Keyless Semi-Quantum Point-to-point Communication Protocol with Low Resource Requirements View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Haoye Lu, Michel Barbeau, Amiya Nayak

ABSTRACT

Full quantum capability devices can provide secure communications, but they are challenging to make portable given the current technology. Besides, classical portable devices are unable to construct communication channels resistant to quantum computers. Hence, communication security on portable devices cannot be guaranteed. Semi-Quantum Communication (SQC) attempts to break the quandary by lowering the receiver's required quantum capability so that secure communications can be implemented on a portable device. However, all SQC protocols have low qubit efficiency and complex hardware implementations. The protocols involving quantum entanglement require linear Entanglement Preservation Time (EPT) and linear quregister size. In this paper, we propose two new keyless SQC protocols that address the aforementioned weaknesses. They are named Economic Keyless Semi-Quantum Point-to-point Communication (EKSQPC) and Rate Estimation EKSQPC (REKSQPC). They achieve theoretically constant minimal EPT and quregister size, regardless of message length. We show that the new protocols, with low overhead, can detect Measure and Replay Attacks (MRA). REKSQDC is tolerant to transmission impairments and environmental perturbations. The protocols are based on a new quantum message transmission operation termed Tele-Fetch. Like QKD, their strength depends on physical principles rather than mathematical complexity. More... »

PAGES

64

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-018-37045-0

DOI

http://dx.doi.org/10.1038/s41598-018-37045-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111223623

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30635601


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0804", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Data Format", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Ottawa", 
          "id": "https://www.grid.ac/institutes/grid.28046.38", 
          "name": [
            "University of Ottawa, School of Electrical Engineering and Computer Science (EECS), K1N 6N5, Ottawa, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lu", 
        "givenName": "Haoye", 
        "id": "sg:person.013354715534.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013354715534.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Carleton University", 
          "id": "https://www.grid.ac/institutes/grid.34428.39", 
          "name": [
            "Carleton University, School of Computer Science, K1S 5B6, Ottawa, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Barbeau", 
        "givenName": "Michel", 
        "id": "sg:person.0715104072.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0715104072.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Ottawa", 
          "id": "https://www.grid.ac/institutes/grid.28046.38", 
          "name": [
            "University of Ottawa, School of Electrical Engineering and Computer Science (EECS), K1N 6N5, Ottawa, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nayak", 
        "givenName": "Amiya", 
        "id": "sg:person.011003073573.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011003073573.02"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1088/0256-307x/28/10/100301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003861304"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11128-015-1182-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004660128", 
          "https://doi.org/10.1007/s11128-015-1182-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys3705", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012061284", 
          "https://doi.org/10.1038/nphys3705"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.230504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020143779"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.230504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020143779"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature14025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033567082", 
          "https://doi.org/10.1038/nature14025"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep19898", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036557061", 
          "https://doi.org/10.1038/srep19898"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.85.441", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039061342"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.85.441", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039061342"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.65.032302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043902186"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.65.032302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043902186"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys1536", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045926109", 
          "https://doi.org/10.1038/nphys1536"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys1536", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045926109", 
          "https://doi.org/10.1038/nphys1536"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.79.032341", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048288099"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.79.032341", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048288099"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.99.140501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048411890"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.99.140501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048411890"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.057901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052073171"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.057901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052073171"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.79.052312", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060505734"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.79.052312", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060505734"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.67.661", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060803926"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.67.661", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060803926"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.283.5410.2050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062564639"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s0097539795293172", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062880065"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.19.009352", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065196550"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.21.023241", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065205119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.22.003475", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065206552"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.118.220501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085784152"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.118.220501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085784152"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.21236/ada462295", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091518596"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11128-017-1736-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092350098", 
          "https://doi.org/10.1007/s11128-017-1736-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11433-017-9100-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092445117", 
          "https://doi.org/10.1007/s11433-017-9100-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/glocomw.2016.7848870", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095321325"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/glocomw.2017.8269077", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100659163"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11128-018-1953-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104523018", 
          "https://doi.org/10.1007/s11128-018-1953-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11128-018-1953-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104523018", 
          "https://doi.org/10.1007/s11128-018-1953-3"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "Full quantum capability devices can provide secure communications, but they are challenging to make portable given the current technology. Besides, classical portable devices are unable to construct communication channels resistant to quantum computers. Hence, communication security on portable devices cannot be guaranteed. Semi-Quantum Communication (SQC) attempts to break the quandary by lowering the receiver's required quantum capability so that secure communications can be implemented on a portable device. However, all SQC protocols have low qubit efficiency and complex hardware implementations. The protocols involving quantum entanglement require linear Entanglement Preservation Time (EPT) and linear quregister size. In this paper, we propose two new keyless SQC protocols that address the aforementioned weaknesses. They are named Economic Keyless Semi-Quantum Point-to-point Communication (EKSQPC) and Rate Estimation EKSQPC (REKSQPC). They achieve theoretically constant minimal EPT and quregister size, regardless of message length. We show that the new protocols, with low overhead, can detect Measure and Replay Attacks (MRA). REKSQDC is tolerant to transmission impairments and environmental perturbations. The protocols are based on a new quantum message transmission operation termed Tele-Fetch. Like QKD, their strength depends on physical principles rather than mathematical complexity.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-018-37045-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "Keyless Semi-Quantum Point-to-point Communication Protocol with Low Resource Requirements", 
    "pagination": "64", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "fb17be80cfc7881436ff37a6f6c28773f12368ddc322cc3e1c56dab0af72f2c0"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30635601"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-018-37045-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111223623"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-018-37045-0", 
      "https://app.dimensions.ai/details/publication/pub.1111223623"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:40", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000319_0000000319/records_11214_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-018-37045-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-37045-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-37045-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-37045-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-37045-0'


 

This table displays all metadata directly associated to this object as RDF triples.

171 TRIPLES      21 PREDICATES      55 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-018-37045-0 schema:about anzsrc-for:08
2 anzsrc-for:0804
3 schema:author Nac2debb5e44a4c7fa41541fde025472b
4 schema:citation sg:pub.10.1007/s11128-015-1182-y
5 sg:pub.10.1007/s11128-017-1736-2
6 sg:pub.10.1007/s11128-018-1953-3
7 sg:pub.10.1007/s11433-017-9100-9
8 sg:pub.10.1038/nature14025
9 sg:pub.10.1038/nphys1536
10 sg:pub.10.1038/nphys3705
11 sg:pub.10.1038/srep19898
12 https://doi.org/10.1088/0256-307x/28/10/100301
13 https://doi.org/10.1103/physreva.65.032302
14 https://doi.org/10.1103/physreva.79.032341
15 https://doi.org/10.1103/physreva.79.052312
16 https://doi.org/10.1103/physrevlett.118.220501
17 https://doi.org/10.1103/physrevlett.67.661
18 https://doi.org/10.1103/physrevlett.85.441
19 https://doi.org/10.1103/physrevlett.92.057901
20 https://doi.org/10.1103/physrevlett.94.230504
21 https://doi.org/10.1103/physrevlett.99.140501
22 https://doi.org/10.1109/glocomw.2016.7848870
23 https://doi.org/10.1109/glocomw.2017.8269077
24 https://doi.org/10.1126/science.283.5410.2050
25 https://doi.org/10.1137/s0097539795293172
26 https://doi.org/10.1364/oe.19.009352
27 https://doi.org/10.1364/oe.21.023241
28 https://doi.org/10.1364/oe.22.003475
29 https://doi.org/10.21236/ada462295
30 schema:datePublished 2019-12
31 schema:datePublishedReg 2019-12-01
32 schema:description Full quantum capability devices can provide secure communications, but they are challenging to make portable given the current technology. Besides, classical portable devices are unable to construct communication channels resistant to quantum computers. Hence, communication security on portable devices cannot be guaranteed. Semi-Quantum Communication (SQC) attempts to break the quandary by lowering the receiver's required quantum capability so that secure communications can be implemented on a portable device. However, all SQC protocols have low qubit efficiency and complex hardware implementations. The protocols involving quantum entanglement require linear Entanglement Preservation Time (EPT) and linear quregister size. In this paper, we propose two new keyless SQC protocols that address the aforementioned weaknesses. They are named Economic Keyless Semi-Quantum Point-to-point Communication (EKSQPC) and Rate Estimation EKSQPC (REKSQPC). They achieve theoretically constant minimal EPT and quregister size, regardless of message length. We show that the new protocols, with low overhead, can detect Measure and Replay Attacks (MRA). REKSQDC is tolerant to transmission impairments and environmental perturbations. The protocols are based on a new quantum message transmission operation termed Tele-Fetch. Like QKD, their strength depends on physical principles rather than mathematical complexity.
33 schema:genre research_article
34 schema:inLanguage en
35 schema:isAccessibleForFree true
36 schema:isPartOf N1ad4421c56a24b928efb56f5cc48dfcb
37 N84c7a3a9a355428d94256fe19e58c802
38 sg:journal.1045337
39 schema:name Keyless Semi-Quantum Point-to-point Communication Protocol with Low Resource Requirements
40 schema:pagination 64
41 schema:productId N16d62dea014541ea9aaff03a0ff60f4a
42 N27bb4f053a534ea1994a4d1f3717cab5
43 N2f473260007c4f87a4f106590e31d2d6
44 N3615f8ae99de4c5ab423b01d2b840e4f
45 N7000e6ab974c448a9d23cf2d4bef48e7
46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111223623
47 https://doi.org/10.1038/s41598-018-37045-0
48 schema:sdDatePublished 2019-04-11T08:40
49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
50 schema:sdPublisher N7da9cb8d1c794a0f9b3f2842aac3f4ac
51 schema:url https://www.nature.com/articles/s41598-018-37045-0
52 sgo:license sg:explorer/license/
53 sgo:sdDataset articles
54 rdf:type schema:ScholarlyArticle
55 N16d62dea014541ea9aaff03a0ff60f4a schema:name nlm_unique_id
56 schema:value 101563288
57 rdf:type schema:PropertyValue
58 N1ad4421c56a24b928efb56f5cc48dfcb schema:volumeNumber 9
59 rdf:type schema:PublicationVolume
60 N27bb4f053a534ea1994a4d1f3717cab5 schema:name dimensions_id
61 schema:value pub.1111223623
62 rdf:type schema:PropertyValue
63 N290c623d097641268d85bba2dcad3bb2 rdf:first sg:person.0715104072.48
64 rdf:rest N66b11f8706444abbb019ba71576bd8b0
65 N2f473260007c4f87a4f106590e31d2d6 schema:name pubmed_id
66 schema:value 30635601
67 rdf:type schema:PropertyValue
68 N3615f8ae99de4c5ab423b01d2b840e4f schema:name readcube_id
69 schema:value fb17be80cfc7881436ff37a6f6c28773f12368ddc322cc3e1c56dab0af72f2c0
70 rdf:type schema:PropertyValue
71 N66b11f8706444abbb019ba71576bd8b0 rdf:first sg:person.011003073573.02
72 rdf:rest rdf:nil
73 N7000e6ab974c448a9d23cf2d4bef48e7 schema:name doi
74 schema:value 10.1038/s41598-018-37045-0
75 rdf:type schema:PropertyValue
76 N7da9cb8d1c794a0f9b3f2842aac3f4ac schema:name Springer Nature - SN SciGraph project
77 rdf:type schema:Organization
78 N84c7a3a9a355428d94256fe19e58c802 schema:issueNumber 1
79 rdf:type schema:PublicationIssue
80 Nac2debb5e44a4c7fa41541fde025472b rdf:first sg:person.013354715534.23
81 rdf:rest N290c623d097641268d85bba2dcad3bb2
82 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
83 schema:name Information and Computing Sciences
84 rdf:type schema:DefinedTerm
85 anzsrc-for:0804 schema:inDefinedTermSet anzsrc-for:
86 schema:name Data Format
87 rdf:type schema:DefinedTerm
88 sg:journal.1045337 schema:issn 2045-2322
89 schema:name Scientific Reports
90 rdf:type schema:Periodical
91 sg:person.011003073573.02 schema:affiliation https://www.grid.ac/institutes/grid.28046.38
92 schema:familyName Nayak
93 schema:givenName Amiya
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011003073573.02
95 rdf:type schema:Person
96 sg:person.013354715534.23 schema:affiliation https://www.grid.ac/institutes/grid.28046.38
97 schema:familyName Lu
98 schema:givenName Haoye
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013354715534.23
100 rdf:type schema:Person
101 sg:person.0715104072.48 schema:affiliation https://www.grid.ac/institutes/grid.34428.39
102 schema:familyName Barbeau
103 schema:givenName Michel
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0715104072.48
105 rdf:type schema:Person
106 sg:pub.10.1007/s11128-015-1182-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1004660128
107 https://doi.org/10.1007/s11128-015-1182-y
108 rdf:type schema:CreativeWork
109 sg:pub.10.1007/s11128-017-1736-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092350098
110 https://doi.org/10.1007/s11128-017-1736-2
111 rdf:type schema:CreativeWork
112 sg:pub.10.1007/s11128-018-1953-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104523018
113 https://doi.org/10.1007/s11128-018-1953-3
114 rdf:type schema:CreativeWork
115 sg:pub.10.1007/s11433-017-9100-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092445117
116 https://doi.org/10.1007/s11433-017-9100-9
117 rdf:type schema:CreativeWork
118 sg:pub.10.1038/nature14025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033567082
119 https://doi.org/10.1038/nature14025
120 rdf:type schema:CreativeWork
121 sg:pub.10.1038/nphys1536 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045926109
122 https://doi.org/10.1038/nphys1536
123 rdf:type schema:CreativeWork
124 sg:pub.10.1038/nphys3705 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012061284
125 https://doi.org/10.1038/nphys3705
126 rdf:type schema:CreativeWork
127 sg:pub.10.1038/srep19898 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036557061
128 https://doi.org/10.1038/srep19898
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1088/0256-307x/28/10/100301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003861304
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1103/physreva.65.032302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043902186
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1103/physreva.79.032341 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048288099
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1103/physreva.79.052312 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060505734
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1103/physrevlett.118.220501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085784152
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1103/physrevlett.67.661 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060803926
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1103/physrevlett.85.441 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039061342
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1103/physrevlett.92.057901 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052073171
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1103/physrevlett.94.230504 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020143779
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1103/physrevlett.99.140501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048411890
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1109/glocomw.2016.7848870 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095321325
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1109/glocomw.2017.8269077 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100659163
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1126/science.283.5410.2050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062564639
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1137/s0097539795293172 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062880065
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1364/oe.19.009352 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065196550
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1364/oe.21.023241 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065205119
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1364/oe.22.003475 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065206552
163 rdf:type schema:CreativeWork
164 https://doi.org/10.21236/ada462295 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091518596
165 rdf:type schema:CreativeWork
166 https://www.grid.ac/institutes/grid.28046.38 schema:alternateName University of Ottawa
167 schema:name University of Ottawa, School of Electrical Engineering and Computer Science (EECS), K1N 6N5, Ottawa, Canada
168 rdf:type schema:Organization
169 https://www.grid.ac/institutes/grid.34428.39 schema:alternateName Carleton University
170 schema:name Carleton University, School of Computer Science, K1S 5B6, Ottawa, Canada
171 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...