204, Houston, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Akay", 
        "givenName": "Yasemin M.", 
        "id": "sg:person.01254461033.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01254461033.74"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Houston", 
          "id": "https://www.grid.ac/institutes/grid.266436.3", 
          "name": [
            "University of Houston, Department of Biomedical Engineering, 77204, Houston, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Akay", 
        "givenName": "Metin", 
        "id": "sg:person.01251532535.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01251532535.79"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1093/bioinformatics/btp101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001910376"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3109/10408444.2012.658506", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004001320"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00213-006-0441-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005220544", 
          "https://doi.org/10.1007/s00213-006-0441-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00213-006-0441-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005220544", 
          "https://doi.org/10.1007/s00213-006-0441-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btn577", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005660075"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.gde.2011.04.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006592367"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/npp.2010.250", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008818117", 
          "https://doi.org/10.1038/npp.2010.250"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuron.2011.01.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009462554"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/tp.2014.144", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009684222", 
          "https://doi.org/10.1038/tp.2014.144"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neubiorev.2005.04.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009810532"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neubiorev.2005.04.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009810532"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.brainres.2008.03.056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010463072"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep22932", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011743535", 
          "https://doi.org/10.1038/srep22932"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-12-64", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012276932", 
          "https://doi.org/10.1186/1471-2164-12-64"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-0-444-63486-3.00005-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013546025"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jneumeth.2011.08.045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013756338"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/npp.2014.147", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015552840", 
          "https://doi.org/10.1038/npp.2014.147"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkv007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016098431"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11481-010-9210-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017635653", 
          "https://doi.org/10.1007/s11481-010-9210-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11481-010-9210-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017635653", 
          "https://doi.org/10.1007/s11481-010-9210-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.pneurobio.2010.09.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018602683"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2174/157015907781695955", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019072058"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.brainres.2008.10.076", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026016501"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkv403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029283036"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cbdv.200900319", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030715242"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cbdv.200900319", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030715242"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1460-9568.2005.04229.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032281116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1460-9568.2005.04229.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032281116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1124/jpet.103.059899", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034024560"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-0-12-802574-1.00006-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035378527"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.pharmthera.2009.02.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037048049"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neulet.2013.08.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037390002"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fnmol.2012.00083", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038046882"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nprot.2008.211", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039987283", 
          "https://doi.org/10.1038/nprot.2008.211"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gku631", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040800902"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ypmed.2009.12.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041413440"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btn647", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043301996"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1261/rna.034066.112", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043380733"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroscience.2010.06.071", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044030422"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkn923", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047610281"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12868-015-0186-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049621741", 
          "https://doi.org/10.1186/s12868-015-0186-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12035-014-8874-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049890406", 
          "https://doi.org/10.1007/s12035-014-8874-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.1239303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052744398"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2014.03.039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053241489"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s1461145710000179", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054933536"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s1461145710000416", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054933558"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2741/a472", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070917255"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/adb.12520", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086034106"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/adb.12520", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086034106"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/lls.2017.2756835", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092392005"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnb.2017.2776841", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092926943"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-018-31882-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106859006", 
          "https://doi.org/10.1038/s41598-018-31882-9"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "Exposure to nicotine during pregnancy through maternal smoking or nicotine replacement therapy is associated with adverse birth outcomes as well as several cognitive and neurobehavioral deficits. Several studies have shown that nicotine produces long-lasting effects on gene expression within many brain regions, including the ventral tegmental area (VTA), which is the origin of dopaminergic neurons and the dopamine reward pathway. Using a well-established rat model for perinatal nicotine exposure, we sought to investigate altered biological pathways using mRNA and miRNA expression profiles of dopaminergic (DA) and non-dopaminergic (non-DA) neurons in this highly-valuable area. Putative miRNA-gene target interactions were assessed as well as miRNA-pathway interactions. Our results indicate that extracellular matrix (ECM) receptor interactions were significantly altered in DA and non-DA neurons due to chronic nicotine exposure during pregnancy. They also show that the PI3K/AKT signaling pathway was enriched in DA neurons with multiple significant miRNA-gene targets, but the same changes were not seen in non-DA neurons. We speculate that nicotine exposure during pregnancy could differentially affect the gene expression of DA and non-DA neurons in the VTA.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-018-37098-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2438826", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "Comparison between dopaminergic and non-dopaminergic neurons in the VTA following chronic nicotine exposure during pregnancy", 
    "pagination": "445", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "530d74ca28910f3b7963986c4f2529e735e2850c7948f859ee3df45a0157aca1"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30679632"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-018-37098-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111641367"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-018-37098-1", 
      "https://app.dimensions.ai/details/publication/pub.1111641367"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:58", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000326_0000000326/records_68454_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-018-37098-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-37098-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-37098-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-37098-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-37098-1'


 

This table displays all metadata directly associated to this object as RDF triples.

247 TRIPLES      21 PREDICATES      75 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-018-37098-1 schema:about anzsrc-for:11
2 anzsrc-for:1109
3 schema:author Ne61328a230ba433ea9ee793ea546c105
4 schema:citation sg:pub.10.1007/s00213-006-0441-0
5 sg:pub.10.1007/s11481-010-9210-2
6 sg:pub.10.1007/s12035-014-8874-7
7 sg:pub.10.1038/npp.2010.250
8 sg:pub.10.1038/npp.2014.147
9 sg:pub.10.1038/nprot.2008.211
10 sg:pub.10.1038/s41598-018-31882-9
11 sg:pub.10.1038/srep22932
12 sg:pub.10.1038/tp.2014.144
13 sg:pub.10.1186/1471-2164-12-64
14 sg:pub.10.1186/s12868-015-0186-y
15 https://doi.org/10.1002/cbdv.200900319
16 https://doi.org/10.1016/b978-0-12-802574-1.00006-5
17 https://doi.org/10.1016/b978-0-444-63486-3.00005-0
18 https://doi.org/10.1016/j.brainres.2008.03.056
19 https://doi.org/10.1016/j.brainres.2008.10.076
20 https://doi.org/10.1016/j.cell.2014.03.039
21 https://doi.org/10.1016/j.gde.2011.04.008
22 https://doi.org/10.1016/j.jneumeth.2011.08.045
23 https://doi.org/10.1016/j.neubiorev.2005.04.016
24 https://doi.org/10.1016/j.neulet.2013.08.012
25 https://doi.org/10.1016/j.neuron.2011.01.017
26 https://doi.org/10.1016/j.neuroscience.2010.06.071
27 https://doi.org/10.1016/j.pharmthera.2009.02.003
28 https://doi.org/10.1016/j.pneurobio.2010.09.004
29 https://doi.org/10.1016/j.ypmed.2009.12.009
30 https://doi.org/10.1017/s1461145710000179
31 https://doi.org/10.1017/s1461145710000416
32 https://doi.org/10.1093/bioinformatics/btn577
33 https://doi.org/10.1093/bioinformatics/btn647
34 https://doi.org/10.1093/bioinformatics/btp101
35 https://doi.org/10.1093/nar/gkn923
36 https://doi.org/10.1093/nar/gku631
37 https://doi.org/10.1093/nar/gkv007
38 https://doi.org/10.1093/nar/gkv403
39 https://doi.org/10.1101/gr.1239303
40 https://doi.org/10.1109/lls.2017.2756835
41 https://doi.org/10.1109/tnb.2017.2776841
42 https://doi.org/10.1111/adb.12520
43 https://doi.org/10.1111/j.1460-9568.2005.04229.x
44 https://doi.org/10.1124/jpet.103.059899
45 https://doi.org/10.1261/rna.034066.112
46 https://doi.org/10.2174/157015907781695955
47 https://doi.org/10.2741/a472
48 https://doi.org/10.3109/10408444.2012.658506
49 https://doi.org/10.3389/fnmol.2012.00083
50 schema:datePublished 2019-12
51 schema:datePublishedReg 2019-12-01
52 schema:description Exposure to nicotine during pregnancy through maternal smoking or nicotine replacement therapy is associated with adverse birth outcomes as well as several cognitive and neurobehavioral deficits. Several studies have shown that nicotine produces long-lasting effects on gene expression within many brain regions, including the ventral tegmental area (VTA), which is the origin of dopaminergic neurons and the dopamine reward pathway. Using a well-established rat model for perinatal nicotine exposure, we sought to investigate altered biological pathways using mRNA and miRNA expression profiles of dopaminergic (DA) and non-dopaminergic (non-DA) neurons in this highly-valuable area. Putative miRNA-gene target interactions were assessed as well as miRNA-pathway interactions. Our results indicate that extracellular matrix (ECM) receptor interactions were significantly altered in DA and non-DA neurons due to chronic nicotine exposure during pregnancy. They also show that the PI3K/AKT signaling pathway was enriched in DA neurons with multiple significant miRNA-gene targets, but the same changes were not seen in non-DA neurons. We speculate that nicotine exposure during pregnancy could differentially affect the gene expression of DA and non-DA neurons in the VTA.
53 schema:genre research_article
54 schema:inLanguage en
55 schema:isAccessibleForFree true
56 schema:isPartOf N05d8e8a4fe1a473ab47c2ba969c596df
57 N600a41731c9649949d240cf5d228c670
58 sg:journal.1045337
59 schema:name Comparison between dopaminergic and non-dopaminergic neurons in the VTA following chronic nicotine exposure during pregnancy
60 schema:pagination 445
61 schema:productId N0bd1c16d8e5b4f08b0f70ed335a3922d
62 N1712e60612c740f4adcb5ad3325635f9
63 N470b9035bc8148949ad5978e7ea09467
64 N684d414fcfe64c95868c4f26c98924d1
65 N6e136d561e474371a5c534fe3f2ea9b3
66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111641367
67 https://doi.org/10.1038/s41598-018-37098-1
68 schema:sdDatePublished 2019-04-11T08:58
69 schema:sdLicense https://scigraph.springernature.com/explorer/license/
70 schema:sdPublisher Naf65863b687a41e58bc8275dee0b2755
71 schema:url https://www.nature.com/articles/s41598-018-37098-1
72 sgo:license sg:explorer/license/
73 sgo:sdDataset articles
74 rdf:type schema:ScholarlyArticle
75 N05d8e8a4fe1a473ab47c2ba969c596df schema:issueNumber 1
76 rdf:type schema:PublicationIssue
77 N0bd1c16d8e5b4f08b0f70ed335a3922d schema:name pubmed_id
78 schema:value 30679632
79 rdf:type schema:PropertyValue
80 N1712e60612c740f4adcb5ad3325635f9 schema:name doi
81 schema:value 10.1038/s41598-018-37098-1
82 rdf:type schema:PropertyValue
83 N29d86c773c6b4647b279f02edf854522 rdf:first sg:person.016164135415.50
84 rdf:rest Ne0ab46aa6b6b43ff8eff1c2af5c3f5db
85 N470b9035bc8148949ad5978e7ea09467 schema:name readcube_id
86 schema:value 530d74ca28910f3b7963986c4f2529e735e2850c7948f859ee3df45a0157aca1
87 rdf:type schema:PropertyValue
88 N600a41731c9649949d240cf5d228c670 schema:volumeNumber 9
89 rdf:type schema:PublicationVolume
90 N684d414fcfe64c95868c4f26c98924d1 schema:name nlm_unique_id
91 schema:value 101563288
92 rdf:type schema:PropertyValue
93 N6e136d561e474371a5c534fe3f2ea9b3 schema:name dimensions_id
94 schema:value pub.1111641367
95 rdf:type schema:PropertyValue
96 N7d64becfbe0a40df8a10a65c4802c16d rdf:first sg:person.01251532535.79
97 rdf:rest rdf:nil
98 Naf65863b687a41e58bc8275dee0b2755 schema:name Springer Nature - SN SciGraph project
99 rdf:type schema:Organization
100 Ne0ab46aa6b6b43ff8eff1c2af5c3f5db rdf:first sg:person.01352176643.53
101 rdf:rest Nfc86f65c434e49eab9fd4e1fe3364714
102 Ne61328a230ba433ea9ee793ea546c105 rdf:first sg:person.010476545374.95
103 rdf:rest N29d86c773c6b4647b279f02edf854522
104 Nfc86f65c434e49eab9fd4e1fe3364714 rdf:first sg:person.01254461033.74
105 rdf:rest N7d64becfbe0a40df8a10a65c4802c16d
106 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
107 schema:name Medical and Health Sciences
108 rdf:type schema:DefinedTerm
109 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
110 schema:name Neurosciences
111 rdf:type schema:DefinedTerm
112 sg:grant.2438826 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-018-37098-1
113 rdf:type schema:MonetaryGrant
114 sg:journal.1045337 schema:issn 2045-2322
115 schema:name Scientific Reports
116 rdf:type schema:Periodical
117 sg:person.010476545374.95 schema:affiliation https://www.grid.ac/institutes/grid.266436.3
118 schema:familyName Keller
119 schema:givenName Renee F.
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010476545374.95
121 rdf:type schema:Person
122 sg:person.01251532535.79 schema:affiliation https://www.grid.ac/institutes/grid.266436.3
123 schema:familyName Akay
124 schema:givenName Metin
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01251532535.79
126 rdf:type schema:Person
127 sg:person.01254461033.74 schema:affiliation https://www.grid.ac/institutes/grid.266436.3
128 schema:familyName Akay
129 schema:givenName Yasemin M.
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01254461033.74
131 rdf:type schema:Person
132 sg:person.01352176643.53 schema:affiliation https://www.grid.ac/institutes/grid.266436.3
133 schema:familyName Dragomir
134 schema:givenName Andrei
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01352176643.53
136 rdf:type schema:Person
137 sg:person.016164135415.50 schema:affiliation https://www.grid.ac/institutes/grid.266436.3
138 schema:familyName Kazemi
139 schema:givenName Tina
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016164135415.50
141 rdf:type schema:Person
142 sg:pub.10.1007/s00213-006-0441-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005220544
143 https://doi.org/10.1007/s00213-006-0441-0
144 rdf:type schema:CreativeWork
145 sg:pub.10.1007/s11481-010-9210-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017635653
146 https://doi.org/10.1007/s11481-010-9210-2
147 rdf:type schema:CreativeWork
148 sg:pub.10.1007/s12035-014-8874-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049890406
149 https://doi.org/10.1007/s12035-014-8874-7
150 rdf:type schema:CreativeWork
151 sg:pub.10.1038/npp.2010.250 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008818117
152 https://doi.org/10.1038/npp.2010.250
153 rdf:type schema:CreativeWork
154 sg:pub.10.1038/npp.2014.147 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015552840
155 https://doi.org/10.1038/npp.2014.147
156 rdf:type schema:CreativeWork
157 sg:pub.10.1038/nprot.2008.211 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039987283
158 https://doi.org/10.1038/nprot.2008.211
159 rdf:type schema:CreativeWork
160 sg:pub.10.1038/s41598-018-31882-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106859006
161 https://doi.org/10.1038/s41598-018-31882-9
162 rdf:type schema:CreativeWork
163 sg:pub.10.1038/srep22932 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011743535
164 https://doi.org/10.1038/srep22932
165 rdf:type schema:CreativeWork
166 sg:pub.10.1038/tp.2014.144 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009684222
167 https://doi.org/10.1038/tp.2014.144
168 rdf:type schema:CreativeWork
169 sg:pub.10.1186/1471-2164-12-64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012276932
170 https://doi.org/10.1186/1471-2164-12-64
171 rdf:type schema:CreativeWork
172 sg:pub.10.1186/s12868-015-0186-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1049621741
173 https://doi.org/10.1186/s12868-015-0186-y
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1002/cbdv.200900319 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030715242
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/b978-0-12-802574-1.00006-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035378527
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/b978-0-444-63486-3.00005-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013546025
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/j.brainres.2008.03.056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010463072
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/j.brainres.2008.10.076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026016501
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1016/j.cell.2014.03.039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053241489
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1016/j.gde.2011.04.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006592367
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1016/j.jneumeth.2011.08.045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013756338
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1016/j.neubiorev.2005.04.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009810532
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1016/j.neulet.2013.08.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037390002
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1016/j.neuron.2011.01.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009462554
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1016/j.neuroscience.2010.06.071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044030422
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1016/j.pharmthera.2009.02.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037048049
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1016/j.pneurobio.2010.09.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018602683
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1016/j.ypmed.2009.12.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041413440
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1017/s1461145710000179 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054933536
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1017/s1461145710000416 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054933558
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1093/bioinformatics/btn577 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005660075
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1093/bioinformatics/btn647 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043301996
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1093/bioinformatics/btp101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001910376
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1093/nar/gkn923 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047610281
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1093/nar/gku631 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040800902
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1093/nar/gkv007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016098431
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1093/nar/gkv403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029283036
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1101/gr.1239303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052744398
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1109/lls.2017.2756835 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092392005
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1109/tnb.2017.2776841 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092926943
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1111/adb.12520 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086034106
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1111/j.1460-9568.2005.04229.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1032281116
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1124/jpet.103.059899 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034024560
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1261/rna.034066.112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043380733
236 rdf:type schema:CreativeWork
237 https://doi.org/10.2174/157015907781695955 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019072058
238 rdf:type schema:CreativeWork
239 https://doi.org/10.2741/a472 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070917255
240 rdf:type schema:CreativeWork
241 https://doi.org/10.3109/10408444.2012.658506 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004001320
242 rdf:type schema:CreativeWork
243 https://doi.org/10.3389/fnmol.2012.00083 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038046882
244 rdf:type schema:CreativeWork
245 https://www.grid.ac/institutes/grid.266436.3 schema:alternateName University of Houston
246 schema:name University of Houston, Department of Biomedical Engineering, 77204, Houston, TX, USA
247 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...