Slow insertion of silicon probes improves the quality of acute neuronal recordings View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Richárd Fiáth, Adrienn Lilla Márton, Ferenc Mátyás, Domonkos Pinke, Gergely Márton, Kinga Tóth, István Ulbert

ABSTRACT

Neural probes designed for extracellular recording of brain electrical activity are traditionally implanted with an insertion speed between 1 µm/s and 1 mm/s into the brain tissue. Although the physical effects of insertion speed on the tissue are well studied, there is a lack of research investigating how the quality of the acquired electrophysiological signal depends on the speed of probe insertion. In this study, we used four different insertion speeds (0.002 mm/s, 0.02 mm/s, 0.1 mm/s, 1 mm/s) to implant high-density silicon probes into deep layers of the somatosensory cortex of ketamine/xylazine anesthetized rats. After implantation, various qualitative and quantitative properties of the recorded cortical activity were compared across different speeds in an acute manner. Our results demonstrate that after the slowest insertion both the signal-to-noise ratio and the number of separable single units were significantly higher compared with those measured after inserting probes at faster speeds. Furthermore, the amplitude of recorded spikes as well as the quality of single unit clusters showed similar speed-dependent differences. Post hoc quantification of the neuronal density around the probe track showed a significantly higher number of NeuN-labelled cells after the slowest insertion compared with the fastest insertion. Our findings suggest that advancing rigid probes slowly (~1 µm/s) into the brain tissue might result in less tissue damage, and thus in neuronal recordings of improved quality compared with measurements obtained after inserting probes with higher speeds. More... »

PAGES

111

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-018-36816-z

DOI

http://dx.doi.org/10.1038/s41598-018-36816-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111273941

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30643182


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Neurosciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "P\u00e1zm\u00e1ny P\u00e9ter Catholic University", 
          "id": "https://www.grid.ac/institutes/grid.425397.e", 
          "name": [
            "Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tud\u00f3sok k\u00f6r\u00fatja 2, H-1117, Budapest, Hungary", 
            "Faculty of Information Technology and Bionics, P\u00e1zm\u00e1ny P\u00e9ter Catholic University, Pr\u00e1ter utca 50/A, H-1083, Budapest, Hungary"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fi\u00e1th", 
        "givenName": "Rich\u00e1rd", 
        "id": "sg:person.0743726373.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0743726373.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "P\u00e1zm\u00e1ny P\u00e9ter Catholic University", 
          "id": "https://www.grid.ac/institutes/grid.425397.e", 
          "name": [
            "Faculty of Information Technology and Bionics, P\u00e1zm\u00e1ny P\u00e9ter Catholic University, Pr\u00e1ter utca 50/A, H-1083, Budapest, Hungary"
          ], 
          "type": "Organization"
        }, 
        "familyName": "M\u00e1rton", 
        "givenName": "Adrienn Lilla", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Veterinary Medicine", 
          "id": "https://www.grid.ac/institutes/grid.483037.b", 
          "name": [
            "Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tud\u00f3sok k\u00f6r\u00fatja 2, H-1117, Budapest, Hungary", 
            "Department of Anatomy and Histology, University of Veterinary Medicine, Istv\u00e1n utca 2, H-1078, Budapest, Hungary"
          ], 
          "type": "Organization"
        }, 
        "familyName": "M\u00e1ty\u00e1s", 
        "givenName": "Ferenc", 
        "id": "sg:person.01124723655.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01124723655.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "MTA Institute of Experimental Medicine", 
          "id": "https://www.grid.ac/institutes/grid.419012.f", 
          "name": [
            "Institute of Experimental Medicine, Hungarian Academy of Sciences, Szigony utca 43, H-1083, Budapest, Hungary"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pinke", 
        "givenName": "Domonkos", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "P\u00e1zm\u00e1ny P\u00e9ter Catholic University", 
          "id": "https://www.grid.ac/institutes/grid.425397.e", 
          "name": [
            "Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tud\u00f3sok k\u00f6r\u00fatja 2, H-1117, Budapest, Hungary", 
            "Faculty of Information Technology and Bionics, P\u00e1zm\u00e1ny P\u00e9ter Catholic University, Pr\u00e1ter utca 50/A, H-1083, Budapest, Hungary"
          ], 
          "type": "Organization"
        }, 
        "familyName": "M\u00e1rton", 
        "givenName": "Gergely", 
        "id": "sg:person.01327315252.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01327315252.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tud\u00f3sok k\u00f6r\u00fatja 2, H-1117, Budapest, Hungary"
          ], 
          "type": "Organization"
        }, 
        "familyName": "T\u00f3th", 
        "givenName": "Kinga", 
        "id": "sg:person.01253567743.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01253567743.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "P\u00e1zm\u00e1ny P\u00e9ter Catholic University", 
          "id": "https://www.grid.ac/institutes/grid.425397.e", 
          "name": [
            "Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tud\u00f3sok k\u00f6r\u00fatja 2, H-1117, Budapest, Hungary", 
            "Faculty of Information Technology and Bionics, P\u00e1zm\u00e1ny P\u00e9ter Catholic University, Pr\u00e1ter utca 50/A, H-1083, Budapest, Hungary"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ulbert", 
        "givenName": "Istv\u00e1n", 
        "id": "sg:person.01175531017.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01175531017.68"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.3389/fneng.2014.00024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006274180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1741-2560/3/3/002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009474055"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuron.2011.09.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009812190"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0165-0270(95)00113-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010117265"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1741-2560/9/1/016005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010357456"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jneumeth.2006.09.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010427725"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroscience.2004.09.066", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015791127"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/061481", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016887747"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/061481", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016887747"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/061481", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016887747"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nn1233", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017540640", 
          "https://doi.org/10.1038/nn1233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nn1233", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017540640", 
          "https://doi.org/10.1038/nn1233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jn.01170.2003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019812805"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02368133", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020541266", 
          "https://doi.org/10.1007/bf02368133"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02368133", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020541266", 
          "https://doi.org/10.1007/bf02368133"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0006-8993(03)03023-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021112391"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0006-8993(03)03023-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021112391"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/bmt.2010.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029593642"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0165-9936(03)00908-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030667398"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0165-9936(03)00908-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030667398"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep02942", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031814274", 
          "https://doi.org/10.1038/srep02942"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuron.2009.09.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034167570"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biomaterials.2013.07.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035303963"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nn.4365", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036076759", 
          "https://doi.org/10.1038/nn.4365"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1113/jphysiol.2012.232892", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036217320"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1741-2560/9/4/046020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040082731"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrn1519", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047989503", 
          "https://doi.org/10.1038/nrn1519"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrn1519", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047989503", 
          "https://doi.org/10.1038/nrn1519"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrn1519", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047989503", 
          "https://doi.org/10.1038/nrn1519"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jn.00979.2005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051703533"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/ejn.13274", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053369995"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1741-2560/13/6/066002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059162027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/10.141202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061084017"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jmems.2015.2420043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061291712"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tbme.2004.826680", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061526097"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tbme.2006.872824", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061526635"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tbme.2008.2003261", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061527325"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tbme.2011.2166963", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061528553"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tbme.2011.2172440", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061528603"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnsre.2015.2399856", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061740951"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aos/1176346577", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064408175"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iembs.2007.4353391", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077517623"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1741-2552/aa5a90", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079396110"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/s17102388", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092275533"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature24636", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092576701", 
          "https://doi.org/10.1038/nature24636"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature24636", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092576701", 
          "https://doi.org/10.1038/nature24636"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bios.2018.01.060", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100755629"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/bmt-2017-0154", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101221687"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "Neural probes designed for extracellular recording of brain electrical activity are traditionally implanted with an insertion speed between 1\u2009\u00b5m/s and 1\u2009mm/s into the brain tissue. Although the physical effects of insertion speed on the tissue are well studied, there is a lack of research investigating how the quality of the acquired electrophysiological signal depends on the speed of probe insertion. In this study, we used four different insertion speeds (0.002\u2009mm/s, 0.02\u2009mm/s, 0.1\u2009mm/s, 1\u2009mm/s) to implant high-density silicon probes into deep layers of the somatosensory cortex of ketamine/xylazine anesthetized rats. After implantation, various qualitative and quantitative properties of the recorded cortical activity were compared across different speeds in an acute manner. Our results demonstrate that after the slowest insertion both the signal-to-noise ratio and the number of separable single units were significantly higher compared with those measured after inserting probes at faster speeds. Furthermore, the amplitude of recorded spikes as well as the quality of single unit clusters showed similar speed-dependent differences. Post hoc quantification of the neuronal density around the probe track showed a significantly higher number of NeuN-labelled cells after the slowest insertion compared with the fastest insertion. Our findings suggest that advancing rigid probes slowly (~1\u2009\u00b5m/s) into the brain tissue might result in less tissue damage, and thus in neuronal recordings of improved quality compared with measurements obtained after inserting probes with higher speeds.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-018-36816-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "Slow insertion of silicon probes improves the quality of acute neuronal recordings", 
    "pagination": "111", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b5cf778404c18676d716d7cc5f29ebaa4506bb8149dbc763bd622f611b556df3"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30643182"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-018-36816-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111273941"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-018-36816-z", 
      "https://app.dimensions.ai/details/publication/pub.1111273941"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:41", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000320_0000000320/records_101392_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-018-36816-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-36816-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-36816-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-36816-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-36816-z'


 

This table displays all metadata directly associated to this object as RDF triples.

241 TRIPLES      21 PREDICATES      68 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-018-36816-z schema:about anzsrc-for:11
2 anzsrc-for:1109
3 schema:author N9cdb4088004e4dbf99ee69e62a24a564
4 schema:citation sg:pub.10.1007/bf02368133
5 sg:pub.10.1038/nature24636
6 sg:pub.10.1038/nn.4365
7 sg:pub.10.1038/nn1233
8 sg:pub.10.1038/nrn1519
9 sg:pub.10.1038/srep02942
10 https://doi.org/10.1016/0165-0270(95)00113-1
11 https://doi.org/10.1016/j.biomaterials.2013.07.016
12 https://doi.org/10.1016/j.bios.2018.01.060
13 https://doi.org/10.1016/j.jneumeth.2006.09.023
14 https://doi.org/10.1016/j.neuron.2009.09.020
15 https://doi.org/10.1016/j.neuron.2011.09.029
16 https://doi.org/10.1016/j.neuroscience.2004.09.066
17 https://doi.org/10.1016/s0006-8993(03)03023-3
18 https://doi.org/10.1016/s0165-9936(03)00908-7
19 https://doi.org/10.1088/1741-2552/aa5a90
20 https://doi.org/10.1088/1741-2560/13/6/066002
21 https://doi.org/10.1088/1741-2560/3/3/002
22 https://doi.org/10.1088/1741-2560/9/1/016005
23 https://doi.org/10.1088/1741-2560/9/4/046020
24 https://doi.org/10.1101/061481
25 https://doi.org/10.1109/10.141202
26 https://doi.org/10.1109/iembs.2007.4353391
27 https://doi.org/10.1109/jmems.2015.2420043
28 https://doi.org/10.1109/tbme.2004.826680
29 https://doi.org/10.1109/tbme.2006.872824
30 https://doi.org/10.1109/tbme.2008.2003261
31 https://doi.org/10.1109/tbme.2011.2166963
32 https://doi.org/10.1109/tbme.2011.2172440
33 https://doi.org/10.1109/tnsre.2015.2399856
34 https://doi.org/10.1111/ejn.13274
35 https://doi.org/10.1113/jphysiol.2012.232892
36 https://doi.org/10.1152/jn.00979.2005
37 https://doi.org/10.1152/jn.01170.2003
38 https://doi.org/10.1214/aos/1176346577
39 https://doi.org/10.1515/bmt-2017-0154
40 https://doi.org/10.1515/bmt.2010.014
41 https://doi.org/10.3389/fneng.2014.00024
42 https://doi.org/10.3390/s17102388
43 schema:datePublished 2019-12
44 schema:datePublishedReg 2019-12-01
45 schema:description Neural probes designed for extracellular recording of brain electrical activity are traditionally implanted with an insertion speed between 1 µm/s and 1 mm/s into the brain tissue. Although the physical effects of insertion speed on the tissue are well studied, there is a lack of research investigating how the quality of the acquired electrophysiological signal depends on the speed of probe insertion. In this study, we used four different insertion speeds (0.002 mm/s, 0.02 mm/s, 0.1 mm/s, 1 mm/s) to implant high-density silicon probes into deep layers of the somatosensory cortex of ketamine/xylazine anesthetized rats. After implantation, various qualitative and quantitative properties of the recorded cortical activity were compared across different speeds in an acute manner. Our results demonstrate that after the slowest insertion both the signal-to-noise ratio and the number of separable single units were significantly higher compared with those measured after inserting probes at faster speeds. Furthermore, the amplitude of recorded spikes as well as the quality of single unit clusters showed similar speed-dependent differences. Post hoc quantification of the neuronal density around the probe track showed a significantly higher number of NeuN-labelled cells after the slowest insertion compared with the fastest insertion. Our findings suggest that advancing rigid probes slowly (~1 µm/s) into the brain tissue might result in less tissue damage, and thus in neuronal recordings of improved quality compared with measurements obtained after inserting probes with higher speeds.
46 schema:genre research_article
47 schema:inLanguage en
48 schema:isAccessibleForFree true
49 schema:isPartOf N979b11a638ca49d3bdffcd569a150100
50 Ncd11e48fc60d4d0699505e84e3278dbc
51 sg:journal.1045337
52 schema:name Slow insertion of silicon probes improves the quality of acute neuronal recordings
53 schema:pagination 111
54 schema:productId N5041fe0200ad4c67af1d2ef962f7ed03
55 N582b09c673a84a04920b3306c41244d6
56 Na55b1e9ac18b48099a8e19d66755db25
57 Nab075fc27aed4f96b4015b2b1d004498
58 Nd4ad02b995f341c9b308013baed09bff
59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111273941
60 https://doi.org/10.1038/s41598-018-36816-z
61 schema:sdDatePublished 2019-04-11T08:41
62 schema:sdLicense https://scigraph.springernature.com/explorer/license/
63 schema:sdPublisher N5bf478928e154025a574e55287c60b57
64 schema:url https://www.nature.com/articles/s41598-018-36816-z
65 sgo:license sg:explorer/license/
66 sgo:sdDataset articles
67 rdf:type schema:ScholarlyArticle
68 N205963db9b3c41138ab24bf3ea7041f8 rdf:first sg:person.01124723655.39
69 rdf:rest Na77a246149994e939e1996be922cd3a7
70 N436cd01a423d463190adfb4ae073406c rdf:first sg:person.01327315252.08
71 rdf:rest Neaed2eb6e64248fb98bf1baecccdffbd
72 N5041fe0200ad4c67af1d2ef962f7ed03 schema:name readcube_id
73 schema:value b5cf778404c18676d716d7cc5f29ebaa4506bb8149dbc763bd622f611b556df3
74 rdf:type schema:PropertyValue
75 N582b09c673a84a04920b3306c41244d6 schema:name dimensions_id
76 schema:value pub.1111273941
77 rdf:type schema:PropertyValue
78 N5bf478928e154025a574e55287c60b57 schema:name Springer Nature - SN SciGraph project
79 rdf:type schema:Organization
80 N5e4b1419f6d643c4a685c1b5d3d9d96e schema:affiliation https://www.grid.ac/institutes/grid.419012.f
81 schema:familyName Pinke
82 schema:givenName Domonkos
83 rdf:type schema:Person
84 N7a4c70b3a9804d1b9d687e462eb8cf63 schema:name Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, H-1117, Budapest, Hungary
85 rdf:type schema:Organization
86 N979b11a638ca49d3bdffcd569a150100 schema:issueNumber 1
87 rdf:type schema:PublicationIssue
88 N9cdb4088004e4dbf99ee69e62a24a564 rdf:first sg:person.0743726373.34
89 rdf:rest Ne78d5de0f8ad488384d0d1dbfab6f151
90 Na55b1e9ac18b48099a8e19d66755db25 schema:name doi
91 schema:value 10.1038/s41598-018-36816-z
92 rdf:type schema:PropertyValue
93 Na77a246149994e939e1996be922cd3a7 rdf:first N5e4b1419f6d643c4a685c1b5d3d9d96e
94 rdf:rest N436cd01a423d463190adfb4ae073406c
95 Nab075fc27aed4f96b4015b2b1d004498 schema:name pubmed_id
96 schema:value 30643182
97 rdf:type schema:PropertyValue
98 Ncd11e48fc60d4d0699505e84e3278dbc schema:volumeNumber 9
99 rdf:type schema:PublicationVolume
100 Nd4ad02b995f341c9b308013baed09bff schema:name nlm_unique_id
101 schema:value 101563288
102 rdf:type schema:PropertyValue
103 Ndbdb6742e6a04f2aa4ba5061a05dc2bf schema:affiliation https://www.grid.ac/institutes/grid.425397.e
104 schema:familyName Márton
105 schema:givenName Adrienn Lilla
106 rdf:type schema:Person
107 Ne78d5de0f8ad488384d0d1dbfab6f151 rdf:first Ndbdb6742e6a04f2aa4ba5061a05dc2bf
108 rdf:rest N205963db9b3c41138ab24bf3ea7041f8
109 Neaed2eb6e64248fb98bf1baecccdffbd rdf:first sg:person.01253567743.54
110 rdf:rest Nf06a68ac7eb8424ba510b3194ed1c917
111 Nf06a68ac7eb8424ba510b3194ed1c917 rdf:first sg:person.01175531017.68
112 rdf:rest rdf:nil
113 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
114 schema:name Medical and Health Sciences
115 rdf:type schema:DefinedTerm
116 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
117 schema:name Neurosciences
118 rdf:type schema:DefinedTerm
119 sg:journal.1045337 schema:issn 2045-2322
120 schema:name Scientific Reports
121 rdf:type schema:Periodical
122 sg:person.01124723655.39 schema:affiliation https://www.grid.ac/institutes/grid.483037.b
123 schema:familyName Mátyás
124 schema:givenName Ferenc
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01124723655.39
126 rdf:type schema:Person
127 sg:person.01175531017.68 schema:affiliation https://www.grid.ac/institutes/grid.425397.e
128 schema:familyName Ulbert
129 schema:givenName István
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01175531017.68
131 rdf:type schema:Person
132 sg:person.01253567743.54 schema:affiliation N7a4c70b3a9804d1b9d687e462eb8cf63
133 schema:familyName Tóth
134 schema:givenName Kinga
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01253567743.54
136 rdf:type schema:Person
137 sg:person.01327315252.08 schema:affiliation https://www.grid.ac/institutes/grid.425397.e
138 schema:familyName Márton
139 schema:givenName Gergely
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01327315252.08
141 rdf:type schema:Person
142 sg:person.0743726373.34 schema:affiliation https://www.grid.ac/institutes/grid.425397.e
143 schema:familyName Fiáth
144 schema:givenName Richárd
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0743726373.34
146 rdf:type schema:Person
147 sg:pub.10.1007/bf02368133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020541266
148 https://doi.org/10.1007/bf02368133
149 rdf:type schema:CreativeWork
150 sg:pub.10.1038/nature24636 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092576701
151 https://doi.org/10.1038/nature24636
152 rdf:type schema:CreativeWork
153 sg:pub.10.1038/nn.4365 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036076759
154 https://doi.org/10.1038/nn.4365
155 rdf:type schema:CreativeWork
156 sg:pub.10.1038/nn1233 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017540640
157 https://doi.org/10.1038/nn1233
158 rdf:type schema:CreativeWork
159 sg:pub.10.1038/nrn1519 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047989503
160 https://doi.org/10.1038/nrn1519
161 rdf:type schema:CreativeWork
162 sg:pub.10.1038/srep02942 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031814274
163 https://doi.org/10.1038/srep02942
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/0165-0270(95)00113-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010117265
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/j.biomaterials.2013.07.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035303963
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/j.bios.2018.01.060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100755629
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/j.jneumeth.2006.09.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010427725
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/j.neuron.2009.09.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034167570
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/j.neuron.2011.09.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009812190
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/j.neuroscience.2004.09.066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015791127
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/s0006-8993(03)03023-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021112391
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/s0165-9936(03)00908-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030667398
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1088/1741-2552/aa5a90 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079396110
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1088/1741-2560/13/6/066002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059162027
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1088/1741-2560/3/3/002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009474055
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1088/1741-2560/9/1/016005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010357456
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1088/1741-2560/9/4/046020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040082731
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1101/061481 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016887747
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1109/10.141202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061084017
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1109/iembs.2007.4353391 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077517623
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1109/jmems.2015.2420043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061291712
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1109/tbme.2004.826680 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061526097
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1109/tbme.2006.872824 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061526635
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1109/tbme.2008.2003261 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061527325
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1109/tbme.2011.2166963 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061528553
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1109/tbme.2011.2172440 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061528603
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1109/tnsre.2015.2399856 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061740951
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1111/ejn.13274 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053369995
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1113/jphysiol.2012.232892 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036217320
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1152/jn.00979.2005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051703533
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1152/jn.01170.2003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019812805
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1214/aos/1176346577 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064408175
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1515/bmt-2017-0154 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101221687
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1515/bmt.2010.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029593642
226 rdf:type schema:CreativeWork
227 https://doi.org/10.3389/fneng.2014.00024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006274180
228 rdf:type schema:CreativeWork
229 https://doi.org/10.3390/s17102388 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092275533
230 rdf:type schema:CreativeWork
231 https://www.grid.ac/institutes/grid.419012.f schema:alternateName MTA Institute of Experimental Medicine
232 schema:name Institute of Experimental Medicine, Hungarian Academy of Sciences, Szigony utca 43, H-1083, Budapest, Hungary
233 rdf:type schema:Organization
234 https://www.grid.ac/institutes/grid.425397.e schema:alternateName Pázmány Péter Catholic University
235 schema:name Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter utca 50/A, H-1083, Budapest, Hungary
236 Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, H-1117, Budapest, Hungary
237 rdf:type schema:Organization
238 https://www.grid.ac/institutes/grid.483037.b schema:alternateName University of Veterinary Medicine
239 schema:name Department of Anatomy and Histology, University of Veterinary Medicine, István utca 2, H-1078, Budapest, Hungary
240 Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, H-1117, Budapest, Hungary
241 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...