Accurate signal-source localization in brain slices by means of high-density microelectrode arrays View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Marie Engelene J. Obien, Andreas Hierlemann, Urs Frey

ABSTRACT

Extracellular recordings by means of high-density microelectrode arrays (HD-MEAs) have become a powerful tool to resolve subcellular details of single neurons in active networks grown from dissociated cells. To extend the application of this technology to slice preparations, we developed models describing how extracellular signals, produced by neuronal cells in slices, are detected by microelectrode arrays. The models help to analyze and understand the electrical-potential landscape in an in vitro HD-MEA-recording scenario based on point-current sources. We employed two modeling schemes, (i) a simple analytical approach, based on the method of images (MoI), and (ii) an approach, based on finite-element methods (FEM). We compared and validated the models with large-scale, high-spatiotemporal-resolution recordings of slice preparations by means of HD-MEAs. We then developed a model-based localization algorithm and compared the performance of MoI and FEM models. Both models provided accurate localization results and a comparable and negligible systematic error, when the point source was in saline, a condition similar to cell-culture experiments. Moreover, the relative random error in the x-y-z-localization amounted only up to 4.3% for z-distances up to 200 μm from the HD-MEA surface. In tissue, the systematic errors of both, MoI and FEM models were significantly higher, and a pre-calibration was required. Nevertheless, the FEM values proved to be closer to the tissue experimental results, yielding 5.2 μm systematic mean error, compared to 22.0 μm obtained with MoI. These results suggest that the medium volume or "saline height", the brain slice thickness and anisotropy, and the location of the reference electrode, which were included in the FEM model, considerably affect the extracellular signal and localization performance, when the signal source is at larger distance to the array. After pre-calibration, the relative random error of the z-localization in tissue was only 3% for z-distances up to 200 μm. We then applied the model and related detailed understanding of extracellular recordings to achieve an electrically-guided navigation of a stimulating micropipette, solely based on the measured HD-MEA signals, and managed to target spontaneously active neurons in an acute brain slice for electroporation. More... »

PAGES

788

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-018-36895-y

DOI

http://dx.doi.org/10.1038/s41598-018-36895-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111676519

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30692552


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Neurosciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "RIKEN Quantitative Biology Center", 
          "id": "https://www.grid.ac/institutes/grid.474694.c", 
          "name": [
            "Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland", 
            "RIKEN Quantitative Biology Center, Kobe, Japan", 
            "MaxWell Biosystems AG, Basel, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Obien", 
        "givenName": "Marie Engelene J.", 
        "id": "sg:person.01310634164.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01310634164.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Swiss Federal Institute of Technology in Zurich", 
          "id": "https://www.grid.ac/institutes/grid.5801.c", 
          "name": [
            "Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hierlemann", 
        "givenName": "Andreas", 
        "id": "sg:person.01064045711.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01064045711.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "RIKEN Quantitative Biology Center", 
          "id": "https://www.grid.ac/institutes/grid.474694.c", 
          "name": [
            "Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland", 
            "RIKEN Quantitative Biology Center, Kobe, Japan", 
            "MaxWell Biosystems AG, Basel, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Frey", 
        "givenName": "Urs", 
        "id": "sg:person.01311304205.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01311304205.60"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.neures.2012.12.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002716797"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrn3241", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004751033", 
          "https://doi.org/10.1038/nrn3241"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0118514", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006026880"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1529/biophysj.107.111179", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007329530"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00216-010-3744-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008682955", 
          "https://doi.org/10.1007/s00216-010-3744-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00216-010-3744-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008682955", 
          "https://doi.org/10.1007/s00216-010-3744-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jssc.2009.2035196", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008743837"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt.3445", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009095423", 
          "https://doi.org/10.1038/nbt.3445"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00424-007-0234-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011838012", 
          "https://doi.org/10.1007/s00424-007-0234-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00424-007-0234-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011838012", 
          "https://doi.org/10.1007/s00424-007-0234-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02476917", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011852732", 
          "https://doi.org/10.1007/bf02476917"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02476917", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011852732", 
          "https://doi.org/10.1007/bf02476917"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0014-4886(74)90195-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013193938"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jneumeth.2005.04.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014671860"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jneumeth.2005.04.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014671860"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrn3599", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015242939", 
          "https://doi.org/10.1038/nrn3599"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/pdb.prot5201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015401867"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0020810", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015978029"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms3181", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015996105", 
          "https://doi.org/10.1038/ncomms3181"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep31332", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016410103", 
          "https://doi.org/10.1038/srep31332"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nn1233", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017540640", 
          "https://doi.org/10.1038/nn1233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nn1233", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017540640", 
          "https://doi.org/10.1038/nn1233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1460-9568.2012.08249.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020743456"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cne.10905", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020948132"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1008832702585", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021252233", 
          "https://doi.org/10.1023/a:1008832702585"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bios.2008.11.028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021928635"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/rs025i005p00689", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024220200"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nprot.2009.56", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024339432", 
          "https://doi.org/10.1038/nprot.2009.56"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jneumeth.2008.01.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024481469"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10827-006-0018-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024540979", 
          "https://doi.org/10.1007/s10827-006-0018-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jneumeth.2014.05.037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026119285"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jneumeth.2005.12.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028211774"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00018738800101389", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030639031"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00018738800101389", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030639031"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuron.2011.11.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034448624"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1197598", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034640111"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nn.4365", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036076759", 
          "https://doi.org/10.1038/nn.4365"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.1993", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036153969", 
          "https://doi.org/10.1038/nmeth.1993"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth1150", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038370838", 
          "https://doi.org/10.1038/nmeth1150"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12021-015-9265-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040113019", 
          "https://doi.org/10.1007/s12021-015-9265-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fncir.2012.00080", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040614456"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0016-7142(88)90016-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045114976"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0016-7142(88)90016-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045114976"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuron.2010.08.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048554452"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0006-3495(62)86953-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049399346"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jssc.2003.819174", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049702676"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4939629", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050365363"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c2lc21037a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051248422"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b907394a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051354578"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b907394a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051354578"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jn.00979.2005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051703533"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jneumeth.2008.11.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053289033"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0031-9155/32/1/004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059021497"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0031-9155/36/4/009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059022139"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jssc.2014.2359219", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061331784"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1119/1.11501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062228595"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jn.00386.2016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063199744"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jn.00386.2016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063199744"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3791/50034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071423536"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/embc.2015.7320129", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079206726"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/physrev.1985.65.1.37", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1080011685"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jn.1968.31.6.884", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1081282459"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jn.1994.72.2.742", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082594383"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jn.1975.38.2.356", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082628095"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1523/eneuro.0291-16.2016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083514515"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-017-09033-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091161908", 
          "https://doi.org/10.1038/s41598-017-09033-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-017-09033-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091161908", 
          "https://doi.org/10.1038/s41598-017-09033-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-017-09033-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091161908", 
          "https://doi.org/10.1038/s41598-017-09033-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuron.2017.08.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091384409"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuron.2017.08.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091387564"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7554/elife.30198", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092131929"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tbcas.2017.2750484", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092392168"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icsens.2013.6688361", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094226391"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/biocas.2013.6679651", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095228167"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/acprof:oso/9780195050387.001.0001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098775110"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt.4034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099697721", 
          "https://doi.org/10.1038/nbt.4034"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/266734", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101101312"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/266734", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101101312"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/266734", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101101312"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/2398212818776561", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104049042"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/2398212818776561", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104049042"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/2398212818776561", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104049042"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "Extracellular recordings by means of high-density microelectrode arrays (HD-MEAs) have become a powerful tool to resolve subcellular details of single neurons in active networks grown from dissociated cells. To extend the application of this technology to slice preparations, we developed models describing how extracellular signals, produced by neuronal cells in slices, are detected by microelectrode arrays. The models help to analyze and understand the electrical-potential landscape in an in vitro HD-MEA-recording scenario based on point-current sources. We employed two modeling schemes, (i) a simple analytical approach, based on the method of images (MoI), and (ii) an approach, based on finite-element methods (FEM). We compared and validated the models with large-scale, high-spatiotemporal-resolution recordings of slice preparations by means of HD-MEAs. We then developed a model-based localization algorithm and compared the performance of MoI and FEM models. Both models provided accurate localization results and a comparable and negligible systematic error, when the point source was in saline, a condition similar to cell-culture experiments. Moreover, the relative random error in the x-y-z-localization amounted only up to 4.3% for z-distances up to 200\u2009\u03bcm from the HD-MEA surface. In tissue, the systematic errors of both, MoI and FEM models were significantly higher, and a pre-calibration was required. Nevertheless, the FEM values proved to be closer to the tissue experimental results, yielding 5.2\u2009\u03bcm systematic mean error, compared to 22.0\u2009\u03bcm obtained with MoI. These results suggest that the medium volume or \"saline height\", the brain slice thickness and anisotropy, and the location of the reference electrode, which were included in the FEM model, considerably affect the extracellular signal and localization performance, when the signal source is at larger distance to the array. After pre-calibration, the relative random error of the z-localization in tissue was only 3% for z-distances up to 200\u2009\u03bcm. We then applied the model and related detailed understanding of extracellular recordings to achieve an electrically-guided navigation of a stimulating micropipette, solely based on the measured HD-MEA signals, and managed to target spontaneously active neurons in an acute brain slice for electroporation.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-018-36895-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.5494710", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.6133149", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "Accurate signal-source localization in brain slices by means of high-density microelectrode arrays", 
    "pagination": "788", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d1d427aeb2240ac00e1efe446b07437031cd0cc00fde2786cb529ad7f9bcb038"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30692552"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-018-36895-y"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111676519"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-018-36895-y", 
      "https://app.dimensions.ai/details/publication/pub.1111676519"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:58", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000326_0000000326/records_68442_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-018-36895-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-36895-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-36895-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-36895-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-36895-y'


 

This table displays all metadata directly associated to this object as RDF triples.

310 TRIPLES      21 PREDICATES      96 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-018-36895-y schema:about anzsrc-for:11
2 anzsrc-for:1109
3 schema:author Nb016a087238e4dba8e6e8de5ae702a14
4 schema:citation sg:pub.10.1007/bf02476917
5 sg:pub.10.1007/s00216-010-3744-2
6 sg:pub.10.1007/s00424-007-0234-2
7 sg:pub.10.1007/s10827-006-0018-2
8 sg:pub.10.1007/s12021-015-9265-6
9 sg:pub.10.1023/a:1008832702585
10 sg:pub.10.1038/nbt.3445
11 sg:pub.10.1038/nbt.4034
12 sg:pub.10.1038/ncomms3181
13 sg:pub.10.1038/nmeth.1993
14 sg:pub.10.1038/nmeth1150
15 sg:pub.10.1038/nn.4365
16 sg:pub.10.1038/nn1233
17 sg:pub.10.1038/nprot.2009.56
18 sg:pub.10.1038/nrn3241
19 sg:pub.10.1038/nrn3599
20 sg:pub.10.1038/s41598-017-09033-3
21 sg:pub.10.1038/srep31332
22 https://doi.org/10.1002/cne.10905
23 https://doi.org/10.1016/0014-4886(74)90195-2
24 https://doi.org/10.1016/0016-7142(88)90016-6
25 https://doi.org/10.1016/j.bios.2008.11.028
26 https://doi.org/10.1016/j.jneumeth.2005.04.002
27 https://doi.org/10.1016/j.jneumeth.2005.12.005
28 https://doi.org/10.1016/j.jneumeth.2008.01.018
29 https://doi.org/10.1016/j.jneumeth.2008.11.025
30 https://doi.org/10.1016/j.jneumeth.2014.05.037
31 https://doi.org/10.1016/j.neures.2012.12.004
32 https://doi.org/10.1016/j.neuron.2010.08.001
33 https://doi.org/10.1016/j.neuron.2011.11.006
34 https://doi.org/10.1016/j.neuron.2017.08.011
35 https://doi.org/10.1016/j.neuron.2017.08.018
36 https://doi.org/10.1016/s0006-3495(62)86953-7
37 https://doi.org/10.1029/rs025i005p00689
38 https://doi.org/10.1039/b907394a
39 https://doi.org/10.1039/c2lc21037a
40 https://doi.org/10.1063/1.4939629
41 https://doi.org/10.1080/00018738800101389
42 https://doi.org/10.1088/0031-9155/32/1/004
43 https://doi.org/10.1088/0031-9155/36/4/009
44 https://doi.org/10.1093/acprof:oso/9780195050387.001.0001
45 https://doi.org/10.1101/266734
46 https://doi.org/10.1101/pdb.prot5201
47 https://doi.org/10.1109/biocas.2013.6679651
48 https://doi.org/10.1109/embc.2015.7320129
49 https://doi.org/10.1109/icsens.2013.6688361
50 https://doi.org/10.1109/jssc.2003.819174
51 https://doi.org/10.1109/jssc.2009.2035196
52 https://doi.org/10.1109/jssc.2014.2359219
53 https://doi.org/10.1109/tbcas.2017.2750484
54 https://doi.org/10.1111/j.1460-9568.2012.08249.x
55 https://doi.org/10.1119/1.11501
56 https://doi.org/10.1126/science.1197598
57 https://doi.org/10.1152/jn.00386.2016
58 https://doi.org/10.1152/jn.00979.2005
59 https://doi.org/10.1152/jn.1968.31.6.884
60 https://doi.org/10.1152/jn.1975.38.2.356
61 https://doi.org/10.1152/jn.1994.72.2.742
62 https://doi.org/10.1152/physrev.1985.65.1.37
63 https://doi.org/10.1177/2398212818776561
64 https://doi.org/10.1371/journal.pone.0020810
65 https://doi.org/10.1371/journal.pone.0118514
66 https://doi.org/10.1523/eneuro.0291-16.2016
67 https://doi.org/10.1529/biophysj.107.111179
68 https://doi.org/10.3389/fncir.2012.00080
69 https://doi.org/10.3791/50034
70 https://doi.org/10.7554/elife.30198
71 schema:datePublished 2019-12
72 schema:datePublishedReg 2019-12-01
73 schema:description Extracellular recordings by means of high-density microelectrode arrays (HD-MEAs) have become a powerful tool to resolve subcellular details of single neurons in active networks grown from dissociated cells. To extend the application of this technology to slice preparations, we developed models describing how extracellular signals, produced by neuronal cells in slices, are detected by microelectrode arrays. The models help to analyze and understand the electrical-potential landscape in an in vitro HD-MEA-recording scenario based on point-current sources. We employed two modeling schemes, (i) a simple analytical approach, based on the method of images (MoI), and (ii) an approach, based on finite-element methods (FEM). We compared and validated the models with large-scale, high-spatiotemporal-resolution recordings of slice preparations by means of HD-MEAs. We then developed a model-based localization algorithm and compared the performance of MoI and FEM models. Both models provided accurate localization results and a comparable and negligible systematic error, when the point source was in saline, a condition similar to cell-culture experiments. Moreover, the relative random error in the x-y-z-localization amounted only up to 4.3% for z-distances up to 200 μm from the HD-MEA surface. In tissue, the systematic errors of both, MoI and FEM models were significantly higher, and a pre-calibration was required. Nevertheless, the FEM values proved to be closer to the tissue experimental results, yielding 5.2 μm systematic mean error, compared to 22.0 μm obtained with MoI. These results suggest that the medium volume or "saline height", the brain slice thickness and anisotropy, and the location of the reference electrode, which were included in the FEM model, considerably affect the extracellular signal and localization performance, when the signal source is at larger distance to the array. After pre-calibration, the relative random error of the z-localization in tissue was only 3% for z-distances up to 200 μm. We then applied the model and related detailed understanding of extracellular recordings to achieve an electrically-guided navigation of a stimulating micropipette, solely based on the measured HD-MEA signals, and managed to target spontaneously active neurons in an acute brain slice for electroporation.
74 schema:genre research_article
75 schema:inLanguage en
76 schema:isAccessibleForFree true
77 schema:isPartOf N30278192b14343bdac7e22cbefe34f62
78 Nd734c736a69849a7b78d54ad208c2fea
79 sg:journal.1045337
80 schema:name Accurate signal-source localization in brain slices by means of high-density microelectrode arrays
81 schema:pagination 788
82 schema:productId N214ec7c2e920423ebec58a111cea8f81
83 N4358fcb7dbad4fbb884ce8ebd4c24cdf
84 N4c2df11ba6864e159f586c9acbf342c5
85 N83f8f650cb4c486faa365833a5c99f7d
86 N94fea69aff9b4fbfb29ec6f509d3190c
87 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111676519
88 https://doi.org/10.1038/s41598-018-36895-y
89 schema:sdDatePublished 2019-04-11T08:58
90 schema:sdLicense https://scigraph.springernature.com/explorer/license/
91 schema:sdPublisher Ne6198e0fa4334377be6645edb62b589e
92 schema:url https://www.nature.com/articles/s41598-018-36895-y
93 sgo:license sg:explorer/license/
94 sgo:sdDataset articles
95 rdf:type schema:ScholarlyArticle
96 N214ec7c2e920423ebec58a111cea8f81 schema:name readcube_id
97 schema:value d1d427aeb2240ac00e1efe446b07437031cd0cc00fde2786cb529ad7f9bcb038
98 rdf:type schema:PropertyValue
99 N30278192b14343bdac7e22cbefe34f62 schema:volumeNumber 9
100 rdf:type schema:PublicationVolume
101 N4358fcb7dbad4fbb884ce8ebd4c24cdf schema:name doi
102 schema:value 10.1038/s41598-018-36895-y
103 rdf:type schema:PropertyValue
104 N4592e21923164e90b11fbc8174571dcc rdf:first sg:person.01064045711.53
105 rdf:rest Nf034d7b219b544199658e60a5ebb4b97
106 N4c2df11ba6864e159f586c9acbf342c5 schema:name dimensions_id
107 schema:value pub.1111676519
108 rdf:type schema:PropertyValue
109 N83f8f650cb4c486faa365833a5c99f7d schema:name pubmed_id
110 schema:value 30692552
111 rdf:type schema:PropertyValue
112 N94fea69aff9b4fbfb29ec6f509d3190c schema:name nlm_unique_id
113 schema:value 101563288
114 rdf:type schema:PropertyValue
115 Nb016a087238e4dba8e6e8de5ae702a14 rdf:first sg:person.01310634164.99
116 rdf:rest N4592e21923164e90b11fbc8174571dcc
117 Nd734c736a69849a7b78d54ad208c2fea schema:issueNumber 1
118 rdf:type schema:PublicationIssue
119 Ne6198e0fa4334377be6645edb62b589e schema:name Springer Nature - SN SciGraph project
120 rdf:type schema:Organization
121 Nf034d7b219b544199658e60a5ebb4b97 rdf:first sg:person.01311304205.60
122 rdf:rest rdf:nil
123 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
124 schema:name Medical and Health Sciences
125 rdf:type schema:DefinedTerm
126 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
127 schema:name Neurosciences
128 rdf:type schema:DefinedTerm
129 sg:grant.5494710 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-018-36895-y
130 rdf:type schema:MonetaryGrant
131 sg:grant.6133149 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-018-36895-y
132 rdf:type schema:MonetaryGrant
133 sg:journal.1045337 schema:issn 2045-2322
134 schema:name Scientific Reports
135 rdf:type schema:Periodical
136 sg:person.01064045711.53 schema:affiliation https://www.grid.ac/institutes/grid.5801.c
137 schema:familyName Hierlemann
138 schema:givenName Andreas
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01064045711.53
140 rdf:type schema:Person
141 sg:person.01310634164.99 schema:affiliation https://www.grid.ac/institutes/grid.474694.c
142 schema:familyName Obien
143 schema:givenName Marie Engelene J.
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01310634164.99
145 rdf:type schema:Person
146 sg:person.01311304205.60 schema:affiliation https://www.grid.ac/institutes/grid.474694.c
147 schema:familyName Frey
148 schema:givenName Urs
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01311304205.60
150 rdf:type schema:Person
151 sg:pub.10.1007/bf02476917 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011852732
152 https://doi.org/10.1007/bf02476917
153 rdf:type schema:CreativeWork
154 sg:pub.10.1007/s00216-010-3744-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008682955
155 https://doi.org/10.1007/s00216-010-3744-2
156 rdf:type schema:CreativeWork
157 sg:pub.10.1007/s00424-007-0234-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011838012
158 https://doi.org/10.1007/s00424-007-0234-2
159 rdf:type schema:CreativeWork
160 sg:pub.10.1007/s10827-006-0018-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024540979
161 https://doi.org/10.1007/s10827-006-0018-2
162 rdf:type schema:CreativeWork
163 sg:pub.10.1007/s12021-015-9265-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040113019
164 https://doi.org/10.1007/s12021-015-9265-6
165 rdf:type schema:CreativeWork
166 sg:pub.10.1023/a:1008832702585 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021252233
167 https://doi.org/10.1023/a:1008832702585
168 rdf:type schema:CreativeWork
169 sg:pub.10.1038/nbt.3445 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009095423
170 https://doi.org/10.1038/nbt.3445
171 rdf:type schema:CreativeWork
172 sg:pub.10.1038/nbt.4034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099697721
173 https://doi.org/10.1038/nbt.4034
174 rdf:type schema:CreativeWork
175 sg:pub.10.1038/ncomms3181 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015996105
176 https://doi.org/10.1038/ncomms3181
177 rdf:type schema:CreativeWork
178 sg:pub.10.1038/nmeth.1993 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036153969
179 https://doi.org/10.1038/nmeth.1993
180 rdf:type schema:CreativeWork
181 sg:pub.10.1038/nmeth1150 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038370838
182 https://doi.org/10.1038/nmeth1150
183 rdf:type schema:CreativeWork
184 sg:pub.10.1038/nn.4365 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036076759
185 https://doi.org/10.1038/nn.4365
186 rdf:type schema:CreativeWork
187 sg:pub.10.1038/nn1233 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017540640
188 https://doi.org/10.1038/nn1233
189 rdf:type schema:CreativeWork
190 sg:pub.10.1038/nprot.2009.56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024339432
191 https://doi.org/10.1038/nprot.2009.56
192 rdf:type schema:CreativeWork
193 sg:pub.10.1038/nrn3241 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004751033
194 https://doi.org/10.1038/nrn3241
195 rdf:type schema:CreativeWork
196 sg:pub.10.1038/nrn3599 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015242939
197 https://doi.org/10.1038/nrn3599
198 rdf:type schema:CreativeWork
199 sg:pub.10.1038/s41598-017-09033-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091161908
200 https://doi.org/10.1038/s41598-017-09033-3
201 rdf:type schema:CreativeWork
202 sg:pub.10.1038/srep31332 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016410103
203 https://doi.org/10.1038/srep31332
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1002/cne.10905 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020948132
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1016/0014-4886(74)90195-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013193938
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1016/0016-7142(88)90016-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045114976
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1016/j.bios.2008.11.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021928635
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1016/j.jneumeth.2005.04.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014671860
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1016/j.jneumeth.2005.12.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028211774
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1016/j.jneumeth.2008.01.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024481469
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1016/j.jneumeth.2008.11.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053289033
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1016/j.jneumeth.2014.05.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026119285
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1016/j.neures.2012.12.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002716797
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1016/j.neuron.2010.08.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048554452
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1016/j.neuron.2011.11.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034448624
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1016/j.neuron.2017.08.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091384409
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1016/j.neuron.2017.08.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091387564
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1016/s0006-3495(62)86953-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049399346
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1029/rs025i005p00689 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024220200
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1039/b907394a schema:sameAs https://app.dimensions.ai/details/publication/pub.1051354578
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1039/c2lc21037a schema:sameAs https://app.dimensions.ai/details/publication/pub.1051248422
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1063/1.4939629 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050365363
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1080/00018738800101389 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030639031
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1088/0031-9155/32/1/004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059021497
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1088/0031-9155/36/4/009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059022139
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1093/acprof:oso/9780195050387.001.0001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098775110
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1101/266734 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101101312
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1101/pdb.prot5201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015401867
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1109/biocas.2013.6679651 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095228167
256 rdf:type schema:CreativeWork
257 https://doi.org/10.1109/embc.2015.7320129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079206726
258 rdf:type schema:CreativeWork
259 https://doi.org/10.1109/icsens.2013.6688361 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094226391
260 rdf:type schema:CreativeWork
261 https://doi.org/10.1109/jssc.2003.819174 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049702676
262 rdf:type schema:CreativeWork
263 https://doi.org/10.1109/jssc.2009.2035196 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008743837
264 rdf:type schema:CreativeWork
265 https://doi.org/10.1109/jssc.2014.2359219 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061331784
266 rdf:type schema:CreativeWork
267 https://doi.org/10.1109/tbcas.2017.2750484 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092392168
268 rdf:type schema:CreativeWork
269 https://doi.org/10.1111/j.1460-9568.2012.08249.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1020743456
270 rdf:type schema:CreativeWork
271 https://doi.org/10.1119/1.11501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062228595
272 rdf:type schema:CreativeWork
273 https://doi.org/10.1126/science.1197598 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034640111
274 rdf:type schema:CreativeWork
275 https://doi.org/10.1152/jn.00386.2016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063199744
276 rdf:type schema:CreativeWork
277 https://doi.org/10.1152/jn.00979.2005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051703533
278 rdf:type schema:CreativeWork
279 https://doi.org/10.1152/jn.1968.31.6.884 schema:sameAs https://app.dimensions.ai/details/publication/pub.1081282459
280 rdf:type schema:CreativeWork
281 https://doi.org/10.1152/jn.1975.38.2.356 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082628095
282 rdf:type schema:CreativeWork
283 https://doi.org/10.1152/jn.1994.72.2.742 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082594383
284 rdf:type schema:CreativeWork
285 https://doi.org/10.1152/physrev.1985.65.1.37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1080011685
286 rdf:type schema:CreativeWork
287 https://doi.org/10.1177/2398212818776561 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104049042
288 rdf:type schema:CreativeWork
289 https://doi.org/10.1371/journal.pone.0020810 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015978029
290 rdf:type schema:CreativeWork
291 https://doi.org/10.1371/journal.pone.0118514 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006026880
292 rdf:type schema:CreativeWork
293 https://doi.org/10.1523/eneuro.0291-16.2016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083514515
294 rdf:type schema:CreativeWork
295 https://doi.org/10.1529/biophysj.107.111179 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007329530
296 rdf:type schema:CreativeWork
297 https://doi.org/10.3389/fncir.2012.00080 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040614456
298 rdf:type schema:CreativeWork
299 https://doi.org/10.3791/50034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071423536
300 rdf:type schema:CreativeWork
301 https://doi.org/10.7554/elife.30198 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092131929
302 rdf:type schema:CreativeWork
303 https://www.grid.ac/institutes/grid.474694.c schema:alternateName RIKEN Quantitative Biology Center
304 schema:name Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
305 MaxWell Biosystems AG, Basel, Switzerland
306 RIKEN Quantitative Biology Center, Kobe, Japan
307 rdf:type schema:Organization
308 https://www.grid.ac/institutes/grid.5801.c schema:alternateName Swiss Federal Institute of Technology in Zurich
309 schema:name Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
310 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...