Modifying the transition temperature, 120 K ≤ Tc ≤ 1150 K, of amorphous Fe90−xCoxSc10 with simultaneous alteration of fluctuation of ... View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Y. N. Fang, H. Hahn, S. Kobe, R. Witte, S. P. Singh, T. Feng, M. Ghafari

ABSTRACT

Amorphous (a-) Fe90-xCoxSc10 alloys have been produced by rapid quenching from the melt. The Curie temperature, TC, was determined using both mean field theory and Landau's theory of second-order phase transitions in zero and non-zero external fields. The dependence of TC on the atomic spacing can be explained by the empirical Bethe-Slater curve. The value of TC of a- Fe5Co85Sc10, determined by the above theoretical approaches is 1150 K, which is the highest TC ever measured for amorphous alloys. The flattening of the measured normalized magnetization, M(T)/M(0), as a function of the reduced temperature, T/TC, is explained within the framework of the Handrich- Kobe model. According to this model the fluctuation of the exchange integral is the main reason for the flattening of M(T)/M(0). In the case of a-Fe90Sc10 without Co, however, the fluctuation of the exchange integral is dominant only at zero external field, Bex = 0. At Bex = 9 T, however, the fluctuation of the exchange integral has no conspicuous effect on the reduction of the magnetization. It is shown that at Bex = 9 T the frozen magnetic clusters control the behaviour of the reduced magnetization as function of T/TC. In contrast to other ferromagnetic alloys, where the flattening of M(T)/M(0) is characteristic for an amorphous structure, the a- Fe5Co85Sc10 does not exhibit any trace of the fluctuation of the exchange integral. More... »

PAGES

412

References to SciGraph publications

  • 1997. Amorphous and Nanocrystalline Soft Magnets in MAGNETIC HYSTERESIS IN NOVEL MAGNETIC MATERIALS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41598-018-36891-2

    DOI

    http://dx.doi.org/10.1038/s41598-018-36891-2

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1111631248

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30675006


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Nanjing University of Science and Technology", 
              "id": "https://www.grid.ac/institutes/grid.410579.e", 
              "name": [
                "Herbert Gleiter Institute of Nanoscience, Nanjing University of Science and Technology, 210094, Nanjing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fang", 
            "givenName": "Y. N.", 
            "id": "sg:person.07732214307.02", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07732214307.02"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Karlsruhe Institute of Technology", 
              "id": "https://www.grid.ac/institutes/grid.7892.4", 
              "name": [
                "Herbert Gleiter Institute of Nanoscience, Nanjing University of Science and Technology, 210094, Nanjing, China", 
                "Institute for Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz- Platz 1, 76344, Eggenstein- Leopoldshafen, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hahn", 
            "givenName": "H.", 
            "id": "sg:person.01041366665.89", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01041366665.89"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "TU Dresden", 
              "id": "https://www.grid.ac/institutes/grid.4488.0", 
              "name": [
                "Technische Universit\u00e4t Dresden, Institut f\u00fcr Theoretische Physik, D-01062, Dresden, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kobe", 
            "givenName": "S.", 
            "id": "sg:person.016420077400.41", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016420077400.41"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Karlsruhe Institute of Technology", 
              "id": "https://www.grid.ac/institutes/grid.7892.4", 
              "name": [
                "Institute for Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz- Platz 1, 76344, Eggenstein- Leopoldshafen, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Witte", 
            "givenName": "R.", 
            "id": "sg:person.0724777256.91", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0724777256.91"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Karlsruhe Institute of Technology", 
              "id": "https://www.grid.ac/institutes/grid.7892.4", 
              "name": [
                "Institute for Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz- Platz 1, 76344, Eggenstein- Leopoldshafen, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Singh", 
            "givenName": "S. P.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Nanjing University of Science and Technology", 
              "id": "https://www.grid.ac/institutes/grid.410579.e", 
              "name": [
                "Herbert Gleiter Institute of Nanoscience, Nanjing University of Science and Technology, 210094, Nanjing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Feng", 
            "givenName": "T.", 
            "id": "sg:person.011126161714.94", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011126161714.94"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Nanjing University of Science and Technology", 
              "id": "https://www.grid.ac/institutes/grid.410579.e", 
              "name": [
                "Herbert Gleiter Institute of Nanoscience, Nanjing University of Science and Technology, 210094, Nanjing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ghafari", 
            "givenName": "M.", 
            "id": "sg:person.0737676260.05", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0737676260.05"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/0038-1098(85)90417-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009208033"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0038-1098(85)90417-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009208033"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-011-5478-9_77", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010602783", 
              "https://doi.org/10.1007/978-94-011-5478-9_77"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-011-5478-9_77", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010602783", 
              "https://doi.org/10.1007/978-94-011-5478-9_77"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1107/s0021889813005190", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017037115"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/pssb.19690320166", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033262999"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0304-8853(92)91503-l", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043603583"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0304-8853(92)91503-l", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043603583"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1051/jphysrad:019620023010073300", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057013971"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1710311", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057779123"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.369100", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058001750"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.3699228", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058003787"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.4769816", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058064654"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.4932113", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058096852"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0305-4608/14/11/021", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059082780"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.137.a220", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060429986"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.137.a220", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060429986"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.54.899", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060450255"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.54.899", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060450255"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.29.1620", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060534011"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.29.1620", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060534011"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.39.11233", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060548629"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.39.11233", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060548629"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4172/2169-0022.1000299", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072339225"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/9780470386323", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098661672"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/9780470386323", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098661672"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-12", 
        "datePublishedReg": "2019-12-01", 
        "description": "Amorphous (a-) Fe90-xCoxSc10 alloys have been produced by rapid quenching from the melt. The Curie temperature, TC, was determined using both mean field theory and Landau's theory of second-order phase transitions in zero and non-zero external fields. The dependence of TC on the atomic spacing can be explained by the empirical Bethe-Slater curve. The value of TC of a- Fe5Co85Sc10, determined by the above theoretical approaches is 1150\u2009K, which is the highest TC ever measured for amorphous alloys. The flattening of the measured normalized magnetization, M(T)/M(0), as a function of the reduced temperature, T/TC, is explained within the framework of the Handrich- Kobe model. According to this model the fluctuation of the exchange integral is the main reason for the flattening of M(T)/M(0). In the case of a-Fe90Sc10 without Co, however, the fluctuation of the exchange integral is dominant only at zero external field, Bex\u2009=\u20090. At Bex\u2009=\u20099\u2009T, however, the fluctuation of the exchange integral has no conspicuous effect on the reduction of the magnetization. It is shown that at Bex\u2009=\u20099\u2009T the frozen magnetic clusters control the behaviour of the reduced magnetization as function of T/TC. In contrast to other ferromagnetic alloys, where the flattening of M(T)/M(0) is characteristic for an amorphous structure, the a- Fe5Co85Sc10 does not exhibit any trace of the fluctuation of the exchange integral.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/s41598-018-36891-2", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1045337", 
            "issn": [
              "2045-2322"
            ], 
            "name": "Scientific Reports", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "9"
          }
        ], 
        "name": "Modifying the transition temperature, 120 K \u2264 Tc \u2264 1150 K, of amorphous Fe90\u2212xCoxSc10 with simultaneous alteration of fluctuation of exchange integral up to zero", 
        "pagination": "412", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "d23715d5a80e1bedde2da8e0e3a426871dc599789d9f68b849882ed025e38880"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30675006"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101563288"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41598-018-36891-2"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1111631248"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41598-018-36891-2", 
          "https://app.dimensions.ai/details/publication/pub.1111631248"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T08:58", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000326_0000000326/records_68442_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://www.nature.com/articles/s41598-018-36891-2"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-36891-2'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-36891-2'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-36891-2'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-36891-2'


     

    This table displays all metadata directly associated to this object as RDF triples.

    171 TRIPLES      21 PREDICATES      47 URIs      21 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41598-018-36891-2 schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author Ned15ae8cf94c465087edbbd630a09a8f
    4 schema:citation sg:pub.10.1007/978-94-011-5478-9_77
    5 https://doi.org/10.1002/9780470386323
    6 https://doi.org/10.1002/pssb.19690320166
    7 https://doi.org/10.1016/0038-1098(85)90417-x
    8 https://doi.org/10.1016/0304-8853(92)91503-l
    9 https://doi.org/10.1051/jphysrad:019620023010073300
    10 https://doi.org/10.1063/1.1710311
    11 https://doi.org/10.1063/1.369100
    12 https://doi.org/10.1063/1.3699228
    13 https://doi.org/10.1063/1.4769816
    14 https://doi.org/10.1063/1.4932113
    15 https://doi.org/10.1088/0305-4608/14/11/021
    16 https://doi.org/10.1103/physrev.137.a220
    17 https://doi.org/10.1103/physrev.54.899
    18 https://doi.org/10.1103/physrevb.29.1620
    19 https://doi.org/10.1103/physrevb.39.11233
    20 https://doi.org/10.1107/s0021889813005190
    21 https://doi.org/10.4172/2169-0022.1000299
    22 schema:datePublished 2019-12
    23 schema:datePublishedReg 2019-12-01
    24 schema:description Amorphous (a-) Fe<sub>90-x</sub>Co<sub>x</sub>Sc<sub>10</sub> alloys have been produced by rapid quenching from the melt. The Curie temperature, T<sub>C,</sub> was determined using both mean field theory and Landau's theory of second-order phase transitions in zero and non-zero external fields. The dependence of T<sub>C</sub> on the atomic spacing can be explained by the empirical Bethe-Slater curve. The value of T<sub>C</sub> of a- Fe<sub>5</sub>Co<sub>85</sub>Sc<sub>10</sub>, determined by the above theoretical approaches is 1150 K, which is the highest T<sub>C</sub> ever measured for amorphous alloys. The flattening of the measured normalized magnetization, M(T)/M(0), as a function of the reduced temperature, T/T<sub>C</sub>, is explained within the framework of the Handrich- Kobe model. According to this model the fluctuation of the exchange integral is the main reason for the flattening of M(T)/M(0). In the case of a-Fe<sub>90</sub>Sc<sub>10</sub> without Co, however, the fluctuation of the exchange integral is dominant only at zero external field, B<sub>ex</sub> = 0. At B<sub>ex</sub> = 9 T, however, the fluctuation of the exchange integral has no conspicuous effect on the reduction of the magnetization. It is shown that at B<sub>ex</sub> = 9 T the frozen magnetic clusters control the behaviour of the reduced magnetization as function of T/T<sub>C</sub>. In contrast to other ferromagnetic alloys, where the flattening of M(T)/M(0) is characteristic for an amorphous structure, the a- Fe<sub>5</sub>Co<sub>85</sub>Sc<sub>10</sub> does not exhibit any trace of the fluctuation of the exchange integral.
    25 schema:genre research_article
    26 schema:inLanguage en
    27 schema:isAccessibleForFree true
    28 schema:isPartOf N75d0e890185e4fa08e7b758e4c77416f
    29 Ndce7fb42b6d742fbb6c221a6d0842862
    30 sg:journal.1045337
    31 schema:name Modifying the transition temperature, 120 K ≤ Tc ≤ 1150 K, of amorphous Fe90−xCoxSc10 with simultaneous alteration of fluctuation of exchange integral up to zero
    32 schema:pagination 412
    33 schema:productId N0a9b0a7692a54efc91ea711dc7e4bf7c
    34 N4a359594ad154036b1fa82c9ae1a66b4
    35 N7a184007d3cc450083881de2c2306ea8
    36 N878f581556614654b2195b683d4c9dc6
    37 Nc4e68d73188748ba91a1d3844a946cca
    38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111631248
    39 https://doi.org/10.1038/s41598-018-36891-2
    40 schema:sdDatePublished 2019-04-11T08:58
    41 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    42 schema:sdPublisher N50c318e71f06451cb5a125edb2bb39d2
    43 schema:url https://www.nature.com/articles/s41598-018-36891-2
    44 sgo:license sg:explorer/license/
    45 sgo:sdDataset articles
    46 rdf:type schema:ScholarlyArticle
    47 N021bbaf7d0de497a9d06355baaf31033 schema:affiliation https://www.grid.ac/institutes/grid.7892.4
    48 schema:familyName Singh
    49 schema:givenName S. P.
    50 rdf:type schema:Person
    51 N0a9b0a7692a54efc91ea711dc7e4bf7c schema:name readcube_id
    52 schema:value d23715d5a80e1bedde2da8e0e3a426871dc599789d9f68b849882ed025e38880
    53 rdf:type schema:PropertyValue
    54 N1c1fa65e1824442fb65311b336051313 rdf:first sg:person.016420077400.41
    55 rdf:rest N59f8a84a9a94431091bbeebe8b08efed
    56 N263b78484ef14fc4b41f666ba0137c16 rdf:first N021bbaf7d0de497a9d06355baaf31033
    57 rdf:rest Ncf1d2aab9ada4dae833c3a9192c7b877
    58 N470b7294d6614511b6cee15edc21fa3c rdf:first sg:person.01041366665.89
    59 rdf:rest N1c1fa65e1824442fb65311b336051313
    60 N4a359594ad154036b1fa82c9ae1a66b4 schema:name nlm_unique_id
    61 schema:value 101563288
    62 rdf:type schema:PropertyValue
    63 N50c318e71f06451cb5a125edb2bb39d2 schema:name Springer Nature - SN SciGraph project
    64 rdf:type schema:Organization
    65 N59f8a84a9a94431091bbeebe8b08efed rdf:first sg:person.0724777256.91
    66 rdf:rest N263b78484ef14fc4b41f666ba0137c16
    67 N75d0e890185e4fa08e7b758e4c77416f schema:volumeNumber 9
    68 rdf:type schema:PublicationVolume
    69 N7a184007d3cc450083881de2c2306ea8 schema:name dimensions_id
    70 schema:value pub.1111631248
    71 rdf:type schema:PropertyValue
    72 N878f581556614654b2195b683d4c9dc6 schema:name doi
    73 schema:value 10.1038/s41598-018-36891-2
    74 rdf:type schema:PropertyValue
    75 Nc4e68d73188748ba91a1d3844a946cca schema:name pubmed_id
    76 schema:value 30675006
    77 rdf:type schema:PropertyValue
    78 Ncf1d2aab9ada4dae833c3a9192c7b877 rdf:first sg:person.011126161714.94
    79 rdf:rest Ncfc6b02edcef42fa9848b05916c07eed
    80 Ncfc6b02edcef42fa9848b05916c07eed rdf:first sg:person.0737676260.05
    81 rdf:rest rdf:nil
    82 Ndce7fb42b6d742fbb6c221a6d0842862 schema:issueNumber 1
    83 rdf:type schema:PublicationIssue
    84 Ned15ae8cf94c465087edbbd630a09a8f rdf:first sg:person.07732214307.02
    85 rdf:rest N470b7294d6614511b6cee15edc21fa3c
    86 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    87 schema:name Engineering
    88 rdf:type schema:DefinedTerm
    89 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    90 schema:name Materials Engineering
    91 rdf:type schema:DefinedTerm
    92 sg:journal.1045337 schema:issn 2045-2322
    93 schema:name Scientific Reports
    94 rdf:type schema:Periodical
    95 sg:person.01041366665.89 schema:affiliation https://www.grid.ac/institutes/grid.7892.4
    96 schema:familyName Hahn
    97 schema:givenName H.
    98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01041366665.89
    99 rdf:type schema:Person
    100 sg:person.011126161714.94 schema:affiliation https://www.grid.ac/institutes/grid.410579.e
    101 schema:familyName Feng
    102 schema:givenName T.
    103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011126161714.94
    104 rdf:type schema:Person
    105 sg:person.016420077400.41 schema:affiliation https://www.grid.ac/institutes/grid.4488.0
    106 schema:familyName Kobe
    107 schema:givenName S.
    108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016420077400.41
    109 rdf:type schema:Person
    110 sg:person.0724777256.91 schema:affiliation https://www.grid.ac/institutes/grid.7892.4
    111 schema:familyName Witte
    112 schema:givenName R.
    113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0724777256.91
    114 rdf:type schema:Person
    115 sg:person.0737676260.05 schema:affiliation https://www.grid.ac/institutes/grid.410579.e
    116 schema:familyName Ghafari
    117 schema:givenName M.
    118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0737676260.05
    119 rdf:type schema:Person
    120 sg:person.07732214307.02 schema:affiliation https://www.grid.ac/institutes/grid.410579.e
    121 schema:familyName Fang
    122 schema:givenName Y. N.
    123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07732214307.02
    124 rdf:type schema:Person
    125 sg:pub.10.1007/978-94-011-5478-9_77 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010602783
    126 https://doi.org/10.1007/978-94-011-5478-9_77
    127 rdf:type schema:CreativeWork
    128 https://doi.org/10.1002/9780470386323 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098661672
    129 rdf:type schema:CreativeWork
    130 https://doi.org/10.1002/pssb.19690320166 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033262999
    131 rdf:type schema:CreativeWork
    132 https://doi.org/10.1016/0038-1098(85)90417-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1009208033
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.1016/0304-8853(92)91503-l schema:sameAs https://app.dimensions.ai/details/publication/pub.1043603583
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.1051/jphysrad:019620023010073300 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057013971
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1063/1.1710311 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057779123
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.1063/1.369100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058001750
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.1063/1.3699228 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058003787
    143 rdf:type schema:CreativeWork
    144 https://doi.org/10.1063/1.4769816 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058064654
    145 rdf:type schema:CreativeWork
    146 https://doi.org/10.1063/1.4932113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058096852
    147 rdf:type schema:CreativeWork
    148 https://doi.org/10.1088/0305-4608/14/11/021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059082780
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.1103/physrev.137.a220 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060429986
    151 rdf:type schema:CreativeWork
    152 https://doi.org/10.1103/physrev.54.899 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060450255
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.1103/physrevb.29.1620 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060534011
    155 rdf:type schema:CreativeWork
    156 https://doi.org/10.1103/physrevb.39.11233 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060548629
    157 rdf:type schema:CreativeWork
    158 https://doi.org/10.1107/s0021889813005190 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017037115
    159 rdf:type schema:CreativeWork
    160 https://doi.org/10.4172/2169-0022.1000299 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072339225
    161 rdf:type schema:CreativeWork
    162 https://www.grid.ac/institutes/grid.410579.e schema:alternateName Nanjing University of Science and Technology
    163 schema:name Herbert Gleiter Institute of Nanoscience, Nanjing University of Science and Technology, 210094, Nanjing, China
    164 rdf:type schema:Organization
    165 https://www.grid.ac/institutes/grid.4488.0 schema:alternateName TU Dresden
    166 schema:name Technische Universität Dresden, Institut für Theoretische Physik, D-01062, Dresden, Germany
    167 rdf:type schema:Organization
    168 https://www.grid.ac/institutes/grid.7892.4 schema:alternateName Karlsruhe Institute of Technology
    169 schema:name Herbert Gleiter Institute of Nanoscience, Nanjing University of Science and Technology, 210094, Nanjing, China
    170 Institute for Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz- Platz 1, 76344, Eggenstein- Leopoldshafen, Germany
    171 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...