Impact of tensile strain on low Sn content GeSn lasing View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Denis Rainko, Zoran Ikonic, Anas Elbaz, Nils von den Driesch, Daniela Stange, Etienne Herth, Philippe Boucaud, Moustafa El Kurdi, Detlev Grützmacher, Dan Buca

ABSTRACT

In recent years much effort has been made to increase the Sn content in GeSn alloys in order to increase direct bandgap charge carrier recombination and, therefore, to reach room temperature lasing. While being successful for the former, the increase of Sn content is detrimental, leading to increased defect concentrations and a lower thermal budget regarding processing. In this work we demonstrate strong photoluminescence enhancement in low Sn content Ge0.94Sn0.06 layers by implementing tensile strain. Fitting of the calculated photoluminescence spectra to reproduce our experimental results indicates a strain of ~1.45%, induced via an SiNx stressor layer, which is strong enough to transform the investigated layer into a direct bandgap semiconductor. Moreover, theoretical calculations, using the 8-band k·p model, show the advantages of using low Sn content tensile strained GeSn layers in respect to gain and lasing temperature. We show that low Sn content GeSn alloys have a strong potential to enable efficient room temperature lasers on electronic-photonic integrated circuits. More... »

PAGES

259

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-018-36837-8

DOI

http://dx.doi.org/10.1038/s41598-018-36837-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111603468

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30670785


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Forschungszentrum J\u00fclich", 
          "id": "https://www.grid.ac/institutes/grid.8385.6", 
          "name": [
            "Peter Gr\u00fcnberg Institute (PGI 9) and JARA-Fundamentals of Future Information Technologies, Forschungszentrum Juelich, 52425, Juelich, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rainko", 
        "givenName": "Denis", 
        "id": "sg:person.01106457207.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01106457207.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Leeds", 
          "id": "https://www.grid.ac/institutes/grid.9909.9", 
          "name": [
            "Pollard Institute, School of Electronic and Electrical Engineering, University of Leeds, Leeds, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ikonic", 
        "givenName": "Zoran", 
        "id": "sg:person.016444004515.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016444004515.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Paris-Saclay", 
          "id": "https://www.grid.ac/institutes/grid.460789.4", 
          "name": [
            "Center for Nanoscience and Nanotechnologies, C2N UMR 9001 CNRS-Universit\u00e9 Paris-Sud, Universite Paris-Saclay, B\u00e2timent 220, Rue Andre Amp\u00e8re, F-91405, Orsay, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Elbaz", 
        "givenName": "Anas", 
        "id": "sg:person.012474011713.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012474011713.68"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Forschungszentrum J\u00fclich", 
          "id": "https://www.grid.ac/institutes/grid.8385.6", 
          "name": [
            "Peter Gr\u00fcnberg Institute (PGI 9) and JARA-Fundamentals of Future Information Technologies, Forschungszentrum Juelich, 52425, Juelich, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "von den Driesch", 
        "givenName": "Nils", 
        "id": "sg:person.01276072233.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01276072233.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Forschungszentrum J\u00fclich", 
          "id": "https://www.grid.ac/institutes/grid.8385.6", 
          "name": [
            "Peter Gr\u00fcnberg Institute (PGI 9) and JARA-Fundamentals of Future Information Technologies, Forschungszentrum Juelich, 52425, Juelich, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stange", 
        "givenName": "Daniela", 
        "id": "sg:person.011067005106.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011067005106.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Paris-Saclay", 
          "id": "https://www.grid.ac/institutes/grid.460789.4", 
          "name": [
            "Center for Nanoscience and Nanotechnologies, C2N UMR 9001 CNRS-Universit\u00e9 Paris-Sud, Universite Paris-Saclay, B\u00e2timent 220, Rue Andre Amp\u00e8re, F-91405, Orsay, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Herth", 
        "givenName": "Etienne", 
        "id": "sg:person.015771643643.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015771643643.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Paris-Saclay", 
          "id": "https://www.grid.ac/institutes/grid.460789.4", 
          "name": [
            "Center for Nanoscience and Nanotechnologies, C2N UMR 9001 CNRS-Universit\u00e9 Paris-Sud, Universite Paris-Saclay, B\u00e2timent 220, Rue Andre Amp\u00e8re, F-91405, Orsay, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Boucaud", 
        "givenName": "Philippe", 
        "id": "sg:person.01065577127.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01065577127.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Paris-Saclay", 
          "id": "https://www.grid.ac/institutes/grid.460789.4", 
          "name": [
            "Center for Nanoscience and Nanotechnologies, C2N UMR 9001 CNRS-Universit\u00e9 Paris-Sud, Universite Paris-Saclay, B\u00e2timent 220, Rue Andre Amp\u00e8re, F-91405, Orsay, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kurdi", 
        "givenName": "Moustafa El", 
        "id": "sg:person.011415240161.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011415240161.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Forschungszentrum J\u00fclich", 
          "id": "https://www.grid.ac/institutes/grid.8385.6", 
          "name": [
            "Peter Gr\u00fcnberg Institute (PGI 9) and JARA-Fundamentals of Future Information Technologies, Forschungszentrum Juelich, 52425, Juelich, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gr\u00fctzmacher", 
        "givenName": "Detlev", 
        "id": "sg:person.01233227646.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01233227646.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Forschungszentrum J\u00fclich", 
          "id": "https://www.grid.ac/institutes/grid.8385.6", 
          "name": [
            "Peter Gr\u00fcnberg Institute (PGI 9) and JARA-Fundamentals of Future Information Technologies, Forschungszentrum Juelich, 52425, Juelich, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Buca", 
        "givenName": "Dan", 
        "id": "sg:person.011403443001.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011403443001.35"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1088/0268-1242/24/5/055002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006316596"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0268-1242/24/5/055002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006316596"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.23.006722", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010401153"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adom.201400369", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010559166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/am5075248", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020043114"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4966141", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020786439"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2014.321", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035924600", 
          "https://doi.org/10.1038/nphoton.2014.321"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4942891", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037525684"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep34082", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041571462", 
          "https://doi.org/10.1038/srep34082"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2015.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050391899", 
          "https://doi.org/10.1038/nphoton.2015.1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.chemmater.5b01327", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053829267"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acsphotonics.5b00632", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055138833"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acsphotonics.6b00258", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055138969"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acsphotonics.6b00562", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055139062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1376156", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057700466"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1784032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057821445"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3279307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057930412"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3645620", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057991052"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3691790", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058001903"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4809832", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058077293"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4931580", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058096504"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.87.235313", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060641608"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.87.235313", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060641608"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/3.661466", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061149207"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jqe.2010.2059000", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061307549"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/opn.27.1.000032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065246910"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/optica.4.000185", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1087285624"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.5000353", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091410960"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.25.025374", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092107486"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcrysgro.2017.10.030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092580085"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acsphotonics.7b00938", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099669384"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/advs.201700955", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101793122"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-018-24018-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101862191", 
          "https://doi.org/10.1038/s41598-018-24018-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-018-24018-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101862191", 
          "https://doi.org/10.1038/s41598-018-24018-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-018-33820-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107670618", 
          "https://doi.org/10.1038/s41598-018-33820-1"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "In recent years much effort has been made to increase the Sn content in GeSn alloys in order to increase direct bandgap charge carrier recombination and, therefore, to reach room temperature lasing. While being successful for the former, the increase of Sn content is detrimental, leading to increased defect concentrations and a lower thermal budget regarding processing. In this work we demonstrate strong photoluminescence enhancement in low Sn content Ge0.94Sn0.06 layers by implementing tensile strain. Fitting of the calculated photoluminescence spectra to reproduce our experimental results indicates a strain of ~1.45%, induced via an SiNx stressor layer, which is strong enough to transform the investigated layer into a direct bandgap semiconductor. Moreover, theoretical calculations, using the 8-band k\u00b7p model, show the advantages of using low Sn content tensile strained GeSn layers in respect to gain and lasing temperature. We show that low Sn content GeSn alloys have a strong potential to enable efficient room temperature lasers on electronic-photonic integrated circuits.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-018-36837-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7738318", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "Impact of tensile strain on low Sn content GeSn lasing", 
    "pagination": "259", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "554050ac4d68182fb1dcc79e5830e4de36e9814d37a50fd31699016152dacd01"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30670785"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-018-36837-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111603468"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-018-36837-8", 
      "https://app.dimensions.ai/details/publication/pub.1111603468"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:57", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000325_0000000325/records_100817_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-018-36837-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-36837-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-36837-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-36837-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-36837-8'


 

This table displays all metadata directly associated to this object as RDF triples.

240 TRIPLES      21 PREDICATES      61 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-018-36837-8 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Nda6af5f275aa47ae81e3963143e7fcca
4 schema:citation sg:pub.10.1038/nphoton.2014.321
5 sg:pub.10.1038/nphoton.2015.1
6 sg:pub.10.1038/s41598-018-24018-6
7 sg:pub.10.1038/s41598-018-33820-1
8 sg:pub.10.1038/srep34082
9 https://doi.org/10.1002/adom.201400369
10 https://doi.org/10.1002/advs.201700955
11 https://doi.org/10.1016/j.jcrysgro.2017.10.030
12 https://doi.org/10.1021/acs.chemmater.5b01327
13 https://doi.org/10.1021/acsphotonics.5b00632
14 https://doi.org/10.1021/acsphotonics.6b00258
15 https://doi.org/10.1021/acsphotonics.6b00562
16 https://doi.org/10.1021/acsphotonics.7b00938
17 https://doi.org/10.1021/am5075248
18 https://doi.org/10.1063/1.1376156
19 https://doi.org/10.1063/1.1784032
20 https://doi.org/10.1063/1.3279307
21 https://doi.org/10.1063/1.3645620
22 https://doi.org/10.1063/1.3691790
23 https://doi.org/10.1063/1.4809832
24 https://doi.org/10.1063/1.4931580
25 https://doi.org/10.1063/1.4942891
26 https://doi.org/10.1063/1.4966141
27 https://doi.org/10.1063/1.5000353
28 https://doi.org/10.1088/0268-1242/24/5/055002
29 https://doi.org/10.1103/physrevb.87.235313
30 https://doi.org/10.1109/3.661466
31 https://doi.org/10.1109/jqe.2010.2059000
32 https://doi.org/10.1364/oe.23.006722
33 https://doi.org/10.1364/oe.25.025374
34 https://doi.org/10.1364/opn.27.1.000032
35 https://doi.org/10.1364/optica.4.000185
36 schema:datePublished 2019-12
37 schema:datePublishedReg 2019-12-01
38 schema:description In recent years much effort has been made to increase the Sn content in GeSn alloys in order to increase direct bandgap charge carrier recombination and, therefore, to reach room temperature lasing. While being successful for the former, the increase of Sn content is detrimental, leading to increased defect concentrations and a lower thermal budget regarding processing. In this work we demonstrate strong photoluminescence enhancement in low Sn content Ge<sub>0.94</sub>Sn<sub>0.06</sub> layers by implementing tensile strain. Fitting of the calculated photoluminescence spectra to reproduce our experimental results indicates a strain of ~1.45%, induced via an SiN<sub>x</sub> stressor layer, which is strong enough to transform the investigated layer into a direct bandgap semiconductor. Moreover, theoretical calculations, using the 8-band k·p model, show the advantages of using low Sn content tensile strained GeSn layers in respect to gain and lasing temperature. We show that low Sn content GeSn alloys have a strong potential to enable efficient room temperature lasers on electronic-photonic integrated circuits.
39 schema:genre research_article
40 schema:inLanguage en
41 schema:isAccessibleForFree true
42 schema:isPartOf Nc01f6d031d40451bacd0af8607af8e86
43 Nc5939bd437c342bf98e73b6d06ab4d0d
44 sg:journal.1045337
45 schema:name Impact of tensile strain on low Sn content GeSn lasing
46 schema:pagination 259
47 schema:productId N31ab158d453243ea9efacba032f58980
48 N7eb83e8b95c34d139002eb6feb4dbae6
49 N931a2b2e153144a0ad48bf70658c4ea1
50 Naa1bd8daaf3845d2b5a9b1d07962c246
51 Ne72102ecc23641f297a7dfd276a122d5
52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111603468
53 https://doi.org/10.1038/s41598-018-36837-8
54 schema:sdDatePublished 2019-04-11T08:57
55 schema:sdLicense https://scigraph.springernature.com/explorer/license/
56 schema:sdPublisher Nc6aac1ab5f05495a950ef48c962d9971
57 schema:url https://www.nature.com/articles/s41598-018-36837-8
58 sgo:license sg:explorer/license/
59 sgo:sdDataset articles
60 rdf:type schema:ScholarlyArticle
61 N15cbdbf261c24a52823f8ad944379801 rdf:first sg:person.016444004515.04
62 rdf:rest N34ef6a8dbc384bc3bf3207e8a44096f2
63 N31ab158d453243ea9efacba032f58980 schema:name doi
64 schema:value 10.1038/s41598-018-36837-8
65 rdf:type schema:PropertyValue
66 N34ef6a8dbc384bc3bf3207e8a44096f2 rdf:first sg:person.012474011713.68
67 rdf:rest N8668df500ca04b7cb1ec83ad02303a9a
68 N7eb83e8b95c34d139002eb6feb4dbae6 schema:name readcube_id
69 schema:value 554050ac4d68182fb1dcc79e5830e4de36e9814d37a50fd31699016152dacd01
70 rdf:type schema:PropertyValue
71 N8668df500ca04b7cb1ec83ad02303a9a rdf:first sg:person.01276072233.80
72 rdf:rest Nf6a66bd67e7b4e42a9ed5aa80893b9e8
73 N9231be5c8fd34435944e90fe4d2b1a40 rdf:first sg:person.01065577127.72
74 rdf:rest Nd14a4aaafc3f4660aa15b6dfc4ad1913
75 N931a2b2e153144a0ad48bf70658c4ea1 schema:name pubmed_id
76 schema:value 30670785
77 rdf:type schema:PropertyValue
78 Naa1bd8daaf3845d2b5a9b1d07962c246 schema:name nlm_unique_id
79 schema:value 101563288
80 rdf:type schema:PropertyValue
81 Nb60dcd510c6044f6a2f3ba54bb5e7e54 rdf:first sg:person.015771643643.40
82 rdf:rest N9231be5c8fd34435944e90fe4d2b1a40
83 Nc01f6d031d40451bacd0af8607af8e86 schema:volumeNumber 9
84 rdf:type schema:PublicationVolume
85 Nc5939bd437c342bf98e73b6d06ab4d0d schema:issueNumber 1
86 rdf:type schema:PublicationIssue
87 Nc6aac1ab5f05495a950ef48c962d9971 schema:name Springer Nature - SN SciGraph project
88 rdf:type schema:Organization
89 Nd14a4aaafc3f4660aa15b6dfc4ad1913 rdf:first sg:person.011415240161.40
90 rdf:rest Nd1f307f3f7fa41ef9c19f5f6d4ce35f2
91 Nd1f307f3f7fa41ef9c19f5f6d4ce35f2 rdf:first sg:person.01233227646.65
92 rdf:rest Ne641e903c2f343deba28016519089e33
93 Nda6af5f275aa47ae81e3963143e7fcca rdf:first sg:person.01106457207.02
94 rdf:rest N15cbdbf261c24a52823f8ad944379801
95 Ne641e903c2f343deba28016519089e33 rdf:first sg:person.011403443001.35
96 rdf:rest rdf:nil
97 Ne72102ecc23641f297a7dfd276a122d5 schema:name dimensions_id
98 schema:value pub.1111603468
99 rdf:type schema:PropertyValue
100 Nf6a66bd67e7b4e42a9ed5aa80893b9e8 rdf:first sg:person.011067005106.24
101 rdf:rest Nb60dcd510c6044f6a2f3ba54bb5e7e54
102 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
103 schema:name Engineering
104 rdf:type schema:DefinedTerm
105 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
106 schema:name Materials Engineering
107 rdf:type schema:DefinedTerm
108 sg:grant.7738318 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-018-36837-8
109 rdf:type schema:MonetaryGrant
110 sg:journal.1045337 schema:issn 2045-2322
111 schema:name Scientific Reports
112 rdf:type schema:Periodical
113 sg:person.01065577127.72 schema:affiliation https://www.grid.ac/institutes/grid.460789.4
114 schema:familyName Boucaud
115 schema:givenName Philippe
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01065577127.72
117 rdf:type schema:Person
118 sg:person.01106457207.02 schema:affiliation https://www.grid.ac/institutes/grid.8385.6
119 schema:familyName Rainko
120 schema:givenName Denis
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01106457207.02
122 rdf:type schema:Person
123 sg:person.011067005106.24 schema:affiliation https://www.grid.ac/institutes/grid.8385.6
124 schema:familyName Stange
125 schema:givenName Daniela
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011067005106.24
127 rdf:type schema:Person
128 sg:person.011403443001.35 schema:affiliation https://www.grid.ac/institutes/grid.8385.6
129 schema:familyName Buca
130 schema:givenName Dan
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011403443001.35
132 rdf:type schema:Person
133 sg:person.011415240161.40 schema:affiliation https://www.grid.ac/institutes/grid.460789.4
134 schema:familyName Kurdi
135 schema:givenName Moustafa El
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011415240161.40
137 rdf:type schema:Person
138 sg:person.01233227646.65 schema:affiliation https://www.grid.ac/institutes/grid.8385.6
139 schema:familyName Grützmacher
140 schema:givenName Detlev
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01233227646.65
142 rdf:type schema:Person
143 sg:person.012474011713.68 schema:affiliation https://www.grid.ac/institutes/grid.460789.4
144 schema:familyName Elbaz
145 schema:givenName Anas
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012474011713.68
147 rdf:type schema:Person
148 sg:person.01276072233.80 schema:affiliation https://www.grid.ac/institutes/grid.8385.6
149 schema:familyName von den Driesch
150 schema:givenName Nils
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01276072233.80
152 rdf:type schema:Person
153 sg:person.015771643643.40 schema:affiliation https://www.grid.ac/institutes/grid.460789.4
154 schema:familyName Herth
155 schema:givenName Etienne
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015771643643.40
157 rdf:type schema:Person
158 sg:person.016444004515.04 schema:affiliation https://www.grid.ac/institutes/grid.9909.9
159 schema:familyName Ikonic
160 schema:givenName Zoran
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016444004515.04
162 rdf:type schema:Person
163 sg:pub.10.1038/nphoton.2014.321 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035924600
164 https://doi.org/10.1038/nphoton.2014.321
165 rdf:type schema:CreativeWork
166 sg:pub.10.1038/nphoton.2015.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050391899
167 https://doi.org/10.1038/nphoton.2015.1
168 rdf:type schema:CreativeWork
169 sg:pub.10.1038/s41598-018-24018-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101862191
170 https://doi.org/10.1038/s41598-018-24018-6
171 rdf:type schema:CreativeWork
172 sg:pub.10.1038/s41598-018-33820-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107670618
173 https://doi.org/10.1038/s41598-018-33820-1
174 rdf:type schema:CreativeWork
175 sg:pub.10.1038/srep34082 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041571462
176 https://doi.org/10.1038/srep34082
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1002/adom.201400369 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010559166
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1002/advs.201700955 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101793122
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1016/j.jcrysgro.2017.10.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092580085
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1021/acs.chemmater.5b01327 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053829267
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1021/acsphotonics.5b00632 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055138833
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1021/acsphotonics.6b00258 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055138969
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1021/acsphotonics.6b00562 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055139062
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1021/acsphotonics.7b00938 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099669384
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1021/am5075248 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020043114
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1063/1.1376156 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057700466
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1063/1.1784032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057821445
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1063/1.3279307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057930412
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1063/1.3645620 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057991052
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1063/1.3691790 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058001903
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1063/1.4809832 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058077293
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1063/1.4931580 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058096504
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1063/1.4942891 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037525684
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1063/1.4966141 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020786439
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1063/1.5000353 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091410960
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1088/0268-1242/24/5/055002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006316596
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1103/physrevb.87.235313 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060641608
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1109/3.661466 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061149207
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1109/jqe.2010.2059000 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061307549
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1364/oe.23.006722 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010401153
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1364/oe.25.025374 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092107486
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1364/opn.27.1.000032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065246910
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1364/optica.4.000185 schema:sameAs https://app.dimensions.ai/details/publication/pub.1087285624
231 rdf:type schema:CreativeWork
232 https://www.grid.ac/institutes/grid.460789.4 schema:alternateName University of Paris-Saclay
233 schema:name Center for Nanoscience and Nanotechnologies, C2N UMR 9001 CNRS-Université Paris-Sud, Universite Paris-Saclay, Bâtiment 220, Rue Andre Ampère, F-91405, Orsay, France
234 rdf:type schema:Organization
235 https://www.grid.ac/institutes/grid.8385.6 schema:alternateName Forschungszentrum Jülich
236 schema:name Peter Grünberg Institute (PGI 9) and JARA-Fundamentals of Future Information Technologies, Forschungszentrum Juelich, 52425, Juelich, Germany
237 rdf:type schema:Organization
238 https://www.grid.ac/institutes/grid.9909.9 schema:alternateName University of Leeds
239 schema:name Pollard Institute, School of Electronic and Electrical Engineering, University of Leeds, Leeds, UK
240 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...